tippecanoe/tile.cpp

2576 lines
75 KiB
C++

#ifdef __APPLE__
#define _DARWIN_UNLIMITED_STREAMS
#endif
#include <iostream>
#include <fstream>
#include <string>
#include <stack>
#include <vector>
#include <map>
#include <set>
#include <algorithm>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <limits.h>
#include <zlib.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <sys/mman.h>
#include <cmath>
#include <sqlite3.h>
#include <pthread.h>
#include <errno.h>
#include <time.h>
#include <fcntl.h>
#include <sys/wait.h>
#include "mvt.hpp"
#include "mbtiles.hpp"
#include "dirtiles.hpp"
#include "geometry.hpp"
#include "tile.hpp"
#include "pool.hpp"
#include "projection.hpp"
#include "serial.hpp"
#include "options.hpp"
#include "main.hpp"
#include "write_json.hpp"
extern "C" {
#include "jsonpull/jsonpull.h"
}
#include "plugin.hpp"
#define CMD_BITS 3
#define XSTRINGIFY(s) STRINGIFY(s)
#define STRINGIFY(s) #s
pthread_mutex_t db_lock = PTHREAD_MUTEX_INITIALIZER;
pthread_mutex_t var_lock = PTHREAD_MUTEX_INITIALIZER;
std::vector<mvt_geometry> to_feature(drawvec &geom) {
std::vector<mvt_geometry> out;
for (size_t i = 0; i < geom.size(); i++) {
out.push_back(mvt_geometry(geom[i].op, geom[i].x, geom[i].y));
}
return out;
}
bool draws_something(drawvec &geom) {
for (size_t i = 1; i < geom.size(); i++) {
if (geom[i].op == VT_LINETO && (geom[i].x != geom[i - 1].x || geom[i].y != geom[i - 1].y)) {
return true;
}
}
return false;
}
int metacmp(int m1, const std::vector<long long> &keys1, const std::vector<long long> &values1, char *stringpool1, int m2, const std::vector<long long> &keys2, const std::vector<long long> &values2, char *stringpool2);
int coalindexcmp(const struct coalesce *c1, const struct coalesce *c2);
struct coalesce {
char *stringpool = NULL;
std::vector<long long> keys = std::vector<long long>();
std::vector<long long> values = std::vector<long long>();
std::vector<std::string> full_keys = std::vector<std::string>();
std::vector<serial_val> full_values = std::vector<serial_val>();
drawvec geom = drawvec();
unsigned long long index = 0;
long long original_seq = 0;
int type = 0;
int m = 0;
bool coalesced = false;
double spacing = 0;
bool has_id = false;
unsigned long long id = 0;
bool operator<(const coalesce &o) const {
int cmp = coalindexcmp(this, &o);
if (cmp < 0) {
return true;
} else {
return false;
}
}
};
struct preservecmp {
bool operator()(const struct coalesce &a, const struct coalesce &b) {
return a.original_seq < b.original_seq;
}
} preservecmp;
int coalcmp(const void *v1, const void *v2) {
const struct coalesce *c1 = (const struct coalesce *) v1;
const struct coalesce *c2 = (const struct coalesce *) v2;
int cmp = c1->type - c2->type;
if (cmp != 0) {
return cmp;
}
if (c1->has_id != c2->has_id) {
return (int) c1->has_id - (int) c2->has_id;
}
if (c1->has_id && c2->has_id) {
if (c1->id < c2->id) {
return -1;
}
if (c1->id > c2->id) {
return 1;
}
}
return metacmp(c1->m, c1->keys, c1->values, c1->stringpool, c2->m, c2->keys, c2->values, c2->stringpool);
}
int coalindexcmp(const struct coalesce *c1, const struct coalesce *c2) {
int cmp = coalcmp((const void *) c1, (const void *) c2);
if (cmp == 0) {
if (c1->index < c2->index) {
return -1;
} else if (c1->index > c2->index) {
return 1;
}
if (c1->geom < c2->geom) {
return -1;
} else if (c1->geom > c2->geom) {
return 1;
}
}
return cmp;
}
mvt_value retrieve_string(long long off, char *stringpool, int *otype) {
int type = stringpool[off];
char *s = stringpool + off + 1;
if (otype != NULL) {
*otype = type;
}
return stringified_to_mvt_value(type, s);
}
void decode_meta(int m, std::vector<long long> const &metakeys, std::vector<long long> const &metavals, char *stringpool, mvt_layer &layer, mvt_feature &feature) {
int i;
for (i = 0; i < m; i++) {
int otype;
mvt_value key = retrieve_string(metakeys[i], stringpool, NULL);
mvt_value value = retrieve_string(metavals[i], stringpool, &otype);
layer.tag(feature, key.string_value, value);
}
}
int metacmp(int m1, const std::vector<long long> &keys1, const std::vector<long long> &values1, char *stringpool1, int m2, const std::vector<long long> &keys2, const std::vector<long long> &values2, char *stringpool2) {
int i;
for (i = 0; i < m1 && i < m2; i++) {
mvt_value key1 = retrieve_string(keys1[i], stringpool1, NULL);
mvt_value key2 = retrieve_string(keys2[i], stringpool2, NULL);
if (key1.string_value < key2.string_value) {
return -1;
} else if (key1.string_value > key2.string_value) {
return 1;
}
long long off1 = values1[i];
int type1 = stringpool1[off1];
char *s1 = stringpool1 + off1 + 1;
long long off2 = values2[i];
int type2 = stringpool2[off2];
char *s2 = stringpool2 + off2 + 1;
if (type1 != type2) {
return type1 - type2;
}
int cmp = strcmp(s1, s2);
if (cmp != 0) {
return cmp;
}
}
if (m1 < m2) {
return -1;
} else if (m1 > m2) {
return 1;
} else {
return 0;
}
}
void rewrite(drawvec &geom, int z, int nextzoom, int maxzoom, long long *bbox, unsigned tx, unsigned ty, int buffer, int *within, long long *geompos, FILE **geomfile, const char *fname, signed char t, int layer, long long metastart, signed char feature_minzoom, int child_shards, int max_zoom_increment, long long seq, int tippecanoe_minzoom, int tippecanoe_maxzoom, int segment, unsigned *initial_x, unsigned *initial_y, int m, std::vector<long long> &metakeys, std::vector<long long> &metavals, bool has_id, unsigned long long id, unsigned long long index, long long extent) {
if (geom.size() > 0 && (nextzoom <= maxzoom || additional[A_EXTEND_ZOOMS])) {
int xo, yo;
int span = 1 << (nextzoom - z);
// Get the feature bounding box in pixel (256) coordinates at the child zoom
// in order to calculate which sub-tiles it can touch including the buffer.
long long bbox2[4];
int k;
for (k = 0; k < 4; k++) {
// Division instead of right-shift because coordinates can be negative
bbox2[k] = bbox[k] / (1 << (32 - nextzoom - 8));
}
// Decrement the top and left edges so that any features that are
// touching the edge can potentially be included in the adjacent tiles too.
bbox2[0] -= buffer + 1;
bbox2[1] -= buffer + 1;
bbox2[2] += buffer;
bbox2[3] += buffer;
for (k = 0; k < 4; k++) {
if (bbox2[k] < 0) {
bbox2[k] = 0;
}
if (bbox2[k] >= 256 * span) {
bbox2[k] = 256 * (span - 1);
}
bbox2[k] /= 256;
}
// Offset from tile coordinates back to world coordinates
unsigned sx = 0, sy = 0;
if (z != 0) {
sx = tx << (32 - z);
sy = ty << (32 - z);
}
drawvec geom2;
for (size_t i = 0; i < geom.size(); i++) {
geom2.push_back(draw(geom[i].op, (geom[i].x + sx) >> geometry_scale, (geom[i].y + sy) >> geometry_scale));
}
for (xo = bbox2[0]; xo <= bbox2[2]; xo++) {
for (yo = bbox2[1]; yo <= bbox2[3]; yo++) {
unsigned jx = tx * span + xo;
unsigned jy = ty * span + yo;
// j is the shard that the child tile's data is being written to.
//
// Be careful: We can't jump more zoom levels than max_zoom_increment
// because that could break the constraint that each of the children
// of the current tile must have its own shard, because the data for
// the child tile must be contiguous within the shard.
//
// But it's OK to spread children across all the shards, not just
// the four that would normally result from splitting one tile,
// because it will go through all the shards when it does the
// next zoom.
//
// If child_shards is a power of 2 but not a power of 4, this will
// shard X more widely than Y. XXX Is there a better way to do this
// without causing collisions?
