tippecanoe/tile-join.cpp

758 lines
19 KiB
C++

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <sqlite3.h>
#include <limits.h>
#include <vector>
#include <string>
#include <map>
#include <set>
#include <zlib.h>
#include <math.h>
#include <pthread.h>
#include "mvt.hpp"
#include "projection.hpp"
#include "pool.hpp"
#include "mbtiles.hpp"
#include "geometry.hpp"
std::string dequote(std::string s);
bool pk = false;
size_t CPUS;
struct stats {
int minzoom;
int maxzoom;
double midlat, midlon;
double minlat, minlon, maxlat, maxlon;
};
void handle(std::string message, int z, unsigned x, unsigned y, std::map<std::string, layermap_entry> &layermap, std::vector<std::string> &header, std::map<std::string, std::vector<std::string>> &mapping, std::set<std::string> &exclude, int ifmatched, mvt_tile &outtile) {
mvt_tile tile;
int features_added = 0;
if (!tile.decode(message)) {
fprintf(stderr, "Couldn't decompress tile %d/%u/%u\n", z, x, y);
exit(EXIT_FAILURE);
}
for (size_t l = 0; l < tile.layers.size(); l++) {
mvt_layer &layer = tile.layers[l];
size_t ol;
for (ol = 0; ol < outtile.layers.size(); ol++) {
if (tile.layers[l].name == outtile.layers[ol].name) {
break;
}
}
if (ol == outtile.layers.size()) {
outtile.layers.push_back(mvt_layer());
outtile.layers[ol].name = layer.name;
outtile.layers[ol].version = layer.version;
outtile.layers[ol].extent = layer.extent;
}
mvt_layer &outlayer = outtile.layers[ol];
if (layer.extent != outlayer.extent) {
if (layer.extent > outlayer.extent) {
for (size_t i = 0; i < outlayer.features.size(); i++) {
for (size_t j = 0; j < outlayer.features[i].geometry.size(); j++) {
outlayer.features[i].geometry[j].x = outlayer.features[i].geometry[j].x * layer.extent / outlayer.extent;
outlayer.features[i].geometry[j].y = outlayer.features[i].geometry[j].y * layer.extent / outlayer.extent;
}
}
outlayer.extent = layer.extent;
}
}
if (layermap.count(layer.name) == 0) {
layermap.insert(std::pair<std::string, layermap_entry>(layer.name, layermap_entry(layermap.size())));
auto file_keys = layermap.find(layer.name);
file_keys->second.minzoom = z;
file_keys->second.maxzoom = z;
}
auto file_keys = layermap.find(layer.name);
for (size_t f = 0; f < layer.features.size(); f++) {
mvt_feature feat = layer.features[f];
mvt_feature outfeature;
int matched = 0;
if (feat.has_id) {
outfeature.has_id = true;
outfeature.id = feat.id;
}
std::map<std::string, mvt_value> attributes;
std::map<std::string, int> types;
std::vector<std::string> key_order;
for (size_t t = 0; t + 1 < feat.tags.size(); t += 2) {
const char *key = layer.keys[feat.tags[t]].c_str();
mvt_value &val = layer.values[feat.tags[t + 1]];
std::string value;
int type = -1;
if (val.type == mvt_string) {
value = val.string_value;
type = mvt_string;
} else if (val.type == mvt_int) {
aprintf(&value, "%lld", (long long) val.numeric_value.int_value);
type = mvt_double;
} else if (val.type == mvt_double) {
aprintf(&value, "%g", val.numeric_value.double_value);
type = mvt_double;
} else if (val.type == mvt_float) {
aprintf(&value, "%g", val.numeric_value.float_value);
type = mvt_double;
} else if (val.type == mvt_bool) {
aprintf(&value, "%s", val.numeric_value.bool_value ? "true" : "false");
type = mvt_bool;
} else if (val.type == mvt_sint) {
aprintf(&value, "%lld", (long long) val.numeric_value.sint_value);
type = mvt_double;
} else if (val.type == mvt_uint) {
aprintf(&value, "%llu", (long long) val.numeric_value.uint_value);
type = mvt_double;
} else {
continue;
}
if (type < 0) {
continue;
}
