#ifdef MTRACE #include #endif #ifdef __APPLE__ #define _DARWIN_UNLIMITED_STREAMS #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef __APPLE__ #include #include #include #include #else #include #endif #include "jsonpull/jsonpull.h" #include "mbtiles.hpp" #include "tile.hpp" #include "pool.hpp" #include "projection.hpp" #include "version.hpp" #include "memfile.hpp" #include "main.hpp" #include "geojson.hpp" #include "geobuf.hpp" #include "geocsv.hpp" #include "geometry.hpp" #include "serial.hpp" #include "options.hpp" #include "mvt.hpp" #include "dirtiles.hpp" #include "evaluator.hpp" static int low_detail = 12; static int full_detail = -1; static int min_detail = 7; int quiet = 0; int quiet_progress = 0; int geometry_scale = 0; double simplification = 1; size_t max_tile_size = 500000; int prevent[256]; int additional[256]; struct source { std::string layer = ""; std::string file = ""; }; size_t CPUS; size_t TEMP_FILES; long long MAX_FILES; static long long diskfree; void checkdisk(std::vector *r) { long long used = 0; for (size_t i = 0; i < r->size(); i++) { // Meta, pool, and tree are used once. // Geometry and index will be duplicated during sorting and tiling. used += (*r)[i].metapos + 2 * (*r)[i].geompos + 2 * (*r)[i].indexpos + (*r)[i].poolfile->len + (*r)[i].treefile->len; } static int warned = 0; if (used > diskfree * .9 && !warned) { fprintf(stderr, "You will probably run out of disk space.\n%lld bytes used or committed, of %lld originally available\n", used, diskfree); warned = 1; } }; void init_cpus() { const char *TIPPECANOE_MAX_THREADS = getenv("TIPPECANOE_MAX_THREADS"); if (TIPPECANOE_MAX_THREADS != NULL) { CPUS = atoi(TIPPECANOE_MAX_THREADS); } else { CPUS = sysconf(_SC_NPROCESSORS_ONLN); } if (CPUS < 1) { CPUS = 1; } // Guard against short struct index.segment if (CPUS > 32767) { CPUS = 32767; } // Round down to a power of 2 CPUS = 1 << (int) (log(CPUS) / log(2)); struct rlimit rl; if (getrlimit(RLIMIT_NOFILE, &rl) != 0) { perror("getrlimit"); exit(EXIT_FAILURE); } else { MAX_FILES = rl.rlim_cur; } // Don't really want too many temporary files, because the file system // will start to bog down eventually if (MAX_FILES > 2000) { MAX_FILES = 2000; } // MacOS can run out of system file descriptors // even if we stay under the rlimit, so try to // find out the real limit. long long fds[MAX_FILES]; long long i; for (i = 0; i < MAX_FILES; i++) { fds[i] = open("/dev/null", O_RDONLY | O_CLOEXEC); if (fds[i] < 0) { break; } } long long j; for (j = 0; j < i; j++) { if (close(fds[j]) < 0) { perror("close"); exit(EXIT_FAILURE); } } // Scale down because we really don't want to run the system out of files MAX_FILES = i * 3 / 4; if (MAX_FILES < 32) { fprintf(stderr, "Can't open a useful number of files: %lld\n", MAX_FILES); exit(EXIT_FAILURE); } TEMP_FILES = (MAX_FILES - 10) / 2; if (TEMP_FILES > CPUS * 4) { TEMP_FILES = CPUS * 4; } } int indexcmp(const void *v1, const void *v2) { const struct index *i1 = (const struct index *) v1; const struct index *i2 = (const struct index *) v2; if (i1->ix < i2->ix) { return -1; } else if (i1->ix > i2->ix) { return 1; } if (i1->seq < i2->seq) { return -1; } else if (i1->seq > i2->seq) { return 1; } return 0; } struct mergelist { long long start; long long end; struct mergelist *next; }; static void insert(struct mergelist *m, struct mergelist **head, unsigned char *map) { while (*head != NULL && indexcmp(map + m->start, map + (*head)->start) > 0) { head = &((*head)->next); } m->next = *head; *head = m; } struct drop_state { double gap; unsigned long long previndex; double interval; double scale; double seq; long long included; unsigned x; unsigned y; }; int calc_feature_minzoom(struct index *ix, struct drop_state *ds, int maxzoom, double gamma) { int feature_minzoom = 0; unsigned xx, yy; decode(ix->ix, &xx, &yy); if (gamma >= 0 && (ix->t == VT_POINT || (additional[A_LINE_DROP] && ix->t == VT_LINE) || (additional[A_POLYGON_DROP] && ix->t == VT_POLYGON))) { for (ssize_t i = maxzoom; i >= 0; i--) { // XXX This resets the feature counter at the start of each tile, // which makes the feature count come out close to what it is if // feature dropping happens during tiling. It means that the low // zooms are heavier than they legitimately should be though. { unsigned xxx = 0, yyy = 0; if (i != 0) { xxx = xx >> (32 - i); yyy = yy >> (32 - i); } if (ds[i].x != xxx || ds[i].y != yyy) { ds[i].seq = 0; ds[i].gap = 0; ds[i].previndex = 0; } ds[i].x = xxx; ds[i].y = yyy; } ds[i].seq++; } for (ssize_t i = maxzoom; i >= 0; i--) { if (ds[i].seq >= 0) { ds[i].seq -= ds[i].interval; ds[i].included++; } else { feature_minzoom = i + 1; break; } } // XXX manage_gap } return feature_minzoom; } static void merge(struct mergelist *merges, size_t nmerges, unsigned char *map, FILE *indexfile, int bytes, char *geom_map, FILE *geom_out, long long *geompos, long long *progress, long long *progress_max, long long *progress_reported, int maxzoom, double gamma, struct drop_state *ds) { struct mergelist *head = NULL; for (size_t i = 0; i < nmerges; i++) { if (merges[i].start < merges[i].end) { insert(&(merges[i]), &head, map); } } while (head != NULL) { struct index ix = *((struct index *) (map + head->start)); long long pos = *geompos; fwrite_check(geom_map + ix.start, 1, ix.end - ix.start, geom_out, "merge geometry"); *geompos += ix.end - ix.start; int feature_minzoom = calc_feature_minzoom(&ix, ds, maxzoom, gamma); serialize_byte(geom_out, feature_minzoom, geompos, "merge geometry"); // Count this as an 75%-accomplishment, since we already 25%-counted it *progress += (ix.end - ix.start) * 3 / 4; if (!quiet && !quiet_progress && 100 * *progress / *progress_max != *progress_reported) { fprintf(stderr, "Reordering geometry: %lld%% \r", 100 * *progress / *progress_max); *progress_reported = 100 * *progress / *progress_max; } ix.start = pos; ix.end = *geompos; fwrite_check(&ix, bytes, 1, indexfile, "merge temporary"); head->start += bytes; struct mergelist *m = head; head = m->next; m->next = NULL; if (m->start < m->end) { insert(m, &head, map); } } } struct sort_arg { int task; int cpus; long long indexpos; struct mergelist *merges; int indexfd; size_t nmerges; long long unit; int bytes; sort_arg(int task1, int cpus1, long long indexpos1, struct mergelist *merges1, int indexfd1, size_t nmerges1, long long unit1, int bytes1) : task(task1), cpus(cpus1), indexpos(indexpos1), merges(merges1), indexfd(indexfd1), nmerges(nmerges1), unit(unit1), bytes(bytes1) { } }; void *run_sort(void *v) { struct sort_arg *a = (struct sort_arg *) v; long long start; for (start = a->task * a->unit; start < a->indexpos; start += a->unit * a->cpus) { long long end = start + a->unit; if (end > a->indexpos) { end = a->indexpos; } a->merges[start / a->unit].start = start; a->merges[start / a->unit].end = end; a->merges[start / a->unit].next = NULL; // MAP_PRIVATE to avoid disk writes if it fits in memory void *map = mmap(NULL, end - start, PROT_READ | PROT_WRITE, MAP_PRIVATE, a->indexfd, start); if (map == MAP_FAILED) { perror("mmap in run_sort"); exit(EXIT_FAILURE); } madvise(map, end - start, MADV_RANDOM); madvise(map, end - start, MADV_WILLNEED); qsort(map, (end - start) / a->bytes, a->bytes, indexcmp); // Sorting and then copying avoids disk access to // write out intermediate stages of the sort. void *map2 = mmap(NULL, end - start, PROT_READ | PROT_WRITE, MAP_SHARED, a->indexfd, start); if (map2 == MAP_FAILED) { perror("mmap (write)"); exit(EXIT_FAILURE); } madvise(map2, end - start, MADV_SEQUENTIAL); memcpy(map2, map, end - start); // No madvise, since caller will want the sorted data munmap(map, end - start); munmap(map2, end - start); } return