int j = ((jx << max_zoom_increment) |
((jy & ((1 << max_zoom_increment) - 1)))) &
(child_shards - 1);
{
if (!within[j]) {
serialize_int(geomfile[j], nextzoom, &geompos[j], fname);
serialize_uint(geomfile[j], tx * span + xo, &geompos[j], fname);
serialize_uint(geomfile[j], ty * span + yo, &geompos[j], fname);
within[j] = 1;
}
serial_feature sf;
sf.layer = layer;
sf.segment = segment;
sf.seq = seq;
sf.t = t;
sf.has_id = has_id;
sf.id = id;
sf.has_tippecanoe_minzoom = tippecanoe_minzoom != -1;
sf.tippecanoe_minzoom = tippecanoe_minzoom;
sf.has_tippecanoe_maxzoom = tippecanoe_maxzoom != -1;
sf.tippecanoe_maxzoom = tippecanoe_maxzoom;
sf.metapos = metastart;
sf.geometry = geom2;
sf.index = index;
sf.extent = extent;
sf.m = m;
sf.feature_minzoom = feature_minzoom;
if (metastart < 0) {
for (int i = 0; i < m; i++) {
sf.keys.push_back(metakeys[i]);
sf.values.push_back(metavals[i]);
}
}
serialize_feature(geomfile[j], &sf, &geompos[j], fname, initial_x[segment] >> geometry_scale, initial_y[segment] >> geometry_scale, true);
}
}
}
}
}
struct partial {
std::vector<drawvec> geoms = std::vector<drawvec>();
std::vector<long long> keys = std::vector<long long>();
std::vector<long long> values = std::vector<long long>();
std::vector<std::string> full_keys = std::vector<std::string>();
std::vector<serial_val> full_values = std::vector<serial_val>();
std::vector<ssize_t> arc_polygon = std::vector<ssize_t>();
long long layer = 0;
long long original_seq = 0;
unsigned long long index = 0;
int m = 0;
int segment = 0;
bool reduced = 0;
int z = 0;
int line_detail = 0;
int maxzoom = 0;
double spacing = 0;
double simplification = 0;
signed char t = 0;
unsigned long long id = 0;
bool has_id = 0;
ssize_t renamed = 0;
};
struct partial_arg {
std::vector<struct partial> *partials = NULL;
int task = 0;
int tasks = 0;
};
drawvec revive_polygon(drawvec &geom, double area, int z, int detail) {
// From area in world coordinates to area in tile coordinates
long long divisor = 1LL << (32 - detail - z);
area /= divisor * divisor;
if (area == 0) {
return drawvec();
}
int height = ceil(sqrt(area));
int width = round(area / height);
if (width == 0) {
width = 1;
}
long long sx = 0, sy = 0, n = 0;
for (size_t i = 0; i < geom.size(); i++) {
if (geom[i].op == VT_MOVETO || geom[i].op == VT_LINETO) {
sx += geom[i].x;
sy += geom[i].y;
n++;
}
}
if (n > 0) {
sx /= n;
sy /= n;
drawvec out;
out.push_back(draw(VT_MOVETO, sx - (width / 2), sy - (height / 2)));
out.push_back(draw(VT_LINETO, sx - (width / 2) + width, sy - (height / 2)));
out.push_back(draw(VT_LINETO, sx - (width / 2) + width, sy - (height / 2) + height));
out.push_back(draw(VT_LINETO, sx - (width / 2), sy - (height / 2) + height));
out.push_back(draw(VT_LINETO, sx - (width / 2), sy - (height / 2)));
return out;
} else {
return drawvec();
}
}
void *partial_feature_worker(void *v) {
struct partial_arg *a = (struct partial_arg *) v;
std::vector<struct partial> *partials = a->partials;
for (size_t i = a->task; i < (*partials).size(); i += a->tasks) {
drawvec geom = (*partials)[i].geoms[0]; // XXX assumption of a single geometry at the beginning
(*partials)[i].geoms.clear(); // avoid keeping two copies in memory
signed char t = (*partials)[i].t;
int z = (*partials)[i].z;
int line_detail = (*partials)[i].line_detail;
int maxzoom = (*partials)[i].maxzoom;
if (additional[A_GRID_LOW_ZOOMS] && z < maxzoom) {
geom = stairstep(geom, z, line_detail);
}
double area = 0;
if (t == VT_POLYGON) {
area = get_mp_area(geom);
}
if ((t == VT_LINE || t == VT_POLYGON) && !(prevent[P_SIMPLIFY] || (z == maxzoom && prevent[P_SIMPLIFY_LOW]) || (z < maxzoom && additional[A_GRID_LOW_ZOOMS]))) {
if (1 /* !reduced */) { // XXX why did this not simplify if reduced?
if (t == VT_LINE) {
geom = remove_noop(geom, t, 32 - z - line_detail);
}
bool already_marked = false;
if (additional[A_DETECT_SHARED_BORDERS] && t == VT_POLYGON) {
already_marked = true;
}
if (!already_marked) {
drawvec ngeom = simplify_lines(geom, z, line_detail, !(prevent[P_CLIPPING] || prevent[P_DUPLICATION]), (*partials)[i].simplification, t == VT_POLYGON ? 4 : 0);
if (t != VT_POLYGON || ngeom.size() >= 3) {
geom = ngeom;
}
}
}
}
#if 0
if (t == VT_LINE && z != basezoom) {
geom = shrink_lines(geom, z, line_detail, basezoom, &along);
}
#endif
if (t == VT_LINE && additional[A_REVERSE]) {
geom = reorder_lines(geom);
}
to_tile_scale(geom, z, line_detail);
std::vector<drawvec> geoms;
geoms.push_back(geom);
if (t == VT_POLYGON) {
// Scaling may have made the polygon degenerate.
// Give Clipper a chance to try to fix it.
for (size_t g = 0; g < geoms.size(); g++) {
drawvec before = geoms[g];
geoms[g] = clean_or_clip_poly(geoms[g], 0, 0, false);
if (additional[A_DEBUG_POLYGON]) {
check_polygon(geoms[g]);
}
if (geoms[g].size() < 3) {
if (area > 0) {
geoms[g] = revive_polygon(before, area / geoms.size(), z, line_detail);
} else {
geoms[g].clear();
}
}
}
}
(*partials)[i].index = i;
(*partials)[i].geoms = geoms;
}
return NULL;
}
int manage_gap(unsigned long long index, unsigned long long *previndex, double scale, double gamma, double *gap) {
if (gamma > 0) {
if (*gap > 0) {
if (index == *previndex) {
return 1; // Exact duplicate: can't fulfil the gap requirement
}
if (index < *previndex || std::exp(std::log((index - *previndex) / scale) * gamma) >= *gap) {
// Dot is further from the previous than the nth root of the gap,
// so produce it, and choose a new gap at the next point.
*gap = 0;
} else {
return 1;
}
} else if (index >= *previndex) {
*gap = (index - *previndex) / scale;
if (*gap == 0) {
return 1; // Exact duplicate: skip
} else if (*gap < 1) {
return 1; // Narrow dot spacing: need to stretch out
} else {
*gap = 0; // Wider spacing than minimum: so pass through unchanged
}
}
*previndex = index;
}
return 0;
}
// Does not fix up moveto/lineto
static drawvec reverse_subring(drawvec const &dv) {
drawvec out;
for (size_t i = dv.size(); i > 0; i--) {
out.push_back(dv[i - 1]);
}
return out;
}
struct edge {
unsigned x1 = 0;
unsigned y1 = 0;
unsigned x2 = 0;
unsigned y2 = 0;
unsigned ring = 0;
edge(unsigned _x1, unsigned _y1, unsigned _x2, unsigned _y2, unsigned _ring) {
x1 = _x1;
y1 = _y1;
x2 = _x2;
y2 = _y2;
ring = _ring;
}
bool operator<(const edge &s) const {
long long cmp = (long long) y1 - s.y1;
if (cmp == 0) {
cmp = (long long) x1 - s.x1;
}
if (cmp == 0) {
cmp = (long long) y2 - s.y2;
}
if (cmp == 0) {
cmp = (long long) x2 - s.x2;
}
return cmp < 0;
}
};
struct edgecmp_ring {
bool operator()(const edge &a, const edge &b) {
long long cmp = (long long) a.y1 - b.y1;
if (cmp == 0) {
cmp = (long long) a.x1 - b.x1;
}
if (cmp == 0) {
cmp = (long long) a.y2 - b.y2;
}
if (cmp == 0) {
cmp = (long long) a.x2 - b.x2;
}
if (cmp == 0) {
cmp = (long long) a.ring - b.ring;
}
return cmp < 0;
}
} edgecmp_ring;
bool edges_same(std::pair<std::vector<edge>::iterator, std::vector<edge>::iterator> e1, std::pair<std::vector<edge>::iterator, std::vector<edge>::iterator> e2) {
if ((e2.second - e2.first) != (e1.second - e1.first)) {
return false;
}
while (e1.first != e1.second) {
if (e1.first->ring != e2.first->ring) {
return false;
}
++e1.first;
++e2.first;
}
return true;
}
bool find_common_edges(std::vector<partial> &partials, int z, int line_detail, double simplification, int maxzoom, double merge_fraction) {
size_t merge_count = ceil((1 - merge_fraction) * partials.size());
for (size_t i = 0; i < partials.size(); i++) {
if (partials[i].t == VT_POLYGON) {
for (size_t j = 0; j < partials[i].geoms.size(); j++) {
drawvec &g = partials[i].geoms[j];
drawvec out;
for (size_t k = 0; k < g.size(); k++) {
if (g[k].op == VT_LINETO && k > 0 && g[k - 1] == g[k]) {
;
} else {
out.push_back(g[k]);
}
}
partials[i].geoms[j] = out;
}
}
}
// Construct a mapping from all polygon edges to the set of rings
// that each edge appears in. (The ring number is across all polygons;
// we don't need to look it back up, just to tell where it changes.)
std::vector<edge> edges;
size_t ring = 0;
for (size_t i = 0; i < partials.size(); i++) {
if (partials[i].t == VT_POLYGON) {
for (size_t j = 0; j < partials[i].geoms.size(); j++) {
for (size_t k = 0; k + 1 < partials[i].geoms[j].size(); k++) {
if (partials[i].geoms[j][k].op == VT_MOVETO) {
ring++;
}
if (partials[i].geoms[j][k + 1].op == VT_LINETO) {
drawvec dv;
if (partials[i].geoms[j][k] < partials[i].geoms[j][k + 1]) {
dv.push_back(partials[i].geoms[j][k]);
dv.push_back(partials[i].geoms[j][k + 1]);
} else {
dv.push_back(partials[i].geoms[j][k + 1]);
dv.push_back(partials[i].geoms[j][k]);
}
edges.push_back(edge(dv[0].x, dv[0].y, dv[1].x, dv[1].y, ring));
}
}
}
}
}
std::sort(edges.begin(), edges.end(), edgecmp_ring);
std::set<draw> necessaries;
// Now mark all the points where the set of rings using the edge on one side
// is not the same as the set of rings using the edge on the other side.