if (exclude.count(std::string(key)) == 0) {
attributes.insert(std::pair<std::string, mvt_value>(key, val));
types.insert(std::pair<std::string, int>(key, type));
key_order.push_back(key);
}
if (header.size() > 0 && strcmp(key, header[0].c_str()) == 0) {
std::map<std::string, std::vector<std::string>>::iterator ii = mapping.find(value);
if (ii != mapping.end()) {
std::vector<std::string> fields = ii->second;
matched = 1;
for (size_t i = 1; i < fields.size(); i++) {
std::string joinkey = header[i];
std::string joinval = fields[i];
int attr_type = mvt_string;
if (joinval.size() > 0) {
if (joinval[0] == '"') {
joinval = dequote(joinval);
} else if ((joinval[0] >= '0' && joinval[0] <= '9') || joinval[0] == '-') {
attr_type = mvt_double;
}
}
const char *sjoinkey = joinkey.c_str();
if (exclude.count(joinkey) == 0) {
mvt_value outval;
if (attr_type == mvt_string) {
outval.type = mvt_string;
outval.string_value = joinval;
} else {
outval.type = mvt_double;
outval.numeric_value.double_value = atof(joinval.c_str());
}
auto fa = attributes.find(sjoinkey);
if (fa != attributes.end()) {
attributes.erase(fa);
}
auto ft = types.find(sjoinkey);
if (ft != types.end()) {
types.erase(ft);
}
attributes.insert(std::pair<std::string, mvt_value>(sjoinkey, outval));
types.insert(std::pair<std::string, int>(sjoinkey, attr_type));
key_order.push_back(sjoinkey);
}
}
}
}
}
for (auto tp : types) {
type_and_string tas;
tas.string = tp.first;
tas.type = tp.second;
file_keys->second.file_keys.insert(tas);
}
// To keep attributes in their original order instead of alphabetical
for (auto k : key_order) {
auto fa = attributes.find(k);
if (fa != attributes.end()) {
outlayer.tag(outfeature, k, fa->second);
attributes.erase(fa);
}
}
if (matched || !ifmatched) {
outfeature.type = feat.type;
outfeature.geometry = feat.geometry;
if (layer.extent != outlayer.extent) {
for (size_t i = 0; i < outfeature.geometry.size(); i++) {
outfeature.geometry[i].x = outfeature.geometry[i].x * outlayer.extent / layer.extent;
outfeature.geometry[i].y = outfeature.geometry[i].y * outlayer.extent / layer.extent;
}
}
features_added++;
outlayer.features.push_back(outfeature);
if (z < file_keys->second.minzoom) {
file_keys->second.minzoom = z;
}
if (z > file_keys->second.maxzoom) {
file_keys->second.maxzoom = z;
}
}
}
}
if (features_added == 0) {
return;
}
}
double min(double a, double b) {
if (a < b) {
return a;
} else {
return b;
}
}
double max(double a, double b) {
if (a > b) {
return a;
} else {
return b;
}
}
struct reader {
long long zoom;
long long x;
long long sorty;
long long y;
std::string data;
sqlite3 *db;
sqlite3_stmt *stmt;
struct reader *next;
bool operator<(const struct reader &r) const {
if (zoom < r.zoom) {
return true;
}
if (zoom > r.zoom) {
return false;
}
if (x < r.x) {
return true;
}
if (x > r.x) {
return false;
}
if (sorty < r.sorty) {
return true;
}
if (sorty > r.sorty) {
return false;
}
if (data < r.data) {
return true;
}
return false;
}
};
struct reader *begin_reading(char *fname) {
sqlite3 *db;
if (sqlite3_open(fname, &db) != SQLITE_OK) {
fprintf(stderr, "%s: %s\n", fname, sqlite3_errmsg(db));
exit(EXIT_FAILURE);
}
const char *sql = "SELECT zoom_level, tile_column, tile_row, tile_data from tiles order by zoom_level, tile_column, tile_row;";
sqlite3_stmt *stmt;
if (sqlite3_prepare_v2(db, sql, -1, &stmt, NULL) != SQLITE_OK) {
fprintf(stderr, "%s: select failed: %s\n", fname, sqlite3_errmsg(db));
exit(EXIT_FAILURE);
}
struct reader *r = new reader;
r->db = db;
r->stmt = stmt;
r->next = NULL;