NULL; } void do_read_parallel(char *map, long long len, long long initial_offset, const char *reading, std::vector *readers, volatile long long *progress_seq, std::set *exclude, std::set *include, int exclude_all, json_object *filter, int basezoom, int source, std::vector > *layermaps, int *initialized, unsigned *initial_x, unsigned *initial_y, int maxzoom, std::string layername, bool uses_gamma, std::map const *attribute_types, int separator, double *dist_sum, size_t *dist_count, bool want_dist, bool filters) { long long segs[CPUS + 1]; segs[0] = 0; segs[CPUS] = len; for (size_t i = 1; i < CPUS; i++) { segs[i] = len * i / CPUS; while (segs[i] < len && map[segs[i]] != separator) { segs[i]++; } } double dist_sums[CPUS]; size_t dist_counts[CPUS]; volatile long long layer_seq[CPUS]; for (size_t i = 0; i < CPUS; i++) { // To preserve feature ordering, unique id for each segment // begins with that segment's offset into the input layer_seq[i] = segs[i] + initial_offset; dist_sums[i] = dist_counts[i] = 0; } std::vector pja; std::vector sst; sst.resize(CPUS); pthread_t pthreads[CPUS]; std::vector > file_subkeys; for (size_t i = 0; i < CPUS; i++) { file_subkeys.push_back(std::set()); } for (size_t i = 0; i < CPUS; i++) { sst[i].fname = reading; sst[i].line = 0; sst[i].layer_seq = &layer_seq[i]; sst[i].progress_seq = progress_seq; sst[i].readers = readers; sst[i].segment = i; sst[i].initialized = &initialized[i]; sst[i].initial_x = &initial_x[i]; sst[i].initial_y = &initial_y[i]; sst[i].dist_sum = &(dist_sums[i]); sst[i].dist_count = &(dist_counts[i]); sst[i].want_dist = want_dist; sst[i].maxzoom = maxzoom; sst[i].uses_gamma = uses_gamma; sst[i].filters = filters; sst[i].layermap = &(*layermaps)[i]; sst[i].exclude = exclude; sst[i].filter = filter; sst[i].include = include; sst[i].exclude_all = exclude_all; sst[i].basezoom = basezoom; sst[i].attribute_types = attribute_types; pja.push_back(parse_json_args( json_begin_map(map + segs[i], segs[i + 1] - segs[i]), source, &layername, &sst[i])); } for (size_t i = 0; i < CPUS; i++) { if (pthread_create(&pthreads[i], NULL, run_parse_json, &pja[i]) != 0) { perror("pthread_create"); exit(EXIT_FAILURE); } } for (size_t i = 0; i < CPUS; i++) { void *retval; if (pthread_join(pthreads[i], &retval) != 0) { perror("pthread_join 370"); } *dist_sum += dist_sums[i]; *dist_count += dist_counts[i]; json_end_map(pja[i].jp); } } struct read_parallel_arg { int fd = 0; FILE *fp = NULL; long long offset = 0; long long len = 0; volatile int *is_parsing = NULL; int separator = 0; const char *reading = NULL; std::vector *readers = NULL; volatile long long *progress_seq = NULL; std::set *exclude = NULL; std::set *include = NULL; int exclude_all = 0; json_object *filter = NULL; int maxzoom = 0; int basezoom = 0; int source = 0; std::vector > *layermaps = NULL; int *initialized = NULL; unsigned *initial_x = NULL; unsigned *initial_y = NULL; std::string layername = ""; bool uses_gamma = false; std::map const *attribute_types = NULL; double *dist_sum = NULL; size_t *dist_count = NULL; bool want_dist = false; bool filters = false; }; void *run_read_parallel(void *v) { struct read_parallel_arg *rpa = (struct read_parallel_arg *) v; struct stat st; if (fstat(rpa->fd, &st) != 0) { perror("stat read temp"); } if (rpa->len != st.st_size) { fprintf(stderr, "wrong number of bytes in temporary: %lld vs %lld\n", rpa->len, (long long) st.st_size); } rpa->len = st.st_size; char *map = (char *) mmap(NULL, rpa->len, PROT_READ, MAP_PRIVATE, rpa->fd, 0); if (map == NULL || map == MAP_FAILED) { perror("map intermediate input"); exit(EXIT_FAILURE); } madvise(map, rpa->len, MADV_RANDOM); // sequential, but from several pointers at once do_read_parallel(map, rpa->len, rpa->offset, rpa->reading, rpa->readers, rpa->progress_seq, rpa->exclude, rpa->include, rpa->exclude_all, rpa->filter, rpa->basezoom, rpa->source, rpa->layermaps, rpa->initialized, rpa->initial_x, rpa->initial_y, rpa->maxzoom, rpa->layername, rpa->uses_gamma, rpa->attribute_types, rpa->separator, rpa->dist_sum, rpa->dist_count, rpa->want_dist, rpa->filters); madvise(map, rpa->len, MADV_DONTNEED); if (munmap(map, rpa->len) != 0) { perror("munmap source file"); } if (fclose(rpa->fp) != 0) { perror("close source file"); exit(EXIT_FAILURE); } *(rpa->is_parsing) = 0; delete rpa; return NULL; } void start_parsing(int fd, FILE *fp, long long offset, long long len, volatile int *is_parsing, pthread_t *parallel_parser, bool &parser_created, const char *reading, std::vector *readers, volatile long long *progress_seq, std::set *exclude, std::set *include, int exclude_all, json_object *filter, int basezoom, int source, std::vector > &layermaps, int *initialized, unsigned *initial_x, unsigned *initial_y, int maxzoom, std::string layername, bool uses_gamma, std::map const *attribute_types, int separator, double *dist_sum, size_t *dist_count, bool want_dist, bool filters) { // This has to kick off an intermediate thread to start the parser threads, // so the main thread can get back to reading the next input stage while // the intermediate thread waits for the completion of the parser threads. *is_parsing = 1; struct read_parallel_arg *rpa = new struct read_parallel_arg; if (rpa == NULL) { perror("Out of memory"); exit(EXIT_FAILURE); } rpa->fd = fd; rpa->fp = fp; rpa->offset = offset; rpa->len = len; rpa->is_parsing = is_parsing; rpa->separator = separator; rpa->reading = reading; rpa->readers = readers; rpa->progress_seq = progress_seq; rpa->exclude = exclude; rpa->include = include; rpa->exclude_all = exclude_all; rpa->filter = filter; rpa->basezoom = basezoom; rpa->source = source; rpa->layermaps = &layermaps; rpa->initialized = initialized; rpa->initial_x = initial_x; rpa->initial_y = initial_y; rpa->maxzoom = maxzoom; rpa->layername = layername; rpa->uses_gamma = uses_gamma; rpa->attribute_types = attribute_types; rpa->dist_sum = dist_sum; rpa->dist_count = dist_count; rpa->want_dist = want_dist; rpa->filters = filters; if (pthread_create(parallel_parser, NULL, run_read_parallel, rpa) != 0) { perror("pthread_create"); exit(EXIT_FAILURE); } parser_created = true; } void radix1(int *geomfds_in, int *indexfds_in, int inputs, int prefix, int splits, long long mem, const char *tmpdir, long long *availfiles, FILE *geomfile, FILE *indexfile, long long *geompos_out, long long *progress, long long *progress_max, long long *progress_reported, int maxzoom, int basezoom, double droprate, double gamma, struct drop_state *ds) { // Arranged as bits to facilitate subdividing again if a subdivided file is still huge int splitbits = log(splits) / log(2); splits = 1 << splitbits; FILE *geomfiles[splits]; FILE *indexfiles[splits]; int geomfds[splits]; int indexfds[splits]; long long sub_geompos[splits]; int i; for (i = 0; i < splits; i++) { sub_geompos[i] = 0; char geomname[strlen(tmpdir) + strlen("/geom.XXXXXXXX") + 1]; sprintf(geomname, "%s%s", tmpdir, "/geom.XXXXXXXX"); char indexname[strlen(tmpdir) + strlen("/index.XXXXXXXX") + 1]; sprintf(indexname, "%s%s", tmpdir, "/index.XXXXXXXX"); geomfds[i] = mkstemp_cloexec(geomname); if (geomfds[i] < 0) { perror(geomname); exit(EXIT_FAILURE); } indexfds[i] = mkstemp_cloexec(indexname); if (indexfds[i] < 0) { perror(indexname); exit(EXIT_FAILURE); } geomfiles[i] = fopen_oflag(geomname, "wb", O_WRONLY | O_CLOEXEC); if (geomfiles[i] == NULL) { perror(geomname); exit(EXIT_FAILURE); } indexfiles[i] = fopen_oflag(indexname, "wb", O_WRONLY | O_CLOEXEC); if (indexfiles[i] == NULL) { perror(indexname); exit(EXIT_FAILURE); } *availfiles -= 4; unlink(geomname); unlink(indexname); } for (i = 0; i < inputs; i++) { struct stat geomst, indexst; if (fstat(geomfds_in[i], &geomst) < 