for (size_t i = 0; i < partials.size(); i++) {
if (partials[i].t == VT_POLYGON) {
for (size_t j = 0; j < partials[i].geoms.size(); j++) {
drawvec &g = partials[i].geoms[j];
for (size_t k = 0; k < g.size(); k++) {
g[k].necessary = 0;
}
for (size_t a = 0; a < g.size(); a++) {
if (g[a].op == VT_MOVETO) {
size_t b;
for (b = a + 1; b < g.size(); b++) {
if (g[b].op != VT_LINETO) {
break;
}
}
// -1 because of duplication at the end
size_t s = b - a - 1;
if (s > 0) {
drawvec left;
if (g[a + (s - 1) % s] < g[a]) {
left.push_back(g[a + (s - 1) % s]);
left.push_back(g[a]);
} else {
left.push_back(g[a]);
left.push_back(g[a + (s - 1) % s]);
}
if (left[1] < left[0]) {
fprintf(stderr, "left misordered\n");
}
std::pair<std::vector<edge>::iterator, std::vector<edge>::iterator> e1 = std::equal_range(edges.begin(), edges.end(), edge(left[0].x, left[0].y, left[1].x, left[1].y, 0));
for (size_t k = 0; k < s; k++) {
drawvec right;
if (g[a + k] < g[a + k + 1]) {
right.push_back(g[a + k]);
right.push_back(g[a + k + 1]);
} else {
right.push_back(g[a + k + 1]);
right.push_back(g[a + k]);
}
std::pair<std::vector<edge>::iterator, std::vector<edge>::iterator> e2 = std::equal_range(edges.begin(), edges.end(), edge(right[0].x, right[0].y, right[1].x, right[1].y, 0));
if (right[1] < right[0]) {
fprintf(stderr, "left misordered\n");
}
if (e1.first == e1.second || e2.first == e2.second) {
fprintf(stderr, "Internal error: polygon edge lookup failed for %lld,%lld to %lld,%lld or %lld,%lld to %lld,%lld\n", left[0].x, left[0].y, left[1].x, left[1].y, right[0].x, right[0].y, right[1].x, right[1].y);
exit(EXIT_FAILURE);
}
if (!edges_same(e1, e2)) {
g[a + k].necessary = 1;
necessaries.insert(g[a + k]);
}
e1 = e2;
}
}
a = b - 1;
}
}
}
}
}
edges.clear();
std::map<drawvec, size_t> arcs;
std::multimap<ssize_t, size_t> merge_candidates; // from arc to partial
// Roll rings that include a necessary point around so they start at one
for (size_t i = 0; i < partials.size(); i++) {
if (partials[i].t == VT_POLYGON) {
for (size_t j = 0; j < partials[i].geoms.size(); j++) {
drawvec &g = partials[i].geoms[j];
for (size_t k = 0; k < g.size(); k++) {
if (necessaries.count(g[k]) != 0) {
g[k].necessary = 1;
}
}
for (size_t k = 0; k < g.size(); k++) {
if (g[k].op == VT_MOVETO) {
ssize_t necessary = -1;
ssize_t lowest = k;
size_t l;
for (l = k + 1; l < g.size(); l++) {
if (g[l].op != VT_LINETO) {
break;
}
if (g[l].necessary) {
necessary = l;
}
if (g[l] < g[lowest]) {
lowest = l;
}
}
if (necessary < 0) {
necessary = lowest;
// Add a necessary marker if there was none in the ring,
// so the arc code below can find it.
g[lowest].necessary = 1;
}
{
drawvec tmp;
// l - 1 because the endpoint is duplicated
for (size_t m = necessary; m < l - 1; m++) {
tmp.push_back(g[m]);
}
for (ssize_t m = k; m < necessary; m++) {
tmp.push_back(g[m]);
}
// replace the endpoint
tmp.push_back(g[necessary]);
if (tmp.size() != l - k) {
fprintf(stderr, "internal error shifting ring\n");
exit(EXIT_FAILURE);
}
for (size_t m = 0; m < tmp.size(); m++) {
if (m == 0) {
tmp[m].op = VT_MOVETO;
} else {
tmp[m].op = VT_LINETO;
}
g[k + m] = tmp[m];
}
}
// Now peel off each set of segments from one necessary point to the next
// into an "arc" as in TopoJSON
for (size_t m = k; m < l; m++) {
if (!g[m].necessary) {
fprintf(stderr, "internal error in arc building\n");
exit(EXIT_FAILURE);
}
drawvec arc;
size_t n;
for (n = m; n < l; n++) {
arc.push_back(g[n]);
if (n > m && g[n].necessary) {
break;
}
}
auto f = arcs.find(arc);
if (f == arcs.end()) {
drawvec arc2 = reverse_subring(arc);
auto f2 = arcs.find(arc2);
if (f2 == arcs.end()) {
// Add new arc
size_t added = arcs.size() + 1;
arcs.insert(std::pair<drawvec, size_t>(arc, added));
partials[i].arc_polygon.push_back(added);
merge_candidates.insert(std::pair<ssize_t, size_t>(added, i));
} else {
partials[i].arc_polygon.push_back(-(ssize_t) f2->second);
merge_candidates.insert(std::pair<ssize_t, size_t>(-(ssize_t) f2->second, i));
}
} else {
partials[i].arc_polygon.push_back(f->second);
merge_candidates.insert(std::pair<ssize_t, size_t>(f->second, i));
}
m = n - 1;
}
partials[i].arc_polygon.push_back(0);
k = l - 1;
}
}
}
}
}
// Simplify each arc
std::vector<drawvec> simplified_arcs;
size_t count = 0;
for (auto ai = arcs.begin(); ai != arcs.end(); ++ai) {
if (simplified_arcs.size() < ai->second + 1) {
simplified_arcs.resize(ai->second + 1);
}
drawvec dv = ai->first;
for (size_t i = 0; i < dv.size(); i++) {
if (i == 0) {
dv[i].op = VT_MOVETO;
} else {
dv[i].op = VT_LINETO;
}
}
if (!(prevent[P_SIMPLIFY] || (z == maxzoom && prevent[P_SIMPLIFY_LOW]) || (z < maxzoom && additional[A_GRID_LOW_ZOOMS]))) {
simplified_arcs[ai->second] = simplify_lines(dv, z, line_detail, !(prevent[P_CLIPPING] || prevent[P_DUPLICATION]), simplification, 4);
} else {
simplified_arcs[ai->second] = dv;
}
count++;
}
// If necessary, merge some adjacent polygons into some other polygons
struct merge_order {
ssize_t edge = 0;
unsigned long long gap = 0;
size_t p1 = 0;
size_t p2 = 0;
bool operator<(const merge_order &m) const {
return gap < m.gap;
}
};
std::vector<merge_order> order;
for (ssize_t i = 0; i < (ssize_t) simplified_arcs.size(); i++) {
auto r1 = merge_candidates.equal_range(i);
for (auto r1i = r1.first; r1i != r1.second; ++r1i) {
auto r2 = merge_candidates.equal_range(-i);
for (auto r2i = r2.first; r2i != r2.second; ++r2i) {
if (r1i->second != r2i->second) {
merge_order mo;
mo.edge = i;
if (partials[r1i->second].index > partials[r2i->second].index) {
mo.gap = partials[r1i->second].index - partials[r2i->second].index;
} else {
mo.gap = partials[r2i->second].index - partials[r1i->second].index;
}
mo.p1 = r1i->second;
mo.p2 = r2i->second;
order.push_back(mo);
}
}
}
}
std::sort(order.begin(), order.end());
size_t merged = 0;
for (size_t o = 0; o < order.size(); o++) {
if (merged >= merge_count) {
break;
}
size_t i = order[o].p1;
while (partials[i].renamed >= 0) {
i = partials[i].renamed;
}
size_t i2 = order[o].p2;
while (partials[i2].renamed >= 0) {
i2 = partials[i2].renamed;
}
for (size_t j = 0; j < partials[i].arc_polygon.size() && merged < merge_count; j++) {
if (partials[i].arc_polygon[j] == order[o].edge) {
{
// XXX snap links
if (partials[order[o].p2].arc_polygon.size() > 0) {
// This has to merge the ring that contains the anti-arc to this arc
// into the current ring, and then add whatever other rings were in
// that feature on to the end.
//
// This can't be good for keeping parent-child relationships among
// the rings in order, but Wagyu should sort that out later
std::vector<ssize_t> additions;
std::vector<ssize_t> &here = partials[i].arc_polygon;
std::vector<ssize_t> &other = partials[i2].arc_polygon;
#if 0
printf("seeking %zd\n", partials[i].arc_polygon[j]);
printf("before: ");
for (size_t k = 0; k < here.size(); k++) {
printf("%zd ", here[k]);
}
printf("\n");
printf("other: ");
for (size_t k = 0; k < other.size(); k++) {
printf("%zd ", other[k]);
}
printf("\n");
#endif
for (size_t k = 0; k < other.size(); k++) {
size_t l;
for (l = k; l < other.size(); l++) {
if (other[l] == 0) {
break;
}
}
if (l >= other.size()) {
l--;
}
#if 0
for (size_t m = k; m <= l; m++) {
printf("%zd ", other[m]);
}
printf("\n");
#endif
size_t m;
for (m = k; m <= l; m++) {
if (other[m] == -partials[i].arc_polygon[j]) {
break;
}
}
if (m <= l) {
// Found the shared arc
here.erase(here.begin() + j);
size_t off = 0;
for (size_t n = m + 1; n < l; n++) {
here.insert(here.begin() + j + off, other[n]);
off++;
}
for (size_t n = k; n < m; n++) {
here.insert(here.begin() + j + off, other[n]);
off++;
}
} else {
// Looking at some other ring
for (size_t n = k; n <= l; n++) {
additions.push_back(other[n]);
}
}
k = l;
}
partials[i2].arc_polygon.clear();
partials[i2].renamed = i;
merged++;
for (size_t k = 0; k < additions.size(); k++) {
partials[i].arc_polygon.push_back(additions[k]);
}
#if 0
printf("after: ");
for (size_t k = 0; k < here.size(); k++) {
printf("%zd ", here[k]);
}
printf("\n");
#endif
#if 0
for (size_t k = 0; k + 1 < here.size(); k++) {
if (here[k] != 0 && here[k + 1] != 0) {
if (simplified_arcs[here[k + 1]][0] != simplified_arcs[here[k]][simplified_arcs[here[k]].size() - 1]) {
printf("error from %zd to %zd\n", here[k], here[k + 1]);
}
}
}
#endif
}
}
}
}
}
// Turn the arc representations of the polygons back into standard polygon geometries
for (size_t i = 0; i < partials.size(); i++) {
if (partials[i].t == VT_POLYGON) {
partials[i].geoms.resize(0);
partials[i].geoms.push_back(drawvec());
bool at_start = true;
draw first(-1, 0, 0);
for (size_t j = 0; j < partials[i].arc_polygon.size(); j++) {
ssize_t p = partials[i].arc_polygon[j];
if (p == 0) {
if (first.op >= 0) {
partials[i].geoms[0].push_back(first);
first = draw(-1, 0, 0);
}
at_start = true;
} else if (p > 0) {
for (size_t k = 0; k + 1 < simplified_arcs[p].size(); k++) {
if (at_start) {
partials[i].geoms[0].push_back(draw(VT_MOVETO, simplified_arcs[p][k].x, simplified_arcs[p][k].y));
first = draw(VT_LINETO, simplified_arcs[p][k].x, simplified_arcs[p][k].y);
} else {
partials[i].geoms[0].push_back(draw(VT_LINETO, simplified_arcs[p][k].x, simplified_arcs[p][k].y));
}
at_start = 0;
}
} else { /* p < 0 */
for (ssize_t k = simplified_arcs[-p].size() - 1; k > 0; k--) {
if (at_start) {
partials[i].geoms[0].push_back(draw(VT_MOVETO, simplified_arcs[-p][k].x, simplified_arcs[-p][k].y));
first = draw(VT_LINETO, simplified_arcs[-p][k].x, simplified_arcs[-p][k].y);
} else {
partials[i].geoms[0].push_back(draw(VT_LINETO, simplified_arcs[-p][k].x, simplified_arcs[-p][k].y));
}
at_start = 0;
}
}
}
}
}
if (merged >= merge_count) {
return true;
} else {
return false;
}
}
unsigned long long choose_mingap(std::vector<unsigned long long> const &indices, double f) {
unsigned long long bot = ULLONG_MAX;
unsigned long long top = 0;
for (size_t i = 0; i < indices.size(); i++) {
if (i > 0 && indices[i] >= indices[i - 1]) {
if (indices[i] - indices[i - 1] > top) {
top = indices[i] - indices[i - 1];
}
if (indices[i] - indices[i - 1] < bot) {
bot = indices[i] - indices[i - 1];
}
}
}
size_t want = indices.size() * f;
