#include #include #include #include #include #include #include #include #include #include #include #include #include #include "mvt.hpp" #include "projection.hpp" #include "pool.hpp" #include "mbtiles.hpp" #include "geometry.hpp" std::string dequote(std::string s); bool pk = false; size_t CPUS; struct stats { int minzoom; int maxzoom; double midlat, midlon; double minlat, minlon, maxlat, maxlon; }; void handle(std::string message, int z, unsigned x, unsigned y, std::map &layermap, std::vector &header, std::map> &mapping, std::set &exclude, int ifmatched, mvt_tile &outtile) { mvt_tile tile; int features_added = 0; if (!tile.decode(message)) { fprintf(stderr, "Couldn't decompress tile %d/%u/%u\n", z, x, y); exit(EXIT_FAILURE); } for (size_t l = 0; l < tile.layers.size(); l++) { mvt_layer &layer = tile.layers[l]; size_t ol; for (ol = 0; ol < outtile.layers.size(); ol++) { if (tile.layers[l].name == outtile.layers[ol].name) { break; } } if (ol == outtile.layers.size()) { outtile.layers.push_back(mvt_layer()); outtile.layers[ol].name = layer.name; outtile.layers[ol].version = layer.version; outtile.layers[ol].extent = layer.extent; } mvt_layer &outlayer = outtile.layers[ol]; if (layer.extent != outlayer.extent) { if (layer.extent > outlayer.extent) { for (size_t i = 0; i < outlayer.features.size(); i++) { for (size_t j = 0; j < outlayer.features[i].geometry.size(); j++) { outlayer.features[i].geometry[j].x = outlayer.features[i].geometry[j].x * layer.extent / outlayer.extent; outlayer.features[i].geometry[j].y = outlayer.features[i].geometry[j].y * layer.extent / outlayer.extent; } } outlayer.extent = layer.extent; } } if (layermap.count(layer.name) == 0) { layermap.insert(std::pair(layer.name, layermap_entry(layermap.size()))); auto file_keys = layermap.find(layer.name); file_keys->second.minzoom = z; file_keys->second.maxzoom = z; } auto file_keys = layermap.find(layer.name); for (size_t f = 0; f < layer.features.size(); f++) { mvt_feature feat = layer.features[f]; mvt_feature outfeature; int matched = 0; if (feat.has_id) { outfeature.has_id = true; outfeature.id = feat.id; } std::map attributes; std::map types; std::vector key_order; for (size_t t = 0; t + 1 < feat.tags.size(); t += 2) { const char *key = layer.keys[feat.tags[t]].c_str(); mvt_value &val = layer.values[feat.tags[t + 1]]; std::string value; int type = -1; if (val.type == mvt_string) { value = val.string_value; type = VT_STRING; } else if (val.type == mvt_int) { aprintf(&value, "%lld", (long long) val.numeric_value.int_value); type = VT_NUMBER; } else if (val.type == mvt_double) { aprintf(&value, "%g", val.numeric_value.double_value); type = VT_NUMBER; } else if (val.type == mvt_float) { aprintf(&value, "%g", val.numeric_value.float_value); type = VT_NUMBER; } else if (val.type == mvt_bool) { aprintf(&value, "%s", val.numeric_value.bool_value ? "true" : "false"); type = VT_BOOLEAN; } else if (val.type == mvt_sint) { aprintf(&value, "%lld", (long long) val.numeric_value.sint_value); type = VT_NUMBER; } else if (val.type == mvt_uint) { aprintf(&value, "%llu", (long long) val.numeric_value.uint_value); type = VT_NUMBER; } else { continue; } if (type < 0) { continue; } if (exclude.count(std::string(key)) == 0) { attributes.insert(std::pair(key, val)); types.insert(std::pair(key, type)); key_order.push_back(key); } if (header.size() > 0 && strcmp(key, header[0].c_str()) == 0) { std::map>::iterator ii = mapping.find(value); if (ii != mapping.end()) { std::vector fields = ii->second; matched = 1; for (size_t i = 1; i < fields.size(); i++) { std::string joinkey = header[i]; std::string joinval = fields[i]; int attr_type = VT_STRING; if (joinval.size() > 0) { if (joinval[0] == '"') { joinval = dequote(joinval); } else if ((joinval[0] >= '0' && joinval[0] <= '9') || joinval[0] == '-') { attr_type = VT_NUMBER; } } const char *sjoinkey = joinkey.c_str(); if (exclude.count(joinkey) == 0) { mvt_value outval; if (attr_type == VT_STRING) { outval.type = mvt_string; outval.string_value = joinval; } else { outval.type = mvt_double; outval.numeric_value.double_value = atof(joinval.c_str()); } auto fa = attributes.find(sjoinkey); if (fa != attributes.end()) { attributes.erase(fa); } auto ft = types.find(sjoinkey); if (ft != types.end()) { types.erase(ft); } attributes.insert(std::pair(sjoinkey, outval)); types.insert(std::pair(sjoinkey, attr_type)); key_order.push_back(sjoinkey); } } } } } for (auto tp : types) { type_and_string tas; tas.string = tp.first; tas.type = tp.second; file_keys->second.file_keys.insert(tas); } // To keep attributes in their original order instead of alphabetical for (auto k : key_order) { auto fa = attributes.find(k); if (fa != attributes.end()) { outlayer.tag(outfeature, k, fa->second); attributes.erase(fa); } } if (matched || !ifmatched) { outfeature.type = feat.type; outfeature.geometry = feat.geometry; if (layer.extent != outlayer.extent) { for (size_t i = 0; i < outfeature.geometry.size(); i++) { outfeature.geometry[i].x = outfeature.geometry[i].x * outlayer.extent / layer.extent; outfeature.geometry[i].y = outfeature.geometry[i].y * outlayer.extent / layer.extent; } } features_added++; outlayer.features.push_back(outfeature); if (z < file_keys->second.minzoom) { file_keys->second.minzoom = z; } if (z > file_keys->second.maxzoom) { file_keys->second.maxzoom = z; } } } } if (features_added == 0) { return; } } double min(double a, double b) { if (a < b) { return a; } else { return b; } } double max(double a, double b) { if (a > b) { return a; } else { return b; } } struct reader { long long zoom; long long x; long long sorty; long long y; std::string data; sqlite3 *db; sqlite3_stmt *stmt; struct reader *next; bool operator<(const struct reader &r) const { if (zoom < r.zoom) { return true; } if (zoom > r.zoom) { return false; } if (x < r.x) { return true; } if (x > r.x) { return false; } if (sorty < r.sorty) { return true; } if (sorty > r.sorty) { return false; } if (data < r.data) { return true; } return false; } }; struct reader *begin_reading(char *fname) { sqlite3 *db; if (sqlite3_open(fname, &db) != SQLITE_OK) { fprintf(stderr, "%s: %s\n", fname, sqlite3_errmsg(db)); exit(EXIT_FAILURE); } const char *sql = "SELECT zoom_level, tile_column, tile_row, tile_data from tiles order by zoom_level, tile_column, tile_row;"; sqlite3_stmt *stmt; if (sqlite3_prepare_v2(db, sql, -1, &stmt, NULL) != SQLITE_OK) { fprintf(stderr, "%s: select failed: %s\n", fname, sqlite3_errmsg(db)); exit(EXIT_FAILURE); } struct reader *r = new reader; r->db = db; r->stmt = stmt; r->next = NULL; if (sqlite3_step(stmt) == SQLITE_ROW) { r->zoom = sqlite3_column_int(stmt, 0); r->x = sqlite3_column_int(stmt, 1); r->sorty = sqlite3_column_int(stmt, 2); r->y = (1LL << r->zoom) - 1 - r->sorty; const char *data = (const char *) sqlite3_column_blob(stmt, 3); size_t len = sqlite3_column_bytes(stmt, 3); r->data = std::string(data, len); } else { r->zoom = 32; } return r; } struct zxy { long long z; long long x; long long y; zxy(long long _z, long long _x, long long _y) { z = _z; x = _x; y = _y; } bool operator<(zxy const &other) const { if (z < other.z) { return true; } if (z > other.z) { return false; } if (x < other.x) { return true; } if (x > other.x) { return false; } if (y < other.y) { return true; } return false; } }; struct arg { std::map> inputs; std::map outputs; std::map *layermap; std::vector *header; std::map> *mapping; std::set *exclude; int ifmatched; }; void *join_worker(void *v) { arg *a = (arg *) v; for (auto ai = a->inputs.begin(); ai != a->inputs.end(); ++ai) { mvt_tile tile; for (size_t i = 0; i < ai->second.size(); i++) { handle(ai->second[i], ai->first.z, ai->first.x, ai->first.y, *(a->layermap), *(a->header), *(a->mapping), *(a->exclude), a->ifmatched, tile); } ai->second.clear(); bool anything = false; for (size_t i = 0; i < tile.layers.size(); i++) { if (tile.layers[i].features.size() > 0) { anything = true; break; } } if (anything) { std::string compressed = tile.encode(); if (!pk && compressed.size() > 