0) { perror("stat geom"); exit(EXIT_FAILURE); } if (fstat(indexfds_in[i], &indexst) < 0) { perror("stat index"); exit(EXIT_FAILURE); } if (indexst.st_size != 0) { struct index *indexmap = (struct index *) mmap(NULL, indexst.st_size, PROT_READ, MAP_PRIVATE, indexfds_in[i], 0); if (indexmap == MAP_FAILED) { fprintf(stderr, "fd %lld, len %lld\n", (long long) indexfds_in[i], (long long) indexst.st_size); perror("map index"); exit(EXIT_FAILURE); } madvise(indexmap, indexst.st_size, MADV_SEQUENTIAL); madvise(indexmap, indexst.st_size, MADV_WILLNEED); char *geommap = (char *) mmap(NULL, geomst.st_size, PROT_READ, MAP_PRIVATE, geomfds_in[i], 0); if (geommap == MAP_FAILED) { perror("map geom"); exit(EXIT_FAILURE); } madvise(geommap, geomst.st_size, MADV_SEQUENTIAL); madvise(geommap, geomst.st_size, MADV_WILLNEED); for (size_t a = 0; a < indexst.st_size / sizeof(struct index); a++) { struct index ix = indexmap[a]; unsigned long long which = (ix.ix << prefix) >> (64 - splitbits); long long pos = sub_geompos[which]; fwrite_check(geommap + ix.start, ix.end - ix.start, 1, geomfiles[which], "geom"); sub_geompos[which] += ix.end - ix.start; // Count this as a 25%-accomplishment, since we will copy again *progress += (ix.end - ix.start) / 4; if (!quiet && !quiet_progress && 100 * *progress / *progress_max != *progress_reported) { fprintf(stderr, "Reordering geometry: %lld%% \r", 100 * *progress / *progress_max); *progress_reported = 100 * *progress / *progress_max; } ix.start = pos; ix.end = sub_geompos[which]; fwrite_check(&ix, sizeof(struct index), 1, indexfiles[which], "index"); } madvise(indexmap, indexst.st_size, MADV_DONTNEED); if (munmap(indexmap, indexst.st_size) < 0) { perror("unmap index"); exit(EXIT_FAILURE); } madvise(geommap, geomst.st_size, MADV_DONTNEED); if (munmap(geommap, geomst.st_size) < 0) { perror("unmap geom"); exit(EXIT_FAILURE); } } if (close(geomfds_in[i]) < 0) { perror("close geom"); exit(EXIT_FAILURE); } if (close(indexfds_in[i]) < 0) { perror("close index"); exit(EXIT_FAILURE); } *availfiles += 2; } for (i = 0; i < splits; i++) { if (fclose(geomfiles[i]) != 0) { perror("fclose geom"); exit(EXIT_FAILURE); } if (fclose(indexfiles[i]) != 0) { perror("fclose index"); exit(EXIT_FAILURE); } *availfiles += 2; } for (i = 0; i < splits; i++) { int already_closed = 0; struct stat geomst, indexst; if (fstat(geomfds[i], &geomst) < 0) { perror("stat geom"); exit(EXIT_FAILURE); } if (fstat(indexfds[i], &indexst) < 0) { perror("stat index"); exit(EXIT_FAILURE); } if (indexst.st_size > 0) { if (indexst.st_size + geomst.st_size < mem) { long long indexpos = indexst.st_size; int bytes = sizeof(struct index); int page = sysconf(_SC_PAGESIZE); // Don't try to sort more than 2GB at once, // which used to crash Macs and may still long long max_unit = 2LL * 1024 * 1024 * 1024; long long unit = ((indexpos / CPUS + bytes - 1) / bytes) * bytes; if (unit > max_unit) { unit = max_unit; } unit = ((unit + page - 1) / page) * page; if (unit < page) { unit = page; } size_t nmerges = (indexpos + unit - 1) / unit; struct mergelist merges[nmerges]; for (size_t a = 0; a < nmerges; a++) { merges[a].start = merges[a].end = 0; } pthread_t pthreads[CPUS]; std::vector args; for (size_t a = 0; a < CPUS; a++) { args.push_back(sort_arg( a, CPUS, indexpos, merges, indexfds[i], nmerges, unit, bytes)); } for (size_t a = 0; a < CPUS; a++) { if (pthread_create(&pthreads[a], NULL, run_sort, &args[a]) != 0) { perror("pthread_create"); exit(EXIT_FAILURE); } } for (size_t a = 0; a < CPUS; a++) { void *retval; if (pthread_join(pthreads[a], &retval) != 0) { perror("pthread_join 679"); } } struct indexmap *indexmap = (struct indexmap *) mmap(NULL, indexst.st_size, PROT_READ, MAP_PRIVATE, indexfds[i], 0); if (indexmap == MAP_FAILED) { fprintf(stderr, "fd %lld, len %lld\n", (long long) indexfds[i], (long long) indexst.st_size); perror("map index"); exit(EXIT_FAILURE); } madvise(indexmap, indexst.st_size, MADV_RANDOM); // sequential, but from several pointers at once madvise(indexmap, indexst.st_size, MADV_WILLNEED); char *geommap = (char *) mmap(NULL, geomst.st_size, PROT_READ, MAP_PRIVATE, geomfds[i], 0); if (geommap == MAP_FAILED) { perror("map geom"); exit(EXIT_FAILURE); } madvise(geommap, geomst.st_size, MADV_RANDOM); madvise(geommap, geomst.st_size, MADV_WILLNEED); merge(merges, nmerges, (unsigned char *) indexmap, indexfile, bytes, geommap, geomfile, geompos_out, progress, progress_max, progress_reported, maxzoom, gamma, ds); madvise(indexmap, indexst.st_size, MADV_DONTNEED); if (munmap(indexmap, indexst.st_size) < 0) { perror("unmap index"); exit(EXIT_FAILURE); } madvise(geommap, geomst.st_size, MADV_DONTNEED); if (munmap(geommap, geomst.st_size) < 0) { perror("unmap geom"); exit(EXIT_FAILURE); } } else if (indexst.st_size == sizeof(struct index) || prefix + splitbits >= 64) { struct index *indexmap = (struct index *) mmap(NULL, indexst.st_size, PROT_READ, MAP_PRIVATE, indexfds[i], 0); if (indexmap == MAP_FAILED) { fprintf(stderr, "fd %lld, len %lld\n", (long long) indexfds[i], (long long) indexst.st_size); perror("map index"); exit(EXIT_FAILURE); } madvise(indexmap, indexst.st_size, MADV_SEQUENTIAL); madvise(indexmap, indexst.st_size, MADV_WILLNEED); char *geommap = (char *) mmap(NULL, geomst.st_size, PROT_READ, MAP_PRIVATE, geomfds[i], 0); if (geommap == MAP_FAILED) { perror("map geom"); exit(EXIT_FAILURE); } madvise(geommap, geomst.st_size, MADV_RANDOM); madvise(geommap, geomst.st_size, MADV_WILLNEED); for (size_t a = 0; a < indexst.st_size / sizeof(struct index); a++) { struct index ix = indexmap[a]; long long pos = *geompos_out; fwrite_check(geommap + ix.start, ix.end - ix.start, 1, geomfile, "geom"); *geompos_out += ix.end - ix.start; int feature_minzoom = calc_feature_minzoom(&ix, ds, maxzoom, gamma); serialize_byte(geomfile, feature_minzoom, geompos_out, "merge geometry"); // Count this as an 75%-accomplishment, since we already 25%-counted it *progress += (ix.end - ix.start) * 3 / 4; if (!quiet && !quiet_progress && 100 * *progress / *progress_max != *progress_reported) { fprintf(stderr, "Reordering geometry: %lld%% \r", 100 * *progress / *progress_max); *progress_reported = 100 * *progress / *progress_max; } ix.start = pos; ix.end = *geompos_out; fwrite_check(&ix, sizeof(struct index), 1, indexfile, "index"); } madvise(indexmap, indexst.st_size, MADV_DONTNEED); if (munmap(indexmap, indexst.st_size) < 0) { perror("unmap index"); exit(EXIT_FAILURE); } madvise(geommap, geomst.st_size, MADV_DONTNEED); if (munmap(geommap, geomst.st_size) < 0) { perror("unmap geom"); exit(EXIT_FAILURE); } } else { // We already reported the progress from splitting this radix out // but we need to split it again, which will be credited with more // progress. So increase the total amount of progress to report by // the additional progress that will happpen, which may move the // counter backward but will be an honest estimate of the work remaining. *progress_max += geomst.st_size / 4; radix1(&geomfds[i], &indexfds[i], 1, prefix + splitbits, *availfiles / 4, mem, tmpdir, availfiles, geomfile, indexfile, geompos_out, progress, progress_max, progress_reported, maxzoom, basezoom, droprate, gamma, ds); already_closed = 1; } } if (!already_closed) { if (close(geomfds[i]) < 0) { perror("close geom"); exit(EXIT_FAILURE); } if (close(indexfds[i]) < 0) { perror("close index"); exit(EXIT_FAILURE); } *availfiles += 2; } } } void prep_drop_states(struct drop_state *ds, int maxzoom, int basezoom, double droprate) { // Needs to be signed for interval calculation for (ssize_t i = 0; i <= maxzoom; i++) { ds[i].gap = 0; ds[i].previndex = 0; ds[i].interval = 0; if (i < basezoom) { ds[i].interval = std::exp(std::log(droprate) * (basezoom - i)); } ds[i].scale = (double) (1LL << (64 - 2 * (i + 8))); ds[i].seq = 0; ds[i].included = 0; ds[i].x = 0; ds[i].y = 0; } } void radix(std::vector &readers, int nreaders, FILE *geomfile, FILE *indexfile, const char *tmpdir, long long *geompos, int maxzoom, int basezoom, double droprate, double gamma) { // Run through the index and geometry for each reader, // splitting the contents out by index into as many // sub-files as we can write to simultaneously. // Then sort each of those by index, recursively if it is // too big to fit in memory. // Then concatenate each of the sub-outputs into a final output. long long mem; #ifdef __APPLE__ int64_t hw_memsize; size_t len = sizeof(int64_t); if (sysctlbyname("hw.memsize", &hw_memsize, &len, NULL, 0) < 0) { perror("sysctl hw.memsize"); exit(EXIT_FAILURE); } mem = hw_memsize; #else long long pagesize = sysconf(_SC_PAGESIZE); long long pages = sysconf(_SC_PHYS_PAGES); if (pages < 0 || pagesize < 0) { perror("sysconf _SC_PAGESIZE or _SC_PHYS_PAGES"); exit(EXIT_FAILURE); } mem = (long long) pages * pagesize; #endif // Just for code coverage testing. Deeply recursive sorting is very slow // compared to sorting in memory. if (additional[A_PREFER_RADIX_SORT]) { mem = 8192; } long long availfiles = MAX_FILES - 2 * nreaders // each reader has a geom and an index - 4 // pool, meta, mbtiles, mbtiles journal - 4 // top-level geom and index output, both FILE and fd - 3; // stdin, stdout, stderr // 4 because for each we have output and input FILE and fd for geom and index int splits = availfiles / 4; // Be somewhat conservative about memory availability because the whole point of this // is to keep from thrashing by working on chunks that will fit in memory. mem /= 2; long long geom_total = 0; int geomfds[nreaders]; int indexfds[nreaders]; for (int i = 0; i < nreaders; i++) { geomfds[i] = readers[i].geomfd; indexfds[i] = readers[i].indexfd; struct stat geomst; if (fstat(readers[i].geomfd, &geomst) < 0) { perror("stat geom"); exit(EXIT_FAILURE); } geom_total += geomst.st_size; } struct drop_state ds[maxzoom + 1]; prep_drop_states(ds, maxzoom, basezoom, droprate); long long progress = 0, progress_max = geom_total, progress_reported = -1; long long availfiles_before = availfiles; radix1(geomfds, indexfds, nreaders, 0, splits, mem, tmpdir, &availfiles, geomfile, indexfile, geompos, &progress, &progress_max, &progress_reported, maxzoom, basezoom, droprate, gamma, ds); if (availfiles - 2 * nreaders != availfiles_before) { fprintf(stderr, "Internal error: miscounted available file descriptors: %lld vs %lld\n", availfiles - 2 * nreaders, availfiles); exit(EXIT_FAILURE); } } void choose_first_zoom(long long *file_bbox, std::vector &readers, unsigned *iz, unsigned *ix, unsigned *iy, int minzoom, int buffer) { for (size_t i = 0; i < CPUS; i++) { if (readers[i].file_bbox[0] < file_bbox[0]) { file_bbox[0] = readers[i].file_bbox[0]; } if (readers[i].file_bbox[1] < file_bbox[1]) { file_bbox[1] = readers[i].file_bbox[1]; } if (readers[i].file_bbox[2] > file_bbox[2]) { file_bbox[2] = readers[i].file_bbox[2]; } if (readers[i].file_bbox[3] > file_bbox[3]) { file_bbox[3] = readers[i].file_bbox[3]; } } // If the bounding box extends off the plane on either side, // a feature wrapped across the date line, so the width of the // bounding box is the whole world. if (file_bbox[0] < 0) { file_bbox[0] = 0; file_bbox[2] = (1LL << 32) - 1; } if (file_bbox[2] > (1LL << 32) - 1) { file_bbox[0] = 0; file_bbox[2] = (1LL << 32) - 1; } if (file_bbox[1] < 0) { file_bbox[1] = 0; } if (file_bbox[3] > (1LL << 32) - 1) { file_bbox[3] = (1LL << 32) - 1; } for (ssize_t z = minzoom; z >= 0; z--) { long long shift = 1LL << (32 - z); long long left = (file_bbox[0] - buffer * shift / 256) / shift; long long top = (file_bbox[1] - buffer * shift / 256) / shift; long long right = (file_bbox[2] + buffer * shift / 256) / shift; long long bottom = (file_bbox[3] + buffer * shift / 256) / shift; if (left == right && top == bottom) { *iz = z; *ix = left; *iy = top; break; } } } int read_input(std::vector &sources, char *fname, int maxzoom, int minzoom, int basezoom, double basezoom_marker_width, sqlite3 *outdb, const char *outdir, std::set *exclude, std::set *include, int exclude_all, json_object *filter, double droprate, int buffer, const char *tmpdir, double gamma, int read_parallel, int forcetable, const char *attribution, bool uses_gamma, long long *file_bbox, const char *prefilter, const char *postfilter, const char *description, bool guess_maxzoom, std::map const *attribute_types, const char *pgm) { int ret = EXIT_SUCCESS; std::vector readers; readers.resize(CPUS); for (size_t i = 0; i < CPUS; i++) { struct reader *r = &readers[i]; char metaname[strlen(tmpdir) + strlen("/meta.XXXXXXXX") + 1]; char poolname[strlen(tmpdir) + strlen("/pool.XXXXXXXX") + 1]; char treename[strlen(tmpdir) + strlen("/tree.XXXXXXXX") + 1]; char geomname[strlen(tmpdir) + strlen("/geom.XXXXXXXX") + 1]; char indexname[strlen(tmpdir) + strlen("/index.XXXXXXXX") + 1]; sprintf(metaname, "%s%s", tmpdir, "/meta.XXXXXXXX"); sprintf(poolname, "%s%s", tmpdir, "/pool.XXXXXXXX"); sprintf(treename, "%s%s", tmpdir, "/tree.XXXXXXXX"); sprintf(geomname, "%s%s", tmpdir, "/geom.XXXXXXXX"); sprintf(indexname, "%s%s", tmpdir, "/index.XXXXXXXX"); r->metafd = mkstemp_cloexec(metaname); if (r->metafd < 0) { perror(metaname); exit(EXIT_FAILURE); } r->poolfd = mkstemp_cloexec(poolname); if (r->poolfd < 0) { perror(poolname); exit(EXIT_FAILURE); } r->treefd = mkstemp_cloexec(treename); if (r->treefd < 0) { perror(treename); exit(EXIT_FAILURE); } r->geomfd = mkstemp_cloexec(geomname); if (r->geomfd < 0) { perror(geomname); exit(EXIT_FAILURE); } r->indexfd = mkstemp_cloexec(indexname); if (r->indexfd < 0) { perror(indexname); exit(EXIT_FAILURE); } r->metafile = fopen_oflag(metaname, "wb", O_WRONLY | O_CLOEXEC); if (r->metafile == NULL) { perror(metaname); exit(EXIT_FAILURE); } r->poolfile = memfile_open(r->poolfd); if (r->poolfile == NULL) { perror(poolname); exit(EXIT_FAILURE); } r->treefile = memfile_open(r->treefd); if (r->treefile == NULL) { perror(treename); exit(EXIT_FAILURE); } r->geomfile = fopen_oflag(geomname, "wb", O_WRONLY | O_CLOEXEC); if (r->geomfile == NULL) { perror(geomname); exit(EXIT_FAILURE); } r->indexfile = fopen_oflag(indexname, "wb", O_WRONLY | O_CLOEXEC); if (r->indexfile == NULL) { perror(indexname); exit(EXIT_FAILURE); } r->metapos = 0; r->geompos = 0; r->indexpos = 0; unlink(metaname); unlink(poolname); unlink(treename); unlink(geomname); unlink(indexname); // To distinguish a null value { struct stringpool p; memfile_write(r->treefile, &p, sizeof(struct stringpool)); } // Keep metadata file from being completely empty if no attributes serialize_int(r->metafile, 0, &r->metapos, "meta"); r->file_bbox[0] = r->file_bbox[1] = UINT_MAX; r->file_bbox[2] = r->file_bbox[3] = 0; } struct statfs fsstat; if (fstatfs(readers[0].geomfd, &fsstat) != 0) { perror("fstatfs"); exit(EXIT_FAILURE); } diskfree = (long long) fsstat.f_bsize * fsstat.f_bavail; volatile long long progress_seq = 0; // 2 * CPUS: One per reader thread, one per tiling thread int initialized[2 * CPUS]; unsigned initial_x[2 * CPUS], initial_y[2 * CPUS]; for (size_t i = 0; i < 2 * CPUS; i++) { initialized[i] = initial_x[i] = initial_y[i] = 0; } size_t nlayers = sources.size(); for (size_t l = 0; l < nlayers; l++) { if (sources[l].layer.size() == 0) { const char *src; if (sources[l].file.size() == 0) { src = fname; } else { src = sources[l].file.c_str(); } // Find the last component of the pathname const char *ocp, *use = src; for (ocp = src; *ocp; ocp++) { if (*ocp == '/' && ocp[1] != '\0') { use = ocp + 