while (top - bot > 2) {
unsigned long long guess = bot / 2 + top / 2;
size_t count = 0;
unsigned long long prev = 0;
for (size_t i = 0; i < indices.size(); i++) {
if (indices[i] - prev >= guess) {
count++;
prev = indices[i];
}
}
if (count > want) {
bot = guess;
} else if (count < want) {
top = guess;
} else {
return guess;
}
}
return top;
}
long long choose_minextent(std::vector<long long> &extents, double f) {
std::sort(extents.begin(), extents.end());
return extents[(extents.size() - 1) * (1 - f)];
}
struct write_tile_args {
struct task *tasks = NULL;
char *metabase = NULL;
char *stringpool = NULL;
int min_detail = 0;
sqlite3 *outdb = NULL;
const char *outdir = NULL;
int buffer = 0;
const char *fname = NULL;
FILE **geomfile = NULL;
double todo = 0;
volatile long long *along = NULL;
double gamma = 0;
double gamma_out = 0;
int child_shards = 0;
int *geomfd = NULL;
off_t *geom_size = NULL;
volatile unsigned *midx = NULL;
volatile unsigned *midy = NULL;
int maxzoom = 0;
int minzoom = 0;
int full_detail = 0;
int low_detail = 0;
double simplification = 0;
volatile long long *most = NULL;
long long *meta_off = NULL;
long long *pool_off = NULL;
unsigned *initial_x = NULL;
unsigned *initial_y = NULL;
volatile int *running = NULL;
int err = 0;
std::vector<std::map<std::string, layermap_entry>> *layermaps = NULL;
std::vector<std::vector<std::string>> *layer_unmaps = NULL;
size_t pass = 0;
size_t passes = 0;
unsigned long long mingap = 0;
unsigned long long mingap_out = 0;
long long minextent = 0;
long long minextent_out = 0;
double fraction = 0;
double fraction_out = 0;
const char *prefilter = NULL;
const char *postfilter = NULL;
bool still_dropping = false;
int wrote_zoom = 0;
size_t tiling_seg = 0;
};
bool clip_to_tile(serial_feature &sf, int z, long long buffer) {
int quick = quick_check(sf.bbox, z, buffer);
if (quick == 0) {
return true;
}
if (z == 0) {
if (sf.bbox[0] < 0 || sf.bbox[2] > 1LL << 32) {
// If the geometry extends off the edge of the world, concatenate on another copy
// shifted by 360 degrees, and then make sure both copies get clipped down to size.
size_t n = sf.geometry.size();
if (sf.bbox[0] < 0) {
for (size_t i = 0; i < n; i++) {
sf.geometry.push_back(draw(sf.geometry[i].op, sf.geometry[i].x + (1LL << 32), sf.geometry[i].y));
}
}
if (sf.bbox[2] > 1LL << 32) {
for (size_t i = 0; i < n; i++) {
sf.geometry.push_back(draw(sf.geometry[i].op, sf.geometry[i].x - (1LL << 32), sf.geometry[i].y));
}
}
sf.bbox[0] = 0;
sf.bbox[2] = 1LL << 32;
quick = -1;
}
}
// Can't accept the quick check if guaranteeing no duplication, since the
// overlap might have been in the buffer.
if (quick != 1 || prevent[P_DUPLICATION]) {
drawvec clipped;
// Do the clipping, even if we are going to include the whole feature,
// so that we can know whether the feature itself, or only the feature's
// bounding box, touches the tile.
if (sf.t == VT_LINE) {
clipped = clip_lines(sf.geometry, z, buffer);
}
if (sf.t == VT_POLYGON) {
clipped = simple_clip_poly(sf.geometry, z, buffer);
}
if (sf.t == VT_POINT) {
clipped = clip_point(sf.geometry, z, buffer);
}
clipped = remove_noop(clipped, sf.t, 0);
// Must clip at z0 even if we don't want clipping, to handle features
// that are duplicated across the date line
if (prevent[P_DUPLICATION] && z != 0) {
if (point_within_tile((sf.bbox[0] + sf.bbox[2]) / 2, (sf.bbox[1] + sf.bbox[3]) / 2, z)) {
// sf.geometry is unchanged
} else {
sf.geometry.clear();
}
} else if (prevent[P_CLIPPING] && z != 0) {
if (clipped.size() == 0) {
sf.geometry.clear();
} else {
// sf.geometry is unchanged
}
} else {
sf.geometry = clipped;
}
}
return false;
}
serial_feature next_feature(FILE *geoms, long long *geompos_in, char *metabase, long long *meta_off, int z, unsigned tx, unsigned ty, unsigned *initial_x, unsigned *initial_y, long long *original_features, long long *unclipped_features, int nextzoom, int maxzoom, int minzoom, int max_zoom_increment, size_t pass, size_t passes, volatile long long *along, long long alongminus, int buffer, int *within, bool *first_time, FILE **geomfile, long long *geompos, volatile double *oprogress, double todo, const char *fname, int child_shards) {
while (1) {
serial_feature sf = deserialize_feature(geoms, geompos_in, metabase, meta_off, z, tx, ty, initial_x, initial_y);
if (sf.t < 0) {
return sf;
}
double progress = floor(((((*geompos_in + *along - alongminus) / (double) todo) + (pass - (2 - passes))) / passes + z) / (maxzoom + 1) * 1000) / 10;
if (progress >= *oprogress + 0.1) {
if (!quiet && !quiet_progress) {
fprintf(stderr, " %3.1f%% %d/%u/%u \r", progress, z, tx, ty);
}
*oprogress = progress;
}
(*original_features)++;
if (clip_to_tile(sf, z, buffer)) {
continue;
}
if (sf.geometry.size() > 0) {
(*unclipped_features)++;
}
if (*first_time && pass == 1) { /* only write out the next zoom once, even if we retry */
if (sf.tippecanoe_maxzoom == -1 || sf.tippecanoe_maxzoom >= nextzoom) {
rewrite(sf.geometry, z, nextzoom, maxzoom, sf.bbox, tx, ty, buffer, within, geompos, geomfile, fname, sf.t, sf.layer, sf.metapos, sf.feature_minzoom, child_shards, max_zoom_increment, sf.seq, sf.tippecanoe_minzoom, sf.tippecanoe_maxzoom, sf.segment, initial_x, initial_y, sf.m, sf.keys, sf.values, sf.has_id, sf.id, sf.index, sf.extent);
}
}
if (z < minzoom) {
continue;
}
if (sf.tippecanoe_minzoom != -1 && z < sf.tippecanoe_minzoom) {
continue;
}
if (sf.tippecanoe_maxzoom != -1 && z > sf.tippecanoe_maxzoom) {
continue;
}
if (sf.tippecanoe_minzoom == -1 && z < sf.feature_minzoom) {
continue;
}
return sf;
}
}
struct run_prefilter_args {
FILE *geoms = NULL;
long long *geompos_in = NULL;
char *metabase = NULL;
long long *meta_off = NULL;
int z = 0;
unsigned tx = 0;
unsigned ty = 0;
unsigned *initial_x = 0;
unsigned *initial_y = 0;
long long *original_features = 0;
long long *unclipped_features = 0;
int nextzoom = 0;
int maxzoom = 0;
int minzoom = 0;
int max_zoom_increment = 0;
size_t pass = 0;
size_t passes = 0;
volatile long long *along = 0;
long long alongminus = 0;
int buffer = 0;
int *within = NULL;
bool *first_time = NULL;
FILE **geomfile = NULL;
long long *geompos = NULL;
volatile double *oprogress = NULL;
double todo = 0;
const char *fname = 0;
int child_shards = 0;
std::vector<std::vector<std::string>> *layer_unmaps = NULL;
char *stringpool = NULL;
long long *pool_off = NULL;
FILE *prefilter_fp = NULL;
};
void *run_prefilter(void *v) {
run_prefilter_args *rpa = (run_prefilter_args *) v;
while (1) {
serial_feature sf = next_feature(rpa->geoms, rpa->geompos_in, rpa->metabase, rpa->meta_off, rpa->z, rpa->tx, rpa->ty, rpa->initial_x, rpa->initial_y, rpa->original_features, rpa->unclipped_features, rpa->nextzoom, rpa->maxzoom, rpa->minzoom, rpa->max_zoom_increment, rpa->pass, rpa->passes, rpa->along, rpa->alongminus, rpa->buffer, rpa->within, rpa->first_time, rpa->geomfile, rpa->geompos, rpa->oprogress, rpa->todo, rpa->fname, rpa->child_shards);
if (sf.t < 0) {
break;
}
mvt_layer tmp_layer;
tmp_layer.extent = 1LL << 32;
tmp_layer.name = (*(rpa->layer_unmaps))[sf.segment][sf.layer];
if (sf.t == VT_POLYGON) {
sf.geometry = close_poly(sf.geometry);
}
mvt_feature tmp_feature;
tmp_feature.type = sf.t;
tmp_feature.geometry = to_feature(sf.geometry);
tmp_feature.id = sf.id;
tmp_feature.has_id = sf.has_id;
// Offset from tile coordinates back to world coordinates
unsigned sx = 0, sy = 0;
if (rpa->z != 0) {
sx = rpa->tx << (32 - rpa->z);
sy = rpa->ty << (32 - rpa->z);
}
for (size_t i = 0; i < tmp_feature.geometry.size(); i++) {
tmp_feature.geometry[i].x += sx;
tmp_feature.geometry[i].y += sy;
}
decode_meta(sf.m, sf.keys, sf.values, rpa->stringpool + rpa->pool_off[sf.segment], tmp_layer, tmp_feature);
tmp_layer.features.push_back(tmp_feature);
layer_to_geojson(rpa->prefilter_fp, tmp_layer, 0, 0, 0, false, true, false, sf.index, sf.seq, sf.extent, true);
}
if (fclose(rpa->prefilter_fp) != 0) {
if (errno == EPIPE) {
static bool warned = false;
if (!warned) {
fprintf(stderr, "Warning: broken pipe in prefilter\n");
warned = true;
}
} else {
perror("fclose output to prefilter");
exit(EXIT_FAILURE);
}
}
return NULL;
}
void add_tilestats(std::string const &layername, int z, std::vector<std::map<std::string, layermap_entry>> *layermaps, size_t tiling_seg, std::vector<std::vector<std::string>> *layer_unmaps, std::string const &key, serial_val const &val) {
std::map<std::string, layermap_entry> &layermap = (*layermaps)[tiling_seg];
if (layermap.count(layername) == 0) {
layermap_entry lme = layermap_entry(layermap.size());
lme.minzoom = z;
lme.maxzoom = z;
lme.retain = 1;
layermap.insert(std::pair<std::string, layermap_entry>(layername, lme));
if (lme.id >= (*layer_unmaps)[tiling_seg].size()) {
(*layer_unmaps)[tiling_seg].resize(lme.id + 1);
(*layer_unmaps)[tiling_seg][lme.id] = layername;
}
}
auto fk = layermap.find(layername);
if (fk == layermap.end()) {
fprintf(stderr, "Internal error: layer %s not found\n", layername.c_str());
exit(EXIT_FAILURE);
}
type_and_string attrib;
attrib.type = val.type;
attrib.string = val.s;
add_to_file_keys(fk->second.file_keys, key, attrib);
}
long long write_tile(FILE *geoms, long long *geompos_in, char *metabase, char *stringpool, int z, unsigned tx, unsigned ty, int detail, int min_detail, sqlite3 *outdb, const char *outdir, int buffer, const char *fname, FILE **geomfile, int minzoom, int maxzoom, double todo, volatile long long *along, long long alongminus, double gamma, int child_shards, long long *meta_off, long long *pool_off, unsigned *initial_x, unsigned *initial_y, volatile int *running, double simplification, std::vector<std::map<std::string, layermap_entry>> *layermaps, std::vector<std::vector<std::string>> *layer_unmaps, size_t tiling_seg, size_t pass, size_t passes, unsigned long long mingap, long long minextent, double fraction, const char *prefilter, const char *postfilter, write_tile_args *arg) {
int line_detail;
double merge_fraction = 1;
double mingap_fraction = 1;
double minextent_fraction = 1;
static volatile double oprogress = 0;
long long og = *geompos_in;
// XXX is there a way to do this without floating point?