if (sqlite3_step(stmt) == SQLITE_ROW) {
r->zoom = sqlite3_column_int(stmt, 0);
r->x = sqlite3_column_int(stmt, 1);
r->sorty = sqlite3_column_int(stmt, 2);
r->y = (1LL << r->zoom) - 1 - r->sorty;
const char *data = (const char *) sqlite3_column_blob(stmt, 3);
size_t len = sqlite3_column_bytes(stmt, 3);
r->data = std::string(data, len);
} else {
r->zoom = 32;
}
return r;
}
struct zxy {
long long z;
long long x;
long long y;
zxy(long long _z, long long _x, long long _y) {
z = _z;
x = _x;
y = _y;
}
bool operator<(zxy const &other) const {
if (z < other.z) {
return true;
}
if (z > other.z) {
return false;
}
if (x < other.x) {
return true;
}
if (x > other.x) {
return false;
}
if (y < other.y) {
return true;
}
return false;
}
};
struct arg {
std::map<zxy, std::vector<std::string>> inputs;
std::map<zxy, std::string> outputs;
std::map<std::string, layermap_entry> *layermap;
std::vector<std::string> *header;
std::map<std::string, std::vector<std::string>> *mapping;
std::set<std::string> *exclude;
int ifmatched;
};
void *join_worker(void *v) {
arg *a = (arg *) v;
for (auto ai = a->inputs.begin(); ai != a->inputs.end(); ++ai) {
mvt_tile tile;
for (size_t i = 0; i < ai->second.size(); i++) {
handle(ai->second[i], ai->first.z, ai->first.x, ai->first.y, *(a->layermap), *(a->header), *(a->mapping), *(a->exclude), a->ifmatched, tile);
}
ai->second.clear();
bool anything = false;
for (size_t i = 0; i < tile.layers.size(); i++) {
if (tile.layers[i].features.size() > 0) {
anything = true;
break;
}
}
if (anything) {
std::string compressed = tile.encode();
if (!pk && compressed.size() > 500000) {
fprintf(stderr, "Tile %lld/%lld/%lld size is %lld, >500000. Skipping this tile\n.", ai->first.z, ai->first.x, ai->first.y, (long long) compressed.size());
} else {
a->outputs.insert(std::pair<zxy, std::string>(ai->first, compressed));
}
}
}
return NULL;
}
void handle_tasks(std::map<zxy, std::vector<std::string>> &tasks, std::vector<std::map<std::string, layermap_entry>> &layermaps, sqlite3 *outdb, std::vector<std::string> &header, std::map<std::string, std::vector<std::string>> &mapping, std::set<std::string> &exclude, int ifmatched) {
pthread_t pthreads[CPUS];
std::vector<arg> args;
for (size_t i = 0; i < CPUS; i++) {
args.push_back(arg());
args[i].layermap = &layermaps[i];
args[i].header = &header;
args[i].mapping = &mapping;
args[i].exclude = &exclude;
args[i].ifmatched = ifmatched;
}
size_t count = 0;
// This isn't careful about distributing tasks evenly across CPUs,
// but, from testing, it actually takes a little longer to do
// the proper allocation than is saved by perfectly balanced threads.
for (auto ai = tasks.begin(); ai != tasks.end(); ++ai) {
args[count].inputs.insert(*ai);
count = (count + 1) % CPUS;
if (ai == tasks.begin()) {
fprintf(stderr, "%lld/%lld/%lld \r", ai->first.z, ai->first.x, ai->first.y);
}
}
for (size_t i = 0; i < CPUS; i++) {
if (pthread_create(&pthreads[i], NULL, join_worker, &args[i]) != 0) {
perror("pthread_create");
exit(EXIT_FAILURE);
}
}
for (size_t i = 0; i < CPUS; i++) {
void *retval;
if (pthread_join(pthreads[i], &retval) != 0) {
perror("pthread_join");
}
for (auto ai = args[i].outputs.begin(); ai != args[i].outputs.end(); ++ai) {
mbtiles_write_tile(outdb, ai->first.z, ai->first.x, ai->first.y, ai->second.data(), ai->second.size());
}
}
}
void decode(struct reader *readers, char *map, std::map<std::string, layermap_entry> &layermap, sqlite3 *outdb, struct stats *st, std::vector<std::string> &header, std::map<std::string, std::vector<std::string>> &mapping, std::set<std::string> &exclude, int ifmatched, std::string &attribution, std::string &description) {