1; } } std::string trunc = std::string(use); // Trim .json or .mbtiles from the name while (true) { ssize_t cp; cp = trunc.find(".json"); if (cp >= 0 && (size_t) cp + 5 == trunc.size()) { trunc = trunc.substr(0, cp); continue; } cp = trunc.find(".geojson"); if (cp >= 0 && (size_t) cp + 8 == trunc.size()) { trunc = trunc.substr(0, cp); continue; } cp = trunc.find(".geobuf"); if (cp >= 0 && (size_t) cp + 7 == trunc.size()) { trunc = trunc.substr(0, cp); continue; } cp = trunc.find(".mbtiles"); if (cp >= 0 && (size_t) cp + 8 == trunc.size()) { trunc = trunc.substr(0, cp); continue; } break; } // Trim out characters that can't be part of selector std::string out; for (size_t p = 0; p < trunc.size(); p++) { if (isalpha(trunc[p]) || isdigit(trunc[p]) || trunc[p] == '_') { out.append(trunc, p, 1); } } sources[l].layer = out; if (!quiet) { fprintf(stderr, "For layer %d, using name \"%s\"\n", (int) l, out.c_str()); } } } std::map layermap; for (size_t l = 0; l < nlayers; l++) { layermap_entry e = layermap_entry(l); layermap.insert(std::pair(sources[l].layer, e)); } std::vector > layermaps; for (size_t l = 0; l < CPUS; l++) { layermaps.push_back(layermap); } long overall_offset = 0; double dist_sum = 0; size_t dist_count = 0; size_t nsources = sources.size(); for (size_t source = 0; source < nsources; source++) { std::string reading; int fd; if (sources[source].file.size() == 0) { reading = "standard input"; fd = 0; } else { reading = sources[source].file; fd = open(sources[source].file.c_str(), O_RDONLY, O_CLOEXEC); if (fd < 0) { perror(sources[source].file.c_str()); continue; } } auto a = layermap.find(sources[source].layer); if (a == layermap.end()) { fprintf(stderr, "Internal error: couldn't find layer %s", sources[source].layer.c_str()); exit(EXIT_FAILURE); } size_t layer = a->second.id; if (sources[source].file.size() > 7 && sources[source].file.substr(sources[source].file.size() - 7) == std::string(".geobuf")) { struct stat st; if (fstat(fd, &st) != 0) { perror("fstat"); perror(sources[source].file.c_str()); exit(EXIT_FAILURE); } char *map = (char *) mmap(NULL, st.st_size, PROT_READ, MAP_PRIVATE, fd, 0); if (map == MAP_FAILED) { perror("mmap"); perror(sources[source].file.c_str()); exit(EXIT_FAILURE); } long long layer_seq[CPUS]; double dist_sums[CPUS]; size_t dist_counts[CPUS]; std::vector sst; sst.resize(CPUS); for (size_t i = 0; i < CPUS; i++) { layer_seq[i] = overall_offset; dist_sums[i] = 0; dist_counts[i] = 0; sst[i].fname = reading.c_str(); sst[i].line = 0; sst[i].layer_seq = &layer_seq[i]; sst[i].progress_seq = &progress_seq; sst[i].readers = &readers; sst[i].segment = i; sst[i].initial_x = &initial_x[i]; sst[i].initial_y = &initial_y[i]; sst[i].initialized = &initialized[i]; sst[i].dist_sum = &dist_sums[i]; sst[i].dist_count = &dist_counts[i]; sst[i].want_dist = guess_maxzoom; sst[i].maxzoom = maxzoom; sst[i].filters = prefilter != NULL || postfilter != NULL; sst[i].uses_gamma = uses_gamma; sst[i].layermap = &layermaps[i]; sst[i].exclude = exclude; sst[i].include = include; sst[i].exclude_all = exclude_all; sst[i].filter = filter; sst[i].basezoom = basezoom; sst[i].attribute_types = attribute_types; } parse_geobuf(&sst, map, st.st_size, layer, sources[layer].layer); for (size_t i = 0; i < CPUS; i++) { dist_sum += dist_sums[i]; dist_count += dist_counts[i]; } if (munmap(map, st.st_size) != 0) { perror("munmap source file"); exit(EXIT_FAILURE); } if (close(fd) != 0) { perror("close"); exit(EXIT_FAILURE); } overall_offset = layer_seq[0]; checkdisk(&readers); continue; } if (sources[source].file.size() > 4 && sources[source].file.substr(sources[source].file.size() - 4) == std::string(".csv")) { long long layer_seq[CPUS]; double dist_sums[CPUS]; size_t dist_counts[CPUS]; std::vector sst; sst.resize(CPUS); // XXX factor out this duplicated setup for (size_t i = 0; i < CPUS; i++) { layer_seq[i] = overall_offset; dist_sums[i] = 0; dist_counts[i] = 0; sst[i].fname = reading.c_str(); sst[i].line = 0; sst[i].layer_seq = &layer_seq[i]; sst[i].progress_seq = &progress_seq; sst[i].readers = &readers; sst[i].segment = i; sst[i].initial_x = &initial_x[i]; sst[i].initial_y = &initial_y[i]; sst[i].initialized = &initialized[i]; sst[i].dist_sum = &dist_sums[i]; sst[i].dist_count = &dist_counts[i]; sst[i].want_dist = guess_maxzoom; sst[i].maxzoom = maxzoom; sst[i].filters = prefilter != NULL || postfilter != NULL; sst[i].uses_gamma = uses_gamma; sst[i].layermap = &layermaps[i]; sst[i].exclude = exclude; sst[i].include = include; sst[i].exclude_all = exclude_all; sst[i].filter = filter; sst[i].basezoom = basezoom; sst[i].attribute_types = attribute_types; } parse_geocsv(sst, sources[source].file, layer, sources[layer].layer); overall_offset = layer_seq[0]; checkdisk(&readers); continue; } struct stat st; char *map = NULL; off_t off = 0; int read_parallel_this = read_parallel ? '\n' : 0; if (1) { if (fstat(fd, &st) == 0) { off = lseek(fd, 0, SEEK_CUR); if (off >= 0) { map = (char *) mmap(NULL, st.st_size - off, PROT_READ, MAP_PRIVATE, fd, off); // No error if MAP_FAILED because check is below if (map != MAP_FAILED) { madvise(map, st.st_size - off, MADV_RANDOM); // sequential, but from several pointers at once } } } } if (map != NULL && map != MAP_FAILED && st.st_size - off > 0) { if (map[0] == 0x1E) { read_parallel_this = 0x1E; } if (!read_parallel_this) { // Not a GeoJSON text sequence, so unmap and read serially if (munmap(map, st.st_size - off) != 0) { perror("munmap source file"); exit(EXIT_FAILURE); } map = NULL; } } if (map != NULL && map != MAP_FAILED && read_parallel_this) { do_read_parallel(map, st.st_size - off, overall_offset, reading.c_str(), &readers, &progress_seq, exclude, include, exclude_all, filter, basezoom, layer, &layermaps, initialized, initial_x, initial_y, maxzoom, sources[layer].layer, uses_gamma, attribute_types, read_parallel_this, &dist_sum, &dist_count, guess_maxzoom, prefilter != NULL || postfilter != NULL); overall_offset += st.st_size - off; checkdisk(&readers); if (munmap(map, st.st_size - off) != 0) { perror("munmap source file"); exit(EXIT_FAILURE); } } else { FILE *fp = fdopen(fd, "r"); if (fp == NULL) { perror(sources[layer].file.c_str()); if (close(fd) != 0) { perror("close source file"); exit(EXIT_FAILURE); } continue; } int c = getc(fp); if (c != EOF) { ungetc(c, fp); } if (c == 0x1E) { read_parallel_this = 0x1E; } if (read_parallel_this) { // Serial reading of chunks that are then parsed in parallel char readname[strlen(tmpdir) + strlen("/read.XXXXXXXX") + 1]; sprintf(readname, "%s%s", tmpdir, "/read.XXXXXXXX"); int readfd = mkstemp_cloexec(readname); if (readfd < 0) { perror(readname); exit(EXIT_FAILURE); } FILE *readfp = fdopen(readfd, "w"); if (readfp == NULL) { perror(readname); exit(EXIT_FAILURE); } unlink(readname); volatile int is_parsing = 0; long long ahead = 0; long long initial_offset = overall_offset; pthread_t parallel_parser; bool parser_created = false; #define READ_BUF 2000 #define PARSE_MIN 10000000 #define PARSE_MAX (1LL * 1024 * 1024 * 1024) char buf[READ_BUF]; int n; while ((n = fread(buf, sizeof(char), READ_BUF, fp)) > 0) { fwrite_check(buf, sizeof(char), n, readfp, reading.c_str()); ahead += n; if (buf[n - 1] == read_parallel_this && ahead > PARSE_MIN) { // Don't let the streaming reader get too far ahead of the parsers. // If the buffered input gets huge, even if the parsers are still running, // wait for the parser thread instead of continuing to stream input. if (is_parsing == 0 || ahead >= PARSE_MAX) { if (parser_created) { if (pthread_join(parallel_parser, NULL) != 0) { perror("pthread_join 1088"); exit(EXIT_FAILURE); } parser_created = false; } fflush(readfp); start_parsing(readfd, readfp, initial_offset, ahead, &is_parsing, ¶llel_parser, parser_created, reading.c_str(), &readers, &progress_seq, exclude, include, exclude_all, filter, basezoom, layer, layermaps, initialized, initial_x, initial_y, maxzoom, sources[layer].layer, gamma != 0, attribute_types, read_parallel_this, &dist_sum, &dist_count, guess_maxzoom, prefilter != NULL || postfilter != NULL); initial_offset += ahead; overall_offset += ahead; checkdisk(&readers); ahead = 0; sprintf(readname, "%s%s", tmpdir, "/read.XXXXXXXX"); readfd = mkstemp_cloexec(readname); if (readfd < 0) { perror(readname); exit(EXIT_FAILURE); } readfp = fdopen(readfd, "w"); if (readfp == NULL) { perror(readname); exit(EXIT_FAILURE); } unlink(readname); } } } if (n < 0) { perror(reading.c_str()); } if (parser_created) { if (pthread_join(parallel_parser, NULL) != 0) { perror("pthread_join 1122"); exit(EXIT_FAILURE); } parser_created = false; } fflush(readfp); if (ahead > 0) { start_parsing(readfd, readfp, initial_offset, ahead, &is_parsing, ¶llel_parser, parser_created, reading.c_str(), &readers, &progress_seq, exclude, include, exclude_all, filter, basezoom, layer, layermaps, initialized, initial_x, initial_y, maxzoom, sources[layer].layer, gamma != 0, attribute_types, read_parallel_this, &dist_sum, &dist_count, guess_maxzoom, prefilter != NULL || postfilter != NULL); if (parser_created) { if (pthread_join(parallel_parser, NULL) != 0) { perror("pthread_join 1133"); } parser_created = false; } overall_offset += ahead; checkdisk(&readers); } } else { // Plain serial reading long long layer_seq = overall_offset; json_pull *jp = json_begin_file(fp); struct serialization_state sst; sst.fname = reading.c_str(); sst.line = 0; sst.layer_seq = &layer_seq; sst.progress_seq = &progress_seq; sst.readers = &readers; sst.segment = 0; sst.initial_x = &initial_x[0]; sst.initial_y = &initial_y[0]; sst.initialized = &initialized[0]; sst.dist_sum = &dist_sum; sst.dist_count = &dist_count; sst.want_dist = guess_maxzoom; sst.maxzoom = maxzoom; sst.filters = prefilter != NULL || postfilter != NULL; sst.uses_gamma = uses_gamma; sst.layermap = &layermaps[0]; sst.exclude = exclude; sst.include = include; sst.exclude_all = exclude_all; sst.filter = filter; sst.basezoom = basezoom; sst.attribute_types = attribute_types; parse_json(&sst, jp, layer, sources[layer].layer); json_end(jp); overall_offset = layer_seq; checkdisk(&readers); } if (fclose(fp) != 0) { perror("fclose input"); exit(EXIT_FAILURE); } } } if (!quiet) { fprintf(stderr, " \r"); // (stderr, "Read 10000.00 million features\r", *progress_seq / 1000000.0); } for (size_t i = 0; i < CPUS; i++) { if (fclose(readers[i].metafile) != 0) { perror("fclose meta"); exit(EXIT_FAILURE); } if (fclose(readers[i].geomfile) != 0) { perror("fclose geom"); exit(EXIT_FAILURE); } if (fclose(readers[i].indexfile) != 0) { perror("fclose index"); exit(EXIT_FAILURE); } memfile_close(readers[i].treefile); if (fstat(readers[i].geomfd, &readers[i].geomst) != 0) { perror("stat geom\n"); exit(EXIT_FAILURE); } if (fstat(readers[i].metafd, &readers[i].metast) != 0) { perror("stat meta\n"); exit(EXIT_FAILURE); } } // Create a combined string pool and a combined metadata file // but keep track of the offsets into it since we still need // segment+offset to find the data. // 2 * CPUS: One per input thread, one per tiling thread long long pool_off[2 * CPUS]; long long meta_off[2 * CPUS]; for (size_t i = 0; i < 2 * CPUS; i++) { pool_off[i] = meta_off[i] = 0; } char poolname[strlen(tmpdir) + strlen("/pool.XXXXXXXX") + 1]; sprintf(poolname, "%s%s", tmpdir, "/pool.XXXXXXXX"); int poolfd = mkstemp_cloexec(poolname); if (poolfd < 0) { perror(poolname); exit(EXIT_FAILURE); } FILE *poolfile = fopen_oflag(poolname, "wb", O_WRONLY | O_CLOEXEC); if (poolfile == NULL) { perror(poolname); exit(EXIT_FAILURE); } unlink(poolname); char metaname[strlen(tmpdir) + strlen("/meta.XXXXXXXX") + 1]; sprintf(metaname, "%s%s", tmpdir, "/meta.XXXXXXXX"); int metafd = mkstemp_cloexec(metaname); if (metafd < 0) { perror(metaname); exit(EXIT_FAILURE); } FILE *metafile = fopen_oflag(metaname, "wb", O_WRONLY | O_CLOEXEC); if (metafile == NULL) { perror(metaname); exit(EXIT_FAILURE); } unlink(metaname); long long metapos = 0; long long poolpos = 0; for (size_t i = 0; i < CPUS; i++) { if (readers[i].metapos > 0) { void *map = mmap(NULL, readers[i].metapos, PROT_READ, MAP_PRIVATE, readers[i].metafd, 0); if (map == MAP_FAILED) { perror("mmap unmerged meta"); exit(EXIT_FAILURE); } madvise(map, readers[i].metapos, MADV_SEQUENTIAL); madvise(map, readers[i].metapos, MADV_WILLNEED); if (fwrite(map, readers[i].metapos, 1, metafile) != 1) { perror("Reunify meta"); exit(EXIT_FAILURE); } madvise(map, readers[i].metapos, MADV_DONTNEED); if (munmap(map, readers[i].metapos) != 0) { perror("unmap unmerged meta"); } } meta_off[i] = metapos; metapos += readers[i].metapos; if (close(readers[i].metafd) != 0) { perror("close unmerged meta"); } if (readers[i].poolfile->off > 0) { if (fwrite(readers[i].poolfile->map, readers[i].poolfile->off, 1, poolfile) != 1) { perror("Reunify string pool"); exit(EXIT_FAILURE); } } pool_off[i] = poolpos; poolpos += readers[i].poolfile->off; memfile_close(readers[i].poolfile); } if (fclose(poolfile) != 0) { perror("fclose pool"); exit(EXIT_FAILURE); } if (fclose(metafile) != 0) { perror("fclose meta"); exit(EXIT_FAILURE); } char *meta = (char *) mmap(NULL, metapos, PROT_READ, MAP_PRIVATE, metafd, 0); if (meta == MAP_FAILED) { perror("mmap meta"); exit(EXIT_FAILURE); } madvise(meta, metapos, MADV_RANDOM); char *stringpool = NULL; if (poolpos > 0) { // Will be 0 if -X was specified stringpool = (char *) mmap(NULL, poolpos, PROT_READ, MAP_PRIVATE, poolfd, 0); if (stringpool == MAP_FAILED) { perror("mmap string pool"); exit(EXIT_FAILURE); } madvise(stringpool, poolpos, MADV_RANDOM); } char indexname[strlen(tmpdir) + strlen("/index.XXXXXXXX") + 1]; sprintf(indexname, "%s%s", tmpdir, "/index.XXXXXXXX"); int indexfd = mkstemp_cloexec(indexname); if (indexfd < 0) { perror(indexname); exit(EXIT_FAILURE); } FILE *indexfile = fopen_oflag(indexname, "wb", O_WRONLY | O_CLOEXEC); if (indexfile == NULL) { perror(indexname); exit(EXIT_FAILURE); } unlink(indexname); char geomname[strlen(tmpdir) + strlen("/geom.XXXXXXXX") + 1]; sprintf(geomname, "%s%s", tmpdir, "/geom.XXXXXXXX"); int geomfd = mkstemp_cloexec(geomname); if (geomfd < 0) { perror(geomname); exit(EXIT_FAILURE); } FILE *geomfile = fopen_oflag(geomname, "wb", O_WRONLY | O_CLOEXEC); if (geomfile == NULL) { perror(geomname); exit(EXIT_FAILURE); } unlink(geomname); unsigned iz = 0, ix = 0, iy = 0; choose_first_zoom(file_bbox, readers, &iz, &ix, &iy, minzoom, buffer); long long geompos = 0; /* initial tile is 0/0/0 */ serialize_int(geomfile, iz, &geompos, fname); serialize_uint(geomfile, ix, &geompos, fname); serialize_uint(geomfile, iy, &geompos, fname); radix(readers, CPUS, geomfile, indexfile, tmpdir, &geompos, maxzoom, basezoom, droprate, gamma); /* end of tile */ serialize_byte(geomfile, -2, &geompos, fname); if (fclose(geomfile) != 0) { perror("fclose geom"); exit(EXIT_FAILURE); } if (fclose(indexfile) != 0) { perror("fclose index"); exit(EXIT_FAILURE); } struct stat indexst; if (fstat(indexfd, &indexst) < 0) { perror("stat index"); exit(EXIT_FAILURE); } long long indexpos = indexst.st_size; progress_seq = indexpos / sizeof(struct index); if (!quiet) { fprintf(stderr, "%lld features, %lld bytes of geometry, %lld bytes of separate metadata, %lld bytes of string pool\n", progress_seq, geompos, metapos, poolpos); } if (indexpos == 0) { fprintf(stderr, "Did not read any valid geometries\n"); if (outdb != NULL) { mbtiles_close(outdb, pgm); } exit(EXIT_FAILURE); } struct