int max_zoom_increment = std::log(child_shards) / std::log(4);
if (child_shards < 4 || max_zoom_increment < 1) {
fprintf(stderr, "Internal error: %d shards, max zoom increment %d\n", child_shards, max_zoom_increment);
exit(EXIT_FAILURE);
}
if ((((child_shards - 1) << 1) & child_shards) != child_shards) {
fprintf(stderr, "Internal error: %d shards not a power of 2\n", child_shards);
exit(EXIT_FAILURE);
}
int nextzoom = z + 1;
if (nextzoom < minzoom) {
if (z + max_zoom_increment > minzoom) {
nextzoom = minzoom;
} else {
nextzoom = z + max_zoom_increment;
}
}
bool has_polygons = false;
bool first_time = true;
// This only loops if the tile data didn't fit, in which case the detail
// goes down and the progress indicator goes backward for the next try.
for (line_detail = detail; line_detail >= min_detail || line_detail == detail; line_detail--, oprogress = 0) {
long long count = 0;
double accum_area = 0;
double fraction_accum = 0;
unsigned long long previndex = 0, density_previndex = 0, merge_previndex = 0;
double scale = (double) (1LL << (64 - 2 * (z + 8)));
double gap = 0, density_gap = 0;
double spacing = 0;
size_t clustered = 0;
long long original_features = 0;
long long unclipped_features = 0;
std::vector<struct partial> partials;
std::map<std::string, std::vector<coalesce>> layers;
std::vector<unsigned long long> indices;
std::vector<long long> extents;
std::vector<serial_feature> coalesced_geometry;
int within[child_shards];
long long geompos[child_shards];
memset(within, '\0', child_shards * sizeof(int));
memset(geompos, '\0', child_shards * sizeof(long long));
if (*geompos_in != og) {
if (fseek(geoms, og, SEEK_SET) != 0) {
perror("fseek geom");
exit(EXIT_FAILURE);
}
*geompos_in = og;
}
int prefilter_write = -1, prefilter_read = -1;
pid_t prefilter_pid = 0;
FILE *prefilter_fp = NULL;
pthread_t prefilter_writer;
run_prefilter_args rpa; // here so it stays in scope until joined
FILE *prefilter_read_fp = NULL;
json_pull *prefilter_jp = NULL;
if (prefilter != NULL) {
setup_filter(prefilter, &prefilter_write, &prefilter_read, &prefilter_pid, z, tx, ty);
prefilter_fp = fdopen(prefilter_write, "w");
if (prefilter_fp == NULL) {
perror("freopen prefilter");
exit(EXIT_FAILURE);
}
rpa.geoms = geoms;
rpa.geompos_in = geompos_in;
rpa.metabase = metabase;
rpa.meta_off = meta_off;
rpa.z = z;
rpa.tx = tx;
rpa.ty = ty;
rpa.initial_x = initial_x;
rpa.initial_y = initial_y;
rpa.original_features = &original_features;
rpa.unclipped_features = &unclipped_features;
rpa.nextzoom = nextzoom;
rpa.maxzoom = maxzoom;
rpa.minzoom = minzoom;
rpa.max_zoom_increment = max_zoom_increment;
rpa.pass = pass;
rpa.passes = passes;
rpa.along = along;
rpa.alongminus = alongminus;
rpa.buffer = buffer;
rpa.within = within;
rpa.first_time = &first_time;
rpa.geomfile = geomfile;
rpa.geompos = geompos;
rpa.oprogress = &oprogress;
rpa.todo = todo;
rpa.fname = fname;
rpa.child_shards = child_shards;
rpa.prefilter_fp = prefilter_fp;
rpa.layer_unmaps = layer_unmaps;
rpa.stringpool = stringpool;
rpa.pool_off = pool_off;
if (pthread_create(&prefilter_writer, NULL, run_prefilter, &rpa) != 0) {
perror("pthread_create (prefilter writer)");
exit(EXIT_FAILURE);
}
prefilter_read_fp = fdopen(prefilter_read, "r");
if (prefilter_read_fp == NULL) {
perror("fdopen prefilter output");
exit(EXIT_FAILURE);
}
prefilter_jp = json_begin_file(prefilter_read_fp);
}
while (1) {
serial_feature sf;
if (prefilter == NULL) {
sf = next_feature(geoms, geompos_in, metabase, meta_off, z, tx, ty, initial_x, initial_y, &original_features, &unclipped_features, nextzoom, maxzoom, minzoom, max_zoom_increment, pass, passes, along, alongminus, buffer, within, &first_time, geomfile, geompos, &oprogress, todo, fname, child_shards);
} else {
sf = parse_feature(prefilter_jp, z, tx, ty, layermaps, tiling_seg, layer_unmaps, postfilter != NULL);
}
if (sf.t < 0) {
break;
}
if (gamma > 0) {
if (manage_gap(sf.index, &previndex, scale, gamma, &gap)) {
continue;
}
}
double coalesced_area = 0;
for (size_t i = 0; i < coalesced_geometry.size(); i++) {
if (coalesced_geometry[i].t == sf.t) {
coalesced_area += coalesced_geometry[i].extent;
}
}
if (additional[A_CLUSTER_DENSEST_AS_NEEDED] || cluster_distance != 0) {
indices.push_back(sf.index);
if (sf.index - merge_previndex < mingap) {
clustered++;
continue;
} else {
if (clustered > 0) {
std::string layername = (*layer_unmaps)[sf.segment][sf.layer];
serial_val sv, sv2;
sf.full_keys.push_back("clustered");
sv.type = mvt_bool;
sv.s = "true";
sf.full_values.push_back(sv);
add_tilestats(layername, z, layermaps, tiling_seg, layer_unmaps, "clustered", sv);
sf.full_keys.push_back("point_count");
sv2.type = mvt_double;
sv2.s = std::to_string(clustered + 1);
sf.full_values.push_back(sv2);
add_tilestats(layername, z, layermaps, tiling_seg, layer_unmaps, "point_count", sv2);
}
clustered = 0;
}
} else if (additional[A_DROP_DENSEST_AS_NEEDED]) {
indices.push_back(sf.index);
if (sf.index - merge_previndex < mingap) {
continue;
}
} else if (additional[A_COALESCE_DENSEST_AS_NEEDED]) {
indices.push_back(sf.index);
if (sf.index - merge_previndex < mingap) {
coalesced_geometry.push_back(sf);
continue;
}
} else if (additional[A_DROP_SMALLEST_AS_NEEDED]) {
extents.push_back(sf.extent);
if (sf.extent + coalesced_area <= minextent && sf.t != VT_POINT) {
continue;
}
} else if (additional[A_COALESCE_SMALLEST_AS_NEEDED]) {
extents.push_back(sf.extent);
if (sf.extent + coalesced_area <= minextent) {
coalesced_geometry.push_back(sf);
continue;
}
}
if (additional[A_CALCULATE_FEATURE_DENSITY]) {
// Gamma is always 1 for this calculation so there is a reasonable
// interpretation when no features are being dropped.
// The spacing is only calculated if a feature would be retained by
// that standard, so that duplicates aren't reported as infinitely dense.
double o_density_previndex = density_previndex;
if (!manage_gap(sf.index, &density_previndex, scale, 1, &density_gap)) {
spacing = (sf.index - o_density_previndex) / scale;
}
}
fraction_accum += fraction;
if (fraction_accum < 1) {
if (additional[A_COALESCE_FRACTION_AS_NEEDED]) {
coalesced_geometry.push_back(sf);
}
continue;
}
fraction_accum -= 1;
if (coalesced_geometry.size() != 0) {
for (ssize_t i = coalesced_geometry.size() - 1; i >= 0; i--) {
if (coalesced_geometry[i].t == sf.t && coalesced_geometry[i].layer == sf.layer) {
for (size_t j = 0; j < coalesced_geometry[i].geometry.size(); j++) {
sf.geometry.push_back(coalesced_geometry[i].geometry[j]);
}
coalesced_geometry.erase(coalesced_geometry.begin() + i);
}
}
}
bool reduced = false;
if (sf.t == VT_POLYGON) {
if (!prevent[P_TINY_POLYGON_REDUCTION] && !additional[A_GRID_LOW_ZOOMS]) {
sf.geometry = reduce_tiny_poly(sf.geometry, z, line_detail, &reduced, &accum_area);
}
has_polygons = true;
}
if (sf.geometry.size() > 0) {
partial p;
p.geoms.push_back(sf.geometry);
p.layer = sf.layer;
p.m = sf.m;
p.t = sf.t;
p.segment = sf.segment;
p.original_seq = sf.seq;
p.reduced = reduced;
p.z = z;
p.line_detail = line_detail;
p.maxzoom = maxzoom;
p.keys = sf.keys;
p.values = sf.values;
p.full_keys = sf.full_keys;
p.full_values = sf.full_values;
p.spacing = spacing;
p.simplification = simplification;
p.id = sf.id;
p.has_id = sf.has_id;
p.index = sf.index;
p.renamed = -1;
partials.push_back(p);
}
merge_previndex = sf.index;
}
// Attach any pieces that were waiting to be coalesced onto some features that did make it.
for (ssize_t i = (ssize_t) coalesced_geometry.size() - 1; i >= 0; i--) {
for (ssize_t j = partials.size() - 1; j >= 0; j--) {
if (partials[j].layer == coalesced_geometry[i].layer && partials[j].t == coalesced_geometry[i].t) {
for (size_t k = 0; k < coalesced_geometry[i].geometry.size(); k++) {
partials[j].geoms[0].push_back(coalesced_geometry[i].geometry[k]);
}
coalesced_geometry.erase(coalesced_geometry.begin() + i);
break;
}
}
}
// Attach the leftover cluster count to the last feature that did make it
if (clustered > 0) {
if (partials.size() > 0) {
size_t n = partials.size() - 1;
size_t i;
for (i = 0; i < partials[n].full_keys.size(); i++) {
if (partials[n].full_keys[i] == std::string("point_count")) {
break;
}
}
std::string layername = (*layer_unmaps)[partials[n].segment][partials[n].layer];
if (i < partials[n].full_keys.size()) {
size_t sum = strtoul(partials[n].full_values[i].s.c_str(), NULL, 10) + clustered;
partials[n].full_values[i].s = std::to_string(sum);
add_tilestats(layername, z, layermaps, tiling_seg, layer_unmaps, "point_count", partials[n].full_values[i]);
} else {
serial_val sv, sv2;
partials[n].full_keys.push_back("clustered");
sv.type = mvt_bool;
sv.s = "true";
partials[n].full_values.push_back(sv);
add_tilestats(layername, z, layermaps, tiling_seg, layer_unmaps, "clustered", sv);
partials[n].full_keys.push_back("point_count");
sv2.type = mvt_double;
sv2.s = std::to_string(clustered + 1);
partials[n].full_values.push_back(sv2);
add_tilestats(layername, z, layermaps, tiling_seg, layer_unmaps, "point_count", sv2);
}
}
}
if (prefilter != NULL) {
json_end(prefilter_jp);
if (fclose(prefilter_read_fp) != 0) {
perror("close output from prefilter");
exit(EXIT_FAILURE);
}
while (1) {
int stat_loc;
if (waitpid(prefilter_pid, &stat_loc, 0) < 0) {
perror("waitpid for prefilter\n");
exit(EXIT_FAILURE);
}
if (WIFEXITED(stat_loc) || WIFSIGNALED(stat_loc)) {
break;
}
}
void *ret;
if (pthread_join(prefilter_writer, &ret) != 0) {
perror("pthread_join prefilter writer");
exit(EXIT_FAILURE);
}
}
first_time = false;
bool merge_successful = true;
if (additional[A_DETECT_SHARED_BORDERS] || (additional[A_MERGE_POLYGONS_AS_NEEDED] && merge_fraction < 1)) {
merge_successful = find_common_edges(partials, z, line_detail, simplification, maxzoom, merge_fraction);
}
int tasks = ceil((double) CPUS / *running);
if (tasks < 1) {
tasks = 1;
}
pthread_t pthreads[tasks];
std::vector<partial_arg> args;
args.resize(tasks);
for (int i = 0; i < tasks; i++) {
args[i].task = i;
args[i].tasks = tasks;
args[i].partials = &partials;
if (tasks > 1) {
if (pthread_create(&pthreads[i], NULL, partial_feature_worker, &args[i]) != 0) {
perror("pthread_create");
exit(EXIT_FAILURE);
}
} else {
partial_feature_worker(&args[i]);
}
}
if (tasks > 1) {
for (int i = 0; i < tasks; i++) {
void *retval;
if (pthread_join(pthreads[i], &retval) != 0) {
perror("pthread_join");
}
}
}
for (size_t i = 0; i < partials.size(); i++) {
std::vector<drawvec> &pgeoms = partials[i].geoms;
signed char t = partials[i].t;
long long original_seq = partials[i].original_seq;
// A complex polygon may have been split up into multiple geometries.
// Break them out into multiple features if necessary.
for (size_t j = 0; j < pgeoms.size(); j++) {
if (t == VT_POINT || draws_something(pgeoms[j])) {
struct coalesce c;
c.type = t;
c.index = partials[i].index;
c.geom = pgeoms[j];
pgeoms[j].clear();
c.coalesced = false;
c.original_seq = original_seq;
c.m = partials[i].m;
c.stringpool = stringpool + pool_off[partials[i].segment];
c.keys = partials[i].keys;
c.values = partials[i].values;
c.full_keys = partials[i].full_keys;
c.full_values = partials[i].full_values;
c.spacing = partials[i].spacing;
c.id = partials[i].id;
c.has_id = partials[i].has_id;
// printf("segment %d layer %lld is %s\n", partials[i].segment, partials[i].layer, (*layer_unmaps)[partials[i].segment][partials[i].layer].c_str());
std::string layername = (*layer_unmaps)[partials[i].segment][partials[i].layer];
if (layers.count(layername) == 0) {
layers.insert(std::pair<std::string, std::vector<coalesce>>(layername, std::vector<coalesce>()));
}
auto l = layers.find(layername);
if (l == layers.end()) {
fprintf(stderr, "Internal error: couldn't find layer %s\n", layername.c_str());
fprintf(stderr, "segment %d\n", partials[i].segment);
fprintf(stderr, "layer %lld\n", partials[i].layer);
exit(EXIT_FAILURE);
}
l->second.push_back(c);
}
}
}
partials.clear();
int j;
for (j = 0; j < child_shards; j++) {
if (within[j]) {
serialize_byte(geomfile[j], -2, &geompos[j], fname);
within[j] = 0;
}
}
for (auto layer_iterator = layers.begin(); layer_iterator != layers.end(); ++layer_iterator) {
std::vector<coalesce> &layer_features = layer_iterator->second;
if (additional[A_REORDER]) {
std::sort(layer_features.begin(), layer_features.end());
}
std::vector<coalesce> out;
if (layer_features.size() > 0) {
out.push_back(layer_features[0]);
}
for (size_t x = 1; x < layer_features.size(); x++) {
size_t y = out.size() - 1;
#if 0
if (out.size() > 0 && coalcmp(&layer_features[x], &out[y]) < 0) {
fprintf(stderr, "\nfeature out of order\n");
}
#endif
if (additional[A_COALESCE] && out.size() > 0 && coalcmp(&layer_features[x], &out[y]) == 0 && layer_features[x].type != VT_POINT) {
for (size_t g = 0; g < layer_features[x].geom.size(); g++) {
out[y].geom.push_back(layer_features[x].geom[g]);
}
out[y].coalesced = true;
} else {
out.push_back(layer_features[x]);
}
}
layer_features = out;
out.clear();
for (size_t x = 0; x < layer_features.size(); x++) {
if (layer_features[x].coalesced && layer_features[x].type == VT_LINE) {
layer_features[x].geom = remove_noop(layer_features[x].geom, layer_features[x].type, 0);
layer_features[x].geom = simplify_lines(layer_features[x].geom, 32, 0,
!(prevent[P_CLIPPING] || prevent[P_DUPLICATION]), simplification, layer_features[x].type == VT_POLYGON ? 4 : 0);
}
if (layer_features[x].type == VT_POLYGON) {
if (layer_features[x].coalesced) {
layer_features[x].geom = clean_or_clip_poly(layer_features[x].geom, 0, 0, false);
}
layer_features[x].geom = close_poly(layer_features[x].geom);
}
if (layer_features[x].geom.size() > 0) {
out.push_back(layer_features[x]);
}
}
layer_features = out;
if (prevent[P_INPUT_ORDER]) {
std::sort(layer_features.begin(), layer_features.end(), preservecmp);
}
}
mvt_tile tile;
for (auto layer_iterator = layers.begin(); layer_iterator != layers.end(); ++layer_iterator) {
std::vector<coalesce> &layer_features = layer_iterator->second;
mvt_layer layer;
layer.name = layer_iterator->first;
layer.version = 2;
layer.extent = 1 << line_detail;
for (size_t x = 0; x < layer_features.size(); x++) {
mvt_feature feature;
if (layer_features[x].type == VT_LINE || layer_features[x].type == VT_POLYGON) {
layer_features[x].geom = remove_noop(layer_features[x].geom, layer_features[x].type, 0);
}
if (layer_features[x].geom.size() == 0) {
continue;
}
feature.type = layer_features[x].type;
feature.geometry = to_feature(layer_features[x].geom);
count += layer_features[x].geom.size();
layer_features[x].geom.clear();
feature.id = layer_features[x].id;
feature.has_id = layer_features[x].has_id;
decode_meta(layer_features[x].m, layer_features[x].keys, layer_features[x].values, layer_features[x].stringpool, layer, feature);
for (size_t a = 0; a < layer_features[x].full_keys.size(); a++) {
serial_val sv = layer_features[x].full_values[a];
mvt_value v = stringified_to_mvt_value(sv.type, sv.s.c_str());
layer.tag(feature, layer_features[x].full_keys[a], v);
}
if (additional[A_CALCULATE_FEATURE_DENSITY]) {
int glow = 255;
if (layer_features[x].spacing > 0) {
glow = (1 / layer_features[x].spacing);
if (glow > 255) {
glow = 255;
}
}
mvt_value v;
v.type = mvt_sint;
v.numeric_value.sint_value = glow;
layer.tag(feature, "tippecanoe_feature_density", v);
}
layer.features.push_back(feature);
}
if (layer.features.size() > 0) {
tile.layers.push_back(layer);
}
}
if (postfilter != NULL) {
tile.layers = filter_layers(postfilter, tile.layers, z, tx, ty, layermaps, tiling_seg, layer_unmaps, 1 << line_detail);
}
if (z == 0 && unclipped_features < original_features / 2) {
fprintf(stderr, "\n\nMore than half the features were clipped away at zoom level 0.\n");