std::vector<std::map<std::string, layermap_entry>> layermaps;
for (size_t i = 0; i < CPUS; i++) {
layermaps.push_back(std::map<std::string, layermap_entry>());
}
std::map<zxy, std::vector<std::string>> tasks;
while (readers != NULL && readers->zoom < 32) {
reader *r = readers;
readers = readers->next;
r->next = NULL;
zxy tile = zxy(r->zoom, r->x, r->y);
if (tasks.count(tile) == 0) {
tasks.insert(std::pair<zxy, std::vector<std::string>>(tile, std::vector<std::string>()));
}
auto f = tasks.find(tile);
f->second.push_back(r->data);
if (readers == NULL || readers->zoom != r->zoom || readers->x != r->x || readers->y != r->y) {
if (tasks.size() > 100 * CPUS) {
handle_tasks(tasks, layermaps, outdb, header, mapping, exclude, ifmatched);
tasks.clear();
}
}
if (sqlite3_step(r->stmt) == SQLITE_ROW) {
r->zoom = sqlite3_column_int(r->stmt, 0);
r->x = sqlite3_column_int(r->stmt, 1);
r->sorty = sqlite3_column_int(r->stmt, 2);
r->y = (1LL << r->zoom) - 1 - r->sorty;
const char *data = (const char *) sqlite3_column_blob(r->stmt, 3);
size_t len = sqlite3_column_bytes(r->stmt, 3);
r->data = std::string(data, len);
} else {
r->zoom = 32;
}
struct reader **rr;
for (rr = &readers; *rr != NULL; rr = &((*rr)->next)) {
if (*r < **rr) {
break;
}
}
r->next = *rr;
*rr = r;
}
handle_tasks(tasks, layermaps, outdb, header, mapping, exclude, ifmatched);
layermap = merge_layermaps(layermaps);
struct reader *next;
for (struct reader *r = readers; r != NULL; r = next) {
next = r->next;
sqlite3_finalize(r->stmt);
if (sqlite3_prepare_v2(r->db, "SELECT value from metadata where name = 'minzoom'", -1, &r->stmt, NULL) == SQLITE_OK) {
if (sqlite3_step(r->stmt) == SQLITE_ROW) {
int minzoom = sqlite3_column_int(r->stmt, 0);
st->minzoom = min(st->minzoom, minzoom);
}
sqlite3_finalize(r->stmt);
}
if (sqlite3_prepare_v2(r->db, "SELECT value from metadata where name = 'maxzoom'", -1, &r->stmt, NULL) == SQLITE_OK) {
if (sqlite3_step(r->stmt) == SQLITE_ROW) {
int maxzoom = sqlite3_column_int(r->stmt, 0);
st->maxzoom = max(st->maxzoom, maxzoom);
}
sqlite3_finalize(r->stmt);
}
if (sqlite3_prepare_v2(r->db, "SELECT value from metadata where name = 'center'", -1, &r->stmt, NULL) == SQLITE_OK) {
if (sqlite3_step(r->stmt) == SQLITE_ROW) {
const unsigned char *s = sqlite3_column_text(r->stmt, 0);
sscanf((char *) s, "%lf,%lf", &st->midlon, &st->midlat);
}
sqlite3_finalize(r->stmt);
}
if (sqlite3_prepare_v2(r->db, "SELECT value from metadata where name = 'attribution'", -1, &r->stmt, NULL) == SQLITE_OK) {
if (sqlite3_step(r->stmt) == SQLITE_ROW) {
attribution = std::string((char *) sqlite3_column_text(r->stmt, 0));
}
sqlite3_finalize(r->stmt);
}
if (sqlite3_prepare_v2(r->db, "SELECT value from metadata where name = 'description'", -1, &r->stmt, NULL) == SQLITE_OK) {
if (sqlite3_step(r->stmt) == SQLITE_ROW) {
description = std::string((char *) sqlite3_column_text(r->stmt, 0));
}
sqlite3_finalize(r->stmt);
}
if (sqlite3_prepare_v2(r->db, "SELECT value from metadata where name = 'bounds'", -1, &r->stmt, NULL) == SQLITE_OK) {
if (sqlite3_step(r->stmt) == SQLITE_ROW) {
const unsigned char *s = sqlite3_column_text(r->stmt, 0);
double minlon, minlat, maxlon, maxlat;
sscanf((char *) s, "%lf,%lf,%lf,%lf", &minlon, &minlat, &maxlon, &maxlat);
st->minlon = min(minlon, st->minlon);
st->maxlon = max(maxlon, st->maxlon);
st->minlat = min(minlat, st->minlat);
st->maxlat = max(maxlat, st->maxlat);
}
sqlite3_finalize(r->stmt);
}