500000) { fprintf(stderr, "Tile %lld/%lld/%lld size is %lld, >500000. Skipping this tile\n.", ai->first.z, ai->first.x, ai->first.y, (long long) compressed.size()); } else { a->outputs.insert(std::pair(ai->first, compressed)); } } } return NULL; } void handle_tasks(std::map> &tasks, std::vector> &layermaps, sqlite3 *outdb, std::vector &header, std::map> &mapping, std::set &exclude, int ifmatched) { pthread_t pthreads[CPUS]; std::vector args; for (size_t i = 0; i < CPUS; i++) { args.push_back(arg()); args[i].layermap = &layermaps[i]; args[i].header = &header; args[i].mapping = &mapping; args[i].exclude = &exclude; args[i].ifmatched = ifmatched; } size_t count = 0; // This isn't careful about distributing tasks evenly across CPUs, // but, from testing, it actually takes a little longer to do // the proper allocation than is saved by perfectly balanced threads. for (auto ai = tasks.begin(); ai != tasks.end(); ++ai) { args[count].inputs.insert(*ai); count = (count + 1) % CPUS; if (ai == tasks.begin()) { fprintf(stderr, "%lld/%lld/%lld \r", ai->first.z, ai->first.x, ai->first.y); } } for (size_t i = 0; i < CPUS; i++) { if (pthread_create(&pthreads[i], NULL, join_worker, &args[i]) != 0) { perror("pthread_create"); exit(EXIT_FAILURE); } } for (size_t i = 0; i < CPUS; i++) { void *retval; if (pthread_join(pthreads[i], &retval) != 0) { perror("pthread_join"); } for (auto ai = args[i].outputs.begin(); ai != args[i].outputs.end(); ++ai) { mbtiles_write_tile(outdb, ai->first.z, ai->first.x, ai->first.y, ai->second.data(), ai->second.size()); } } } void decode(struct reader *readers, char *map, std::map &layermap, sqlite3 *outdb, struct stats *st, std::vector &header, std::map> &mapping, std::set &exclude, int ifmatched, std::string &attribution) { std::vector> layermaps; for (size_t i = 0; i < CPUS; i++) { layermaps.push_back(std::map()); } std::map> tasks; while (readers != NULL && readers->zoom < 32) { reader *r = readers; readers = readers->next; r->next = NULL; zxy tile = zxy(r->zoom, r->x, r->y); if (tasks.count(tile) == 0) { tasks.insert(std::pair>(tile, std::vector())); } auto f = tasks.find(tile); f->second.push_back(r->data); if (readers == NULL || readers->zoom != r->zoom || readers->x != r->x || readers->y != r->y) { if (tasks.size() > 100 * CPUS) { handle_tasks(tasks, layermaps, outdb, header, mapping, exclude, ifmatched); tasks.clear(); } } if (sqlite3_step(r->stmt) == SQLITE_ROW) { r->zoom = sqlite3_column_int(r->stmt, 0); r->x = sqlite3_column_int(r->stmt, 1); r->sorty = sqlite3_column_int(r->stmt, 2); r->y = (1LL << r->zoom) - 1 - r->sorty; const char *data = (const char *) sqlite3_column_blob(r->stmt, 3); size_t len = sqlite3_column_bytes(r->stmt, 3); r->data = std::string(data, len); } else { r->zoom = 32; } struct reader **rr; for (rr = &readers; *rr != NULL; rr = &((*rr)->next)) { if (*r < **rr) { break; } } r->next = *rr; *rr = r; } handle_tasks(tasks, layermaps, outdb, header, mapping, exclude, ifmatched); layermap = merge_layermaps(layermaps); struct reader *next; for (struct reader *r = readers; r != NULL; r = next) { next = r->next; sqlite3_finalize(r->stmt); if (sqlite3_prepare_v2(r->db, "SELECT value from metadata where name = 'minzoom'", -1, &r->stmt, NULL) == SQLITE_OK) { if (sqlite3_step(r->stmt) == SQLITE_ROW) { int minzoom = sqlite3_column_int(r->stmt, 0); st->minzoom = min(st->minzoom, minzoom); } sqlite3_finalize(r->stmt); } if (sqlite3_prepare_v2(r->db, "SELECT value from metadata where name = 'maxzoom'", -1, &r->stmt, NULL) == SQLITE_OK) { if (sqlite3_step(r->stmt) == SQLITE_ROW) { int maxzoom = sqlite3_column_int(r->stmt, 0); st->maxzoom = max(st->maxzoom, maxzoom); } sqlite3_finalize(r->stmt); } if (sqlite3_prepare_v2(r->db, "SELECT value from metadata where name = 'center'", -1, &r->stmt, NULL) == SQLITE_OK) { if (sqlite3_step(r->stmt) == SQLITE_ROW) { const unsigned char *s = sqlite3_column_text(r->stmt, 0); sscanf((char *) s, "%lf,%lf", &st->midlon, &st->midlat); } sqlite3_finalize(r->stmt); } if (sqlite3_prepare_v2(r->db, "SELECT value from metadata where name = 'attribution'", -1, &r->stmt, NULL) == SQLITE_OK) { if (sqlite3_step(r->stmt) == SQLITE_ROW) { attribution = std::string((char *) sqlite3_column_text(r->stmt, 0)); } sqlite3_finalize(r->stmt); } if (sqlite3_prepare_v2(r->db, "SELECT value from metadata where name = 'bounds'", -1, &r->stmt, NULL) == SQLITE_OK) { if (sqlite3_step(r->stmt) == SQLITE_ROW) { const unsigned char *s = sqlite3_column_text(r->stmt, 0); double minlon, minlat, maxlon, maxlat; sscanf((char *) s, "%lf,%lf,%lf,%lf", &minlon, &minlat, &maxlon, &maxlat); st->minlon = min(minlon, st->minlon); st->maxlon = max(maxlon, st->maxlon); st->minlat = min(minlat, st->minlat); st->maxlat = max(maxlat, st->maxlat); } sqlite3_finalize(r->stmt); } if (sqlite3_close(r->db) != SQLITE_OK) { fprintf(stderr, "Could not close database: %s\n", sqlite3_errmsg(r->db)); exit(EXIT_FAILURE); } delete r; } } void usage(char **argv) { fprintf(stderr, "Usage: %s [-f] [-i] [-pk] [-c joins.csv] [-x exclude ...] -o new.mbtiles source.mbtiles ...\n", argv[0]); exit(EXIT_FAILURE); } #define MAXLINE 10000 /* XXX */ std::vector split(char *s) { std::vector ret; while (*s && *s != '\n' && *s != '\r') { char *start = s; int within = 0; for (; *s && *s != '\n' && *s != '\r'; s++) { if (*s == '"') { within = !within; } if (*s == ',' && !within) { break; } } std::string v = std::string(start, s - start); ret.push_back(v); if (*s == ',') { s++; while (*s && isspace(*s)) { s++; } } } return ret; } std::string dequote(std::string s) { std::string out; for (size_t i = 0; i < s.size(); i++) { if (s[i] == '"') { if (i + 1 < s.size() && s[i + 1] == '"') { out.push_back('"'); } } else { out.push_back(s[i]); } } return out; } void readcsv(char *fn, std::vector &header, std::map> &mapping) { FILE *f = fopen(fn, "r"); if (f == NULL) { perror(fn); exit(EXIT_FAILURE); } char s[MAXLINE]; if (fgets(s, MAXLINE, f)) { header = split(s); for (size_t i = 0; i < header.size(); i++) { header[i] = dequote(header[i]); } } while (fgets(s, MAXLINE, f)) { std::vector line = split(s); if (line.size() > 0) { line[0] = dequote(line[0]); } for (size_t i = 0; i < line.size() && i < header.size(); i++) { // printf("putting %s\n", line[0].c_str()); mapping.insert(std::pair>(line[0], line)); } } fclose(f); } int main(int argc, char **argv) { char *outfile = NULL; char *csv = NULL; int force = 0; int ifmatched = 0; CPUS = sysconf(_SC_NPROCESSORS_ONLN); if (CPUS < 1) { CPUS = 1; } std::vector header; std::map> mapping; std::set exclude; extern int optind; extern char *optarg; int i; while ((i = getopt(argc, argv, "fo:c:x:ip:")) != -1) { switch (i) { case 'o': outfile = optarg; break; case 'f': force = 1; break; case 'i': ifmatched = 1; break; case 'p': if (strcmp(optarg, "k") == 0) { pk = true; } else { fprintf(stderr, "%s: Unknown option for -p%s\n", argv[0], optarg); exit(EXIT_FAILURE); } break; case 'c': if (csv != NULL) { fprintf(stderr, "Only one -c for now\n"); exit(EXIT_FAILURE); } csv = optarg; readcsv(csv, header, mapping); break; case 'x': exclude.insert(std::string(optarg)); break; default: usage(argv); } } if (argc - optind < 1 || outfile == NULL) { usage(argv); } if (force) { unlink(outfile); } sqlite3 *outdb = mbtiles_open(outfile, argv, 0); struct stats st; memset(&st, 0, sizeof(st)); st.minzoom = st.minlat = st.minlon = INT_MAX; st.maxzoom = st.maxlat = st.maxlon = INT_MIN; std::map layermap; std::string attribution; struct reader *readers = NULL; for (i = optind; i < argc; i++) { reader *r = begin_reading(argv[i]); struct reader **rr; for (rr = &readers; *rr != NULL; rr = &((*rr)->next)) { if (*r < **rr) { break; } } r->next = *rr; *rr = r; } decode(readers, csv, layermap, outdb, &st, header, mapping, exclude, ifmatched, attribution); mbtiles_write_metadata(outdb, outfile, st.minzoom, st.maxzoom, st.minlat, st.minlon, st.maxlat, st.maxlon, st.midlat, st.midlon, 0, attribution.size() != 0 ? attribution.c_str() : NULL, layermap); mbtiles_close(outdb, argv); return 0; }