fprintf(stderr, "Is your data in the wrong projection? It should be in WGS84/EPSG:4326.\n");
}
size_t totalsize = 0;
for (auto layer_iterator = layers.begin(); layer_iterator != layers.end(); ++layer_iterator) {
std::vector<coalesce> &layer_features = layer_iterator->second;
totalsize += layer_features.size();
}
double progress = floor(((((*geompos_in + *along - alongminus) / (double) todo) + (pass - (2 - passes))) / passes + z) / (maxzoom + 1) * 1000) / 10;
if (progress >= oprogress + 0.1) {
if (!quiet && !quiet_progress) {
fprintf(stderr, " %3.1f%% %d/%u/%u \r", progress, z, tx, ty);
}
oprogress = progress;
}
if (totalsize > 0 && tile.layers.size() > 0) {
if (totalsize > max_tile_features && !prevent[P_FEATURE_LIMIT]) {
fprintf(stderr, "tile %d/%u/%u has %zu features, >%zu \n", z, tx, ty, totalsize, max_tile_features);
if (has_polygons && additional[A_MERGE_POLYGONS_AS_NEEDED] && merge_fraction > .05 && merge_successful) {
merge_fraction = merge_fraction * max_tile_features / tile.layers.size() * 0.95;
if (!quiet) {
fprintf(stderr, "Going to try merging %0.2f%% of the polygons to make it fit\n", 100 - merge_fraction * 100);
}
line_detail++; // to keep it the same when the loop decrements it
continue;
} else if (additional[A_INCREASE_GAMMA_AS_NEEDED] && gamma < 10) {
if (gamma < 1) {
gamma = 1;
} else {
gamma = gamma * 1.25;
}
if (gamma > arg->gamma_out) {
arg->gamma_out = gamma;
arg->still_dropping = true;
}
if (!quiet) {
fprintf(stderr, "Going to try gamma of %0.3f to make it fit\n", gamma);
}
line_detail++; // to keep it the same when the loop decrements it
continue;
} else if (additional[A_DROP_DENSEST_AS_NEEDED] || additional[A_COALESCE_DENSEST_AS_NEEDED] || additional[A_CLUSTER_DENSEST_AS_NEEDED]) {
mingap_fraction = mingap_fraction * max_tile_features / totalsize * 0.90;
unsigned long long mg = choose_mingap(indices, mingap_fraction);
if (mg <= mingap) {
mg = (mingap + 1) * 1.5;
}
mingap = mg;
if (mingap > arg->mingap_out) {
arg->mingap_out = mingap;
arg->still_dropping = true;
}
if (!quiet) {
fprintf(stderr, "Going to try keeping the sparsest %0.2f%% of the features to make it fit\n", mingap_fraction * 100.0);
}
line_detail++;
continue;
} else if (additional[A_DROP_SMALLEST_AS_NEEDED] || additional[A_COALESCE_SMALLEST_AS_NEEDED]) {
minextent_fraction = minextent_fraction * max_tile_features / totalsize * 0.90;
long long m = choose_minextent(extents, minextent_fraction);
if (m != minextent) {
minextent = m;
if (minextent > arg->minextent_out) {
arg->minextent_out = minextent;
arg->still_dropping = true;
}
if (!quiet) {
fprintf(stderr, "Going to try keeping the biggest %0.2f%% of the features to make it fit\n", minextent_fraction * 100.0);
}
line_detail++;
continue;
}
} else if (prevent[P_DYNAMIC_DROP] || additional[A_DROP_FRACTION_AS_NEEDED] || additional[A_COALESCE_FRACTION_AS_NEEDED]) {
fraction = fraction * max_tile_features / totalsize * 0.95;
if (!quiet) {
fprintf(stderr, "Going to try keeping %0.2f%% of the features to make it fit\n", fraction * 100);
}
if ((additional[A_DROP_FRACTION_AS_NEEDED] || additional[A_COALESCE_FRACTION_AS_NEEDED]) && fraction < arg->fraction_out) {
arg->fraction_out = fraction;
arg->still_dropping = true;
}
line_detail++; // to keep it the same when the loop decrements it
continue;
} else {
fprintf(stderr, "Try using --drop-fraction-as-needed or --drop-densest-as-needed.\n");
return -1;
}
}
std::string compressed;
std::string pbf = tile.encode();
if (!prevent[P_TILE_COMPRESSION]) {
compress(pbf, compressed);
} else {
compressed = pbf;
}
if (compressed.size() > max_tile_size && !prevent[P_KILOBYTE_LIMIT]) {
if (!quiet) {
fprintf(stderr, "tile %d/%u/%u size is %lld with detail %d, >%zu \n", z, tx, ty, (long long) compressed.size(), line_detail, max_tile_size);
}
if (has_polygons && additional[A_MERGE_POLYGONS_AS_NEEDED] && merge_fraction > .05 && merge_successful) {
merge_fraction = merge_fraction * max_tile_size / compressed.size() * 0.95;
if (!quiet) {
fprintf(stderr, "Going to try merging %0.2f%% of the polygons to make it fit\n", 100 - merge_fraction * 100);
}
line_detail++; // to keep it the same when the loop decrements it
} else if (additional[A_INCREASE_GAMMA_AS_NEEDED] && gamma < 10) {
if (gamma < 1) {
gamma = 1;
} else {
gamma = gamma * 1.25;
}
if (gamma > arg->gamma_out) {
arg->gamma_out = gamma;
arg->still_dropping = true;
}
if (!quiet) {
fprintf(stderr, "Going to try gamma of %0.3f to make it fit\n", gamma);
}
line_detail++; // to keep it the same when the loop decrements it
} else if (additional[A_DROP_DENSEST_AS_NEEDED] || additional[A_COALESCE_DENSEST_AS_NEEDED] || additional[A_CLUSTER_DENSEST_AS_NEEDED]) {
mingap_fraction = mingap_fraction * max_tile_size / compressed.size() * 0.90;
unsigned long long mg = choose_mingap(indices, mingap_fraction);
if (mg <= mingap) {
mg = mingap * 1.5;
}
mingap = mg;
if (mingap > arg->mingap_out) {
arg->mingap_out = mingap;
arg->still_dropping = true;
}
if (!quiet) {
fprintf(stderr, "Going to try keeping the sparsest %0.2f%% of the features to make it fit\n", mingap_fraction * 100.0);
}
line_detail++;
} else if (additional[A_DROP_SMALLEST_AS_NEEDED] || additional[A_COALESCE_SMALLEST_AS_NEEDED]) {
minextent_fraction = minextent_fraction * max_tile_size / compressed.size() * 0.90;
long long m = choose_minextent(extents, minextent_fraction);
if (m != minextent) {
minextent = m;
if (minextent > arg->minextent_out) {
arg->minextent_out = minextent;
arg->still_dropping = true;
}
if (!quiet) {
fprintf(stderr, "Going to try keeping the biggest %0.2f%% of the features to make it fit\n", minextent_fraction * 100.0);
}
line_detail++;
continue;
}
} else if (prevent[P_DYNAMIC_DROP] || additional[A_DROP_FRACTION_AS_NEEDED] || additional[A_COALESCE_FRACTION_AS_NEEDED]) {
// The 95% is a guess to avoid too many retries
// and probably actually varies based on how much duplicated metadata there is
fraction = fraction * max_tile_size / compressed.size() * 0.95;
if (!quiet) {
fprintf(stderr, "Going to try keeping %0.2f%% of the features to make it fit\n", fraction * 100);
}
if ((additional[A_DROP_FRACTION_AS_NEEDED] || additional[A_COALESCE_FRACTION_AS_NEEDED]) && fraction < arg->fraction_out) {
arg->fraction_out = fraction;
arg->still_dropping = true;
}
line_detail++; // to keep it the same when the loop decrements it
}
} else {
if (pass == 1) {
if (pthread_mutex_lock(&db_lock) != 0) {
perror("pthread_mutex_lock");
exit(EXIT_FAILURE);
}
if (outdb != NULL) {
mbtiles_write_tile(outdb, z, tx, ty, compressed.data(), compressed.size());
} else if (outdir != NULL) {
dir_write_tile(outdir, z, tx, ty, compressed);
}
if (pthread_mutex_unlock(&db_lock) != 0) {
perror("pthread_mutex_unlock");
exit(EXIT_FAILURE);
}
}
return count;
}
} else {
return count;
}
}
fprintf(stderr, "could not make tile %d/%u/%u small enough\n", z, tx, ty);
return -1;
}
struct task {
int fileno = 0;
struct task *next = NULL;
};
void *run_thread(void *vargs) {
write_tile_args *arg = (write_tile_args *) vargs;
struct task *task;
for (task = arg->tasks; task != NULL; task = task->next) {
int j = task->fileno;
if (arg->geomfd[j] < 0) {
// only one source file for zoom level 0
continue;
}
if (arg->geom_size[j] == 0) {
continue;
}
// printf("%lld of geom_size\n", (long long) geom_size[j]);
FILE *geom = fdopen(arg->geomfd[j], "rb");
if (geom == NULL) {
perror("mmap geom");
exit(EXIT_FAILURE);
}
long long geompos = 0;
long long prevgeom = 0;
while (1) {
int z;
unsigned x, y;
if (!deserialize_int_io(geom, &z, &geompos)) {
break;
}
deserialize_uint_io(geom, &x, &geompos);
deserialize_uint_io(geom, &y, &geompos);
arg->wrote_zoom = z;
// fprintf(stderr, "%d/%u/%u\n", z, x, y);
long long len = write_tile(geom, &geompos, arg->metabase, arg->stringpool, z, x, y, z == arg->maxzoom ? arg->full_detail : arg->low_detail, arg->min_detail, arg->outdb, arg->outdir, arg->buffer, arg->fname, arg->geomfile, arg->minzoom, arg->maxzoom, arg->todo, arg->along, geompos, arg->gamma, arg->child_shards, arg->meta_off, arg->pool_off, arg->initial_x, arg->initial_y, arg->running, arg->simplification, arg->layermaps, arg->layer_unmaps, arg->tiling_seg, arg->pass, arg->passes, arg->mingap, arg->minextent, arg->fraction, arg->prefilter, arg->postfilter, arg);
if (len < 0) {
int *err = &arg->err;
*err = z - 1;
return err;
}
if (pthread_mutex_lock(&var_lock) != 0) {
perror("pthread_mutex_lock");
exit(EXIT_FAILURE);
}
if (z == arg->maxzoom) {
if (len > *arg->most) {
*arg->midx = x;
*arg->midy = y;
*arg->most = len;
} else if (len == *arg->most) {
unsigned long long a = (((unsigned long long) x) << 32) | y;
unsigned long long b = (((unsigned long long) *arg->midx) << 32) | *arg->midy;
if (a < b) {
*arg->midx = x;
*arg->midy = y;
*arg->most = len;
}
}
}
*arg->along += geompos - prevgeom;
prevgeom = geompos;
if (pthread_mutex_unlock(&var_lock) != 0) {
perror("pthread_mutex_unlock");
exit(EXIT_FAILURE);
}
}
if (arg->pass == 1) {
// Since the fclose() has closed the underlying file descriptor
arg->geomfd[j] = -1;
} else {
int newfd = dup(arg->geomfd[j]);
if (newfd < 0) {
perror("dup geometry");
exit(EXIT_FAILURE);
}
if (lseek(newfd, 0, SEEK_SET) < 0) {
perror("lseek geometry");
exit(EXIT_FAILURE);
}
arg->geomfd[j] = newfd;
}
if (fclose(geom) != 0) {
perror("close geom");
exit(EXIT_FAILURE);
}
}
arg->running--;
return NULL;
}
int traverse_zooms(int *geomfd, off_t *geom_size, char *metabase, char *stringpool, unsigned *midx, unsigned *midy, int &maxzoom, int minzoom, sqlite3 *outdb, const char *outdir, int buffer, const char *fname, const char *tmpdir, double gamma, int full_detail, int low_detail, int min_detail, long long *meta_off, long long *pool_off, unsigned *initial_x, unsigned *initial_y, double simplification, std::vector<std::map<std::string, layermap_entry>> &layermaps, const char *prefilter, const char *postfilter) {
// The existing layermaps are one table per input thread.