if (sqlite3_close(r->db) != SQLITE_OK) {
fprintf(stderr, "Could not close database: %s\n", sqlite3_errmsg(r->db));
exit(EXIT_FAILURE);
}
delete r;
}
}
void usage(char **argv) {
fprintf(stderr, "Usage: %s [-f] [-i] [-pk] [-c joins.csv] [-x exclude ...] -o new.mbtiles source.mbtiles ...\n", argv[0]);
exit(EXIT_FAILURE);
}
#define MAXLINE 10000 /* XXX */
std::vector<std::string> split(char *s) {
std::vector<std::string> ret;
while (*s && *s != '\n' && *s != '\r') {
char *start = s;
int within = 0;
for (; *s && *s != '\n' && *s != '\r'; s++) {
if (*s == '"') {
within = !within;
}
if (*s == ',' && !within) {
break;
}
}
std::string v = std::string(start, s - start);
ret.push_back(v);
if (*s == ',') {
s++;
while (*s && isspace(*s)) {
s++;
}
}
}
return ret;
}
std::string dequote(std::string s) {
std::string out;
for (size_t i = 0; i < s.size(); i++) {
if (s[i] == '"') {
if (i + 1 < s.size() && s[i + 1] == '"') {
out.push_back('"');
}
} else {
out.push_back(s[i]);
}
}
return out;
}
void readcsv(char *fn, std::vector<std::string> &header, std::map<std::string, std::vector<std::string>> &mapping) {
FILE *f = fopen(fn, "r");
if (f == NULL) {
perror(fn);
exit(EXIT_FAILURE);
}
char s[MAXLINE];
if (fgets(s, MAXLINE, f)) {
header = split(s);
for (size_t i = 0; i < header.size(); i++) {
header[i] = dequote(header[i]);
}
}
while (fgets(s, MAXLINE, f)) {
std::vector<std::string> line = split(s);
if (line.size() > 0) {
line[0] = dequote(line[0]);
}
for (size_t i = 0; i < line.size() && i < header.size(); i++) {
// printf("putting %s\n", line[0].c_str());
mapping.insert(std::pair<std::string, std::vector<std::string>>(line[0], line));
}
}
fclose(f);
}
int main(int argc, char **argv) {
char *outfile = NULL;
char *csv = NULL;
int force = 0;
int ifmatched = 0;
CPUS = sysconf(_SC_NPROCESSORS_ONLN);
if (CPUS < 1) {
CPUS = 1;
}
std::vector<std::string> header;
std::map<std::string, std::vector<std::string>> mapping;
std::set<std::string> exclude;
extern int optind;
extern char *optarg;
int i;
while ((i = getopt(argc, argv, "fo:c:x:ip:")) != -1) {
switch (i) {
case 'o':
outfile = optarg;
break;
case 'f':
force = 1;
break;
case 'i':
ifmatched = 1;
break;
case 'p':
if (strcmp(optarg, "k") == 0) {
pk = true;
} else {
fprintf(stderr, "%s: Unknown option for -p%s\n", argv[0], optarg);
exit(EXIT_FAILURE);
}
break;
case 'c':
if (csv != NULL) {
fprintf(stderr, "Only one -c for now\n");
exit(EXIT_FAILURE);
}
csv = optarg;
readcsv(csv, header, mapping);
break;
case 'x':
exclude.insert(std::string(optarg));
break;
default:
usage(argv);
}
}
if (argc - optind < 1 || outfile == NULL) {
usage(argv);
}
if (force) {
unlink(outfile);
}
sqlite3 *outdb = mbtiles_open(outfile, argv, 0);
struct stats st;
memset(&st, 0, sizeof(st));
st.minzoom = st.minlat = st.minlon = INT_MAX;
st.maxzoom = st.maxlat = st.maxlon = INT_MIN;
std::map<std::string, layermap_entry> layermap;
std::string attribution;
std::string description;
struct reader *readers = NULL;
for (i = optind; i < argc; i++) {
reader *r = begin_reading(argv[i]);
struct reader **rr;
for (rr = &readers; *rr != NULL; rr = &((*rr)->next)) {
if (*r < **rr) {
break;
}
}
r->next = *rr;
*rr = r;
}
decode(readers, csv, layermap, outdb, &st, header, mapping, exclude, ifmatched, attribution, description);
mbtiles_write_metadata(outdb, outfile, st.minzoom, st.maxzoom, st.minlat, st.minlon, st.maxlat, st.maxlon, st.midlat, st.midlon, 0, attribution.size() != 0 ? attribution.c_str() : NULL, layermap, true, description.c_str());
mbtiles_close(outdb, argv);
return 0;
}