index *map = (struct index *) mmap(NULL, indexpos, PROT_READ, MAP_PRIVATE, indexfd, 0); if (map == MAP_FAILED) { perror("mmap index for basezoom"); exit(EXIT_FAILURE); } madvise(map, indexpos, MADV_SEQUENTIAL); madvise(map, indexpos, MADV_WILLNEED); long long indices = indexpos / sizeof(struct index); bool fix_dropping = false; if (guess_maxzoom) { double sum = 0; size_t count = 0; long long progress = -1; long long ip; for (ip = 1; ip < indices; ip++) { if (map[ip].ix != map[ip - 1].ix) { count++; sum += log(map[ip].ix - map[ip - 1].ix); } long long nprogress = 100 * ip / indices; if (nprogress != progress) { progress = nprogress; if (!quiet && !quiet_progress) { fprintf(stderr, "Maxzoom: %lld%% \r", progress); } } } if (count == 0 && dist_count == 0) { fprintf(stderr, "Can't guess maxzoom (-zg) without at least two distinct feature locations\n"); if (outdb != NULL) { mbtiles_close(outdb, pgm); } exit(EXIT_FAILURE); } if (count > 0) { // Geometric mean is appropriate because distances between features // are typically lognormally distributed double avg = exp(sum / count); // Convert approximately from tile units to feet double dist_ft = sqrt(avg) / 33; // Factor of 8 (3 zooms) beyond minimum required to distinguish features double want = dist_ft / 8; maxzoom = ceil(log(360 / (.00000274 * want)) / log(2) - full_detail); if (maxzoom < 0) { maxzoom = 0; } if (maxzoom > MAX_ZOOM) { maxzoom = MAX_ZOOM; } if (!quiet) { fprintf(stderr, "Choosing a maxzoom of -z%d for features about %d feet apart\n", maxzoom, (int) ceil(dist_ft)); } } if (dist_count != 0) { double want2 = exp(dist_sum / dist_count) / 8; int mz = ceil(log(360 / (.00000274 * want2)) / log(2) - full_detail); if (mz < 0) { mz = 0; } if (mz > MAX_ZOOM) { mz = MAX_ZOOM; } if (mz > maxzoom || count <= 0) { if (!quiet) { fprintf(stderr, "Choosing a maxzoom of -z%d for resolution of about %d feet within features\n", mz, (int) exp(dist_sum / dist_count)); } maxzoom = mz; } } if (maxzoom < minzoom) { fprintf(stderr, "Can't use %d for maxzoom because minzoom is %d\n", maxzoom, minzoom); maxzoom = minzoom; } fix_dropping = true; if (basezoom == -1) { basezoom = maxzoom; } } if (basezoom < 0 || droprate < 0) { struct tile { unsigned x; unsigned y; long long count; long long fullcount; double gap; unsigned long long previndex; } tile[MAX_ZOOM + 1], max[MAX_ZOOM + 1]; { int z; for (z = 0; z <= MAX_ZOOM; z++) { tile[z].x = tile[z].y = tile[z].count = tile[z].fullcount = tile[z].gap = tile[z].previndex = 0; max[z].x = max[z].y = max[z].count = max[z].fullcount = 0; } } long long progress = -1; long long ip; for (ip = 0; ip < indices; ip++) { unsigned xx, yy; decode(map[ip].ix, &xx, &yy); long long nprogress = 100 * ip / indices; if (nprogress != progress) { progress = nprogress; if (!quiet && !quiet_progress) { fprintf(stderr, "Base zoom/drop rate: %lld%% \r", progress); } } int z; for (z = 0; z <= MAX_ZOOM; z++) { unsigned xxx = 0, yyy = 0; if (z != 0) { xxx = xx >> (32 - z); yyy = yy >> (32 - z); } double scale = (double) (1LL << (64 - 2 * (z + 8))); if (tile[z].x != xxx || tile[z].y != yyy) { if (tile[z].count > max[z].count) { max[z] = tile[z]; } tile[z].x = xxx; tile[z].y = yyy; tile[z].count = 0; tile[z].fullcount = 0; tile[z].gap = 0; tile[z].previndex = 0; } tile[z].fullcount++; if (manage_gap(map[ip].ix, &tile[z].previndex, scale, gamma, &tile[z].gap)) { continue; } tile[z].count++; } } int z; for (z = MAX_ZOOM; z >= 0; z--) { if (tile[z].count > max[z].count) { max[z] = tile[z]; } } int max_features = 50000 / (basezoom_marker_width * basezoom_marker_width); int obasezoom = basezoom; if (basezoom < 0) { basezoom = MAX_ZOOM; for (z = MAX_ZOOM; z >= 0; z--) { if (max[z].count < max_features) { basezoom = z; } // printf("%d/%u/%u %lld\n", z, max[z].x, max[z].y, max[z].count); } fprintf(stderr, "Choosing a base zoom of -B%d to keep %lld features in tile %d/%u/%u.\n", basezoom, max[basezoom].count, basezoom, max[basezoom].x, max[basezoom].y); } if (obasezoom < 0 && basezoom > maxzoom) { fprintf(stderr, "Couldn't find a suitable base zoom. Working from the other direction.\n"); if (gamma == 0) { fprintf(stderr, "You might want to try -g1 to limit near-duplicates.\n"); } if (droprate < 0) { if (maxzoom == 0) { droprate = 2.5; } else { droprate = exp(log((long double) max[0].count / max[maxzoom].count) / (maxzoom)); fprintf(stderr, "Choosing a drop rate of -r%f to get from %lld to %lld in %d zooms\n", droprate, max[maxzoom].count, max[0].count, maxzoom); } } basezoom = 0; for (z = 0; z <= maxzoom; z++) { double zoomdiff = log((long double) max[z].count / max_features) / log(droprate); if (zoomdiff + z > basezoom) { basezoom = ceil(zoomdiff + z); } } fprintf(stderr, "Choosing a base zoom of -B%d to keep %f features in tile %d/%u/%u.\n", basezoom, max[maxzoom].count * exp(log(droprate) * (maxzoom - basezoom)), maxzoom, max[maxzoom].x, max[maxzoom].y); } else if (droprate < 0) { droprate = 1; for (z = basezoom - 1; z >= 0; z--) { double interval = exp(log(droprate) * (basezoom - z)); if (max[z].count / interval >= max_features) { interval = (long double) max[z].count / max_features; droprate = exp(log(interval) / (basezoom - z)); interval = exp(log(droprate) * (basezoom - z)); fprintf(stderr, "Choosing a drop rate of -r%f to keep %f features in tile %d/%u/%u.\n", droprate, max[z].count / interval, z, max[z].x, max[z].y); } } } if (gamma > 0) { int effective = 0; for (z = 0; z < maxzoom; z++) { if (max[z].count < max[z].fullcount) { effective = z + 1; } } if (effective == 0) { fprintf(stderr, "With gamma, effective base zoom is 0, so no effective drop rate\n"); } else { double interval_0 = exp(log(droprate) * (basezoom - 0)); double interval_eff = exp(log(droprate) * (basezoom - effective)); if (effective > basezoom) { interval_eff = 1; } double scaled_0 = max[0].count / interval_0; double scaled_eff = max[effective].count / interval_eff; double rate_at_0 = scaled_0 / max[0].fullcount; double rate_at_eff = scaled_eff / max[effective].fullcount; double eff_drop = exp(log(rate_at_eff / rate_at_0) / (effective - 0)); fprintf(stderr, "With gamma, effective base zoom of %d, effective drop rate of %f\n", effective, eff_drop); } } fix_dropping = true; } if (fix_dropping) { // Fix up the minzooms for features, now that we really know the base zoom // and drop rate. struct stat geomst; if (fstat(geomfd, &geomst) != 0) { perror("stat sorted geom\n"); exit(EXIT_FAILURE); } char *geom = (char *) mmap(NULL, geomst.st_size, PROT_READ | PROT_WRITE, MAP_SHARED, geomfd, 0); if (geom == MAP_FAILED) { perror("mmap geom for fixup"); exit(EXIT_FAILURE); } madvise(geom, indexpos, MADV_SEQUENTIAL); madvise(geom, indexpos, MADV_WILLNEED); struct drop_state ds[maxzoom + 1]; prep_drop_states(ds, maxzoom, basezoom, droprate); for (long long ip = 0; ip < indices; ip++) { if (ip > 0 && map[ip].start != map[ip - 1].end) { fprintf(stderr, "Mismatched index at %lld: %lld vs %lld\n", ip, map[ip].start, map[ip].end); } int feature_minzoom = calc_feature_minzoom(&map[ip], ds, maxzoom, gamma); geom[map[ip].end - 1] = feature_minzoom; } munmap(geom, geomst.st_size); } madvise(map, indexpos, MADV_DONTNEED); munmap(map, indexpos); if (close(indexfd) != 0) { perror("close sorted index"); } /* Traverse and split the geometries for each zoom level */ struct stat geomst; if (fstat(geomfd, &geomst) != 0) { perror("stat sorted geom\n"); exit(EXIT_FAILURE); } int fd[TEMP_FILES]; off_t size[TEMP_FILES]; fd[0] = geomfd; size[0] = geomst.st_size; for (size_t j = 1; j < TEMP_FILES; j++) { fd[j] = -1; size[j] = 0; } unsigned midx = 0, midy = 0; int written = traverse_zooms(fd, size, meta, stringpool, &midx, &midy, maxzoom, minzoom, outdb, outdir, buffer, fname, tmpdir, gamma, full_detail, low_detail, min_detail, meta_off, pool_off, initial_x, initial_y, simplification, layermaps, prefilter, postfilter); if (maxzoom != written) { fprintf(stderr, "\n\n\n*** NOTE TILES ONLY COMPLETE THROUGH ZOOM %d ***\n\n\n", written); maxzoom = written; ret = EXIT_FAILURE; } madvise(meta, metapos, MADV_DONTNEED); if (munmap(meta, metapos) != 0) { perror("munmap meta"); } if (close(metafd) < 0) { perror("close meta"); } if (poolpos > 0) { madvise((void *) stringpool, poolpos, MADV_DONTNEED); if (munmap(stringpool, poolpos) != 0) { perror("munmap stringpool"); } } if (close(poolfd) < 0) { perror("close pool"); } double minlat = 0, minlon = 0, maxlat = 0, maxlon = 0, midlat = 0, midlon = 0; tile2lonlat(midx, midy, maxzoom, &minlon, &maxlat); tile2lonlat(midx + 1, midy + 1, maxzoom, &maxlon, &minlat); midlat = (maxlat + minlat) / 2; midlon = (maxlon + minlon) / 2; tile2lonlat(file_bbox[0], file_bbox[1], 32, &minlon, &maxlat); tile2lonlat(file_bbox[2], file_bbox[3], 32, &maxlon, &minlat); if (midlat < minlat) { midlat = minlat; } if (midlat > maxlat) { midlat = maxlat; } if (midlon < minlon) { midlon = minlon; } if (midlon > maxlon) { midlon = maxlon; } std::map merged_lm = merge_layermaps(layermaps); for (auto ai = merged_lm.begin(); ai != merged_lm.end(); ++ai) { ai->second.minzoom = minzoom; ai->second.maxzoom = maxzoom; if (additional[A_CALCULATE_FEATURE_DENSITY]) { for (size_t i = 0; i < 256; i++) { type_and_string tas; tas.type = mvt_double; tas.string = std::to_string(i); add_to_file_keys(ai->second.file_keys, "tippecanoe_feature_density", tas); } } } mbtiles_write_metadata(outdb, outdir, fname, minzoom, maxzoom, minlat, minlon, maxlat, maxlon, midlat, midlon, forcetable, attribution, merged_lm, true, description, !prevent[P_TILE_STATS]); return ret; } static bool has_name(struct option *long_options, int *pl) { for (size_t lo = 0; long_options[lo].name != NULL; lo++) { if (long_options[lo].flag == pl) { return true; } } return false; } void set_attribute_type(std::map &attribute_types, const char *arg) { const char *s = strchr(arg, ':'); if (s == NULL) { fprintf(stderr, "-T%s option must be in the form -Tname:type\n", arg); exit(EXIT_FAILURE); } std::string name = std::string(arg, s - arg); std::string type = std::string(s + 1); int t = -1; if (type == "int") { t = mvt_int; } else if (type == "float") { t = mvt_float; } else if (type == "string") { t = mvt_string; } else if (type == "bool") { t = mvt_bool; } else { fprintf(stderr, "Attribute type (%s) must be int, float, string, or bool\n", type.c_str()); exit(EXIT_FAILURE); } attribute_types.insert(std::pair(name, t)); } int main(int argc, char **argv) { #ifdef MTRACE mtrace(); #endif init_cpus(); extern int optind; extern char *optarg; int i; char *name = NULL; char *description = NULL; char *layername = NULL; char *out_mbtiles = NULL; char *out_dir = NULL; sqlite3 *outdb = NULL; int maxzoom = 14; int minzoom = 0; int basezoom = -1; double basezoom_marker_width = 1; int force = 0; int forcetable = 0; double droprate = 2.5; double gamma = 0; int buffer = 5; const char *tmpdir = "/tmp"; const char *attribution = NULL; std::vector sources; const char *prefilter = NULL; const char *postfilter = NULL; bool guess_maxzoom = false; std::set exclude, include; std::map attribute_types; int exclude_all = 0; int read_parallel = 0; int files_open_at_start; json_object *filter = NULL; for (i = 0; i < 256; i++) { prevent[i] = 0; additional[i] = 0; } static struct option long_options_orig[] = { {"Output tileset", 0, 0, 0}, {"output", required_argument, 0, 'o'}, {"output-to-directory", required_argument, 0, 'e'}, {"force", no_argument, 0, 'f'}, {"allow-existing", no_argument, 0, 'F'}, {"Tileset description and attribution", 0, 0, 0}, {"name", required_argument, 0, 'n'}, {"attribution", required_argument, 0, 'A'}, {"description", required_argument, 0, 'N'}, {"Input files and layer names", 0, 0, 0}, {"layer", required_argument, 0, 'l'}, {"named-layer", required_argument, 0, 'L'}, {"Parallel processing of input", 0, 0, 0}, {"read-parallel", no_argument, 0, 'P'}, {"Projection of input", 0, 0, 0}, {"projection", required_argument, 0, 's'}, {"Zoom levels", 0, 0, 0}, {"maximum-zoom", required_argument, 0, 'z'}, {"minimum-zoom", required_argument, 0, 'Z'}, {"extend-zooms-if-still-dropping", no_argument, &additional[A_EXTEND_ZOOMS], 1}, {"Tile resolution", 0, 0, 0}, {"full-detail", required_argument, 0, 'd'}, {"low-detail", required_argument, 0, 'D'}, {"minimum-detail", required_argument, 0, 'm'}, {"Filtering feature attributes", 0, 0, 0}, {"exclude", required_argument, 0, 'x'}, {"include", required_argument, 0, 'y'}, {"exclude-all", no_argument, 0, 'X'}, {"attribute-type", required_argument, 0, 'T'}, {"feature-filter-file", required_argument, 0, 'J'}, {"feature-filter", required_argument, 0, 'j'}, {"Dropping a fixed fraction of features by zoom level", 0, 0, 0}, {"drop-rate", required_argument, 0, 'r'}, {"base-zoom", required_argument, 0, 'B'}, {"drop-lines", no_argument, &additional[A_LINE_DROP], 1}, {"drop-polygons", no_argument, &additional[A_POLYGON_DROP], 1}, {"Dropping a fraction of features to keep under tile size limits", 0, 0, 0}, {"drop-densest-as-needed", no_argument, &additional[A_DROP_DENSEST_AS_NEEDED], 1}, {"drop-fraction-as-needed", no_argument, &additional[A_DROP_FRACTION_AS_NEEDED], 1}, {"drop-smallest-as-needed", no_argument, &additional[A_DROP_SMALLEST_AS_NEEDED], 1}, {"coalesce-smallest-as-needed", no_argument, &additional[A_COALESCE_SMALLEST_AS_NEEDED], 1}, {"force-feature-limit", no_argument, &prevent[P_DYNAMIC_DROP], 1}, {"Dropping tightly overlapping features", 0, 0, 0}, {"gamma", required_argument, 0, 'g'}, {"increase-gamma-as-needed", no_argument, &additional[A_INCREASE_GAMMA_AS_NEEDED], 1}, {"Line and polygon simplification", 0, 0, 0}, {"simplification", required_argument, 0, 'S'}, {"no-line-simplification", no_argument, &prevent[P_SIMPLIFY], 1}, {"simplify-only-low-zooms", no_argument, &prevent[P_SIMPLIFY_LOW], 1}, {"no-tiny-polygon-reduction", no_argument, &prevent[P_TINY_POLYGON_REDUCTION], 1}, {"Attempts to improve shared polygon boundaries", 0, 0, 0}, {"detect-shared-borders", no_argument, &additional[A_DETECT_SHARED_BORDERS], 1}, {"grid-low-zooms", no_argument, &additional[A_GRID_LOW_ZOOMS], 1}, {"Controlling clipping to tile boundaries", 0, 0, 0}, {"buffer", required_argument, 0, 'b'}, {"no-clipping", no_argument, &prevent[P_CLIPPING], 1}, {"no-duplication", no_argument, &prevent[P_DUPLICATION], 1}, {"Reordering features within each tile", 0, 0, 0}, {"preserve-input-order", no_argument, &prevent[P_INPUT_ORDER], 1}, {"reorder", no_argument, &additional[A_REORDER], 1}, {"coalesce", no_argument, &additional[A_COALESCE], 1}, {"reverse", no_argument, &additional[A_REVERSE], 1}, {"Adding calculated attributes", 0, 0, 0}, {"calculate-feature-density", no_argument, &additional[A_CALCULATE_FEATURE_DENSITY], 1}, {"Trying to correct bad source geometry", 0, 0, 0}, {"detect-longitude-wraparound", no_argument, &additional[A_DETECT_WRAPAROUND], 1}, {"Filtering tile contents", 0, 0, 0}, {"prefilter", required_argument, 0, 'C'}, {"postfilter", required_argument, 0, 'c'}, {"Setting or disabling tile size limits", 0, 0, 0}, {"maximum-tile-bytes", required_argument, 0, 'M'}, {"no-feature-limit", no_argument, &prevent[P_FEATURE_LIMIT], 1}, {"no-tile-size-limit", no_argument, &prevent[P_KILOBYTE_LIMIT], 1}, {"no-tile-compression", no_argument, &prevent[P_TILE_COMPRESSION], 1}, {"no-tile-stats", no_argument, &prevent[P_TILE_STATS], 1}, {"Temporary storage", 0, 0, 0}, {"temporary-directory", required_argument, 0, 't'}, {"Progress indicator", 0, 0, 0}, {"