// We need to add another one per *tiling* thread so that it can be
// safely changed during tiling.
size_t layermaps_off = layermaps.size();
for (size_t i = 0; i < CPUS; i++) {
layermaps.push_back(std::map<std::string, layermap_entry>());
}
// Table to map segment and layer number back to layer name
std::vector<std::vector<std::string>> layer_unmaps;
for (size_t seg = 0; seg < layermaps.size(); seg++) {
layer_unmaps.push_back(std::vector<std::string>());
for (auto a = layermaps[seg].begin(); a != layermaps[seg].end(); ++a) {
if (a->second.id >= layer_unmaps[seg].size()) {
layer_unmaps[seg].resize(a->second.id + 1);
}
layer_unmaps[seg][a->second.id] = a->first;
}
}
int i;
for (i = 0; i <= maxzoom; i++) {
long long most = 0;
FILE *sub[TEMP_FILES];
int subfd[TEMP_FILES];
for (size_t j = 0; j < TEMP_FILES; j++) {
char geomname[strlen(tmpdir) + strlen("/geom.XXXXXXXX" XSTRINGIFY(INT_MAX)) + 1];
sprintf(geomname, "%s/geom%zu.XXXXXXXX", tmpdir, j);
subfd[j] = mkstemp_cloexec(geomname);
// printf("%s\n", geomname);
if (subfd[j] < 0) {
perror(geomname);
exit(EXIT_FAILURE);
}
sub[j] = fopen_oflag(geomname, "wb", O_WRONLY | O_CLOEXEC);
if (sub[j] == NULL) {
perror(geomname);
exit(EXIT_FAILURE);
}
unlink(geomname);
}
size_t useful_threads = 0;
long long todo = 0;
for (size_t j = 0; j < TEMP_FILES; j++) {
todo += geom_size[j];
if (geom_size[j] > 0) {
useful_threads++;
}
}
size_t threads = CPUS;
if (threads > TEMP_FILES / 4) {
threads = TEMP_FILES / 4;
}
// XXX is it useful to divide further if we know we are skipping
// some zoom levels? Is it faster to have fewer CPUs working on
// sharding, but more deeply, or fewer CPUs, less deeply?
if (threads > useful_threads) {
threads = useful_threads;
}
// Round down to a power of 2
for (int e = 0; e < 30; e++) {
if (threads >= (1U << e) && threads < (1U << (e + 1))) {
threads = 1U << e;
break;
}
}
if (threads >= (1U << 30)) {
threads = 1U << 30;
}
if (threads < 1) {
threads = 1;
}
// Assign temporary files to threads
std::vector<struct task> tasks;
tasks.resize(TEMP_FILES);
struct dispatch {
struct task *tasks = NULL;
long long todo = 0;
struct dispatch *next = NULL;
};
std::vector<struct dispatch> dispatches;
dispatches.resize(threads);
struct dispatch *dispatch_head = &dispatches[0];
for (size_t j = 0; j < threads; j++) {
dispatches[j].tasks = NULL;
dispatches[j].todo = 0;
if (j + 1 < threads) {
dispatches[j].next = &dispatches[j + 1];
} else {
dispatches[j].next = NULL;
}
}
for (size_t j = 0; j < TEMP_FILES; j++) {
if (geom_size[j] == 0) {
continue;
}
tasks[j].fileno = j;
tasks[j].next = dispatch_head->tasks;
dispatch_head->tasks = &tasks[j];
dispatch_head->todo += geom_size[j];
struct dispatch *here = dispatch_head;
dispatch_head = dispatch_head->next;
dispatch **d;
for (d = &dispatch_head; *d != NULL; d = &((*d)->next)) {
if (here->todo < (*d)->todo) {
break;
}
}
here->next = *d;
*d = here;
}
int err = INT_MAX;
size_t start = 1;
if (additional[A_INCREASE_GAMMA_AS_NEEDED] || additional[A_DROP_DENSEST_AS_NEEDED] || additional[A_COALESCE_DENSEST_AS_NEEDED] || additional[A_CLUSTER_DENSEST_AS_NEEDED] || additional[A_DROP_FRACTION_AS_NEEDED] || additional[A_COALESCE_FRACTION_AS_NEEDED] || additional[A_DROP_SMALLEST_AS_NEEDED] || additional[A_COALESCE_SMALLEST_AS_NEEDED]) {
start = 0;
}
double zoom_gamma = gamma;
unsigned long long zoom_mingap = ((1LL << (32 - i)) / 256 * cluster_distance) * ((1LL << (32 - i)) / 256 * cluster_distance);
long long zoom_minextent = 0;
double zoom_fraction = 1;
for (size_t pass = start; pass < 2; pass++) {
pthread_t pthreads[threads];
std::vector<write_tile_args> args;
args.resize(threads);
int running = threads;
long long along = 0;
for (size_t thread = 0; thread < threads; thread++) {
args[thread].metabase = metabase;
args[thread].stringpool = stringpool;
args[thread].min_detail = min_detail;
args[thread].outdb = outdb; // locked with db_lock
args[thread].outdir = outdir;
args[thread].buffer = buffer;
args[thread].fname = fname;
args[thread].geomfile = sub + thread * (TEMP_FILES / threads);
args[thread].todo = todo;
args[thread].along = &along; // locked with var_lock
args[thread].gamma = zoom_gamma;
args[thread].gamma_out = zoom_gamma;
args[thread].mingap = zoom_mingap;
args[thread].mingap_out = zoom_mingap;
args[thread].minextent = zoom_minextent;
args[thread].minextent_out = zoom_minextent;
args[thread].fraction = zoom_fraction;
args[thread].fraction_out = zoom_fraction;
args[thread].child_shards = TEMP_FILES / threads;
args[thread].simplification = simplification;
args[thread].geomfd = geomfd;
args[thread].geom_size = geom_size;
args[thread].midx = midx; // locked with var_lock
args[thread].midy = midy; // locked with var_lock
args[thread].maxzoom = maxzoom;
args[thread].minzoom = minzoom;
args[thread].full_detail = full_detail;
args[thread].low_detail = low_detail;
args[thread].most = &most; // locked with var_lock
args[thread].meta_off = meta_off;
args[thread].pool_off = pool_off;
args[thread].initial_x = initial_x;
args[thread].initial_y = initial_y;
args[thread].layermaps = &layermaps;
args[thread].layer_unmaps = &layer_unmaps;
args[thread].tiling_seg = thread + layermaps_off;
args[thread].prefilter = prefilter;
args[thread].postfilter = postfilter;
args[thread].tasks = dispatches[thread].tasks;
args[thread].running = &running;
args[thread].pass = pass;
args[thread].passes = 2 - start;
args[thread].wrote_zoom = -1;
args[thread].still_dropping = false;
if (pthread_create(&pthreads[thread], NULL, run_thread, &args[thread]) != 0) {
perror("pthread_create");
exit(EXIT_FAILURE);
}
}
for (size_t thread = 0; thread < threads; thread++) {
void *retval;
if (pthread_join(pthreads[thread], &retval) != 0) {
perror("pthread_join");
}
if (retval != NULL) {
err = *((int *) retval);
}
if (args[thread].gamma_out > zoom_gamma) {
zoom_gamma = args[thread].gamma_out;
}
if (args[thread].mingap_out > zoom_mingap) {
zoom_mingap = args[thread].mingap_out;
}
if (args[thread].minextent_out > zoom_minextent) {
zoom_minextent = args[thread].minextent_out;
}
if (args[thread].fraction_out < zoom_fraction) {
zoom_fraction = args[thread].fraction_out;
}
// Zoom counter might be lower than reality if zooms are being skipped
if (args[thread].wrote_zoom > i) {
i = args[thread].wrote_zoom;
}
if (additional[A_EXTEND_ZOOMS] && i == maxzoom && args[thread].still_dropping && maxzoom < MAX_ZOOM) {
maxzoom++;
}
}
}
for (size_t j = 0; j < TEMP_FILES; j++) {
// Can be < 0 if there is only one source file, at z0
if (geomfd[j] >= 0) {
if (close(geomfd[j]) != 0) {
perror("close geom");
exit(EXIT_FAILURE);
}
}
if (fclose(sub[j]) != 0) {
perror("close subfile");
exit(EXIT_FAILURE);
}
struct stat geomst;
if (fstat(subfd[j], &geomst) != 0) {
perror("stat geom\n");
exit(EXIT_FAILURE);
}
geomfd[j] = subfd[j];
geom_size[j] = geomst.st_size;
}
if (err != INT_MAX) {
return err;
}
}
for (size_t j = 0; j < TEMP_FILES; j++) {
// Can be < 0 if there is only one source file, at z0
if (geomfd[j] >= 0) {
if (close(geomfd[j]) != 0) {
perror("close geom");
exit(EXIT_FAILURE);
}
}
}
if (!quiet) {
fprintf(stderr, "\n");
}
return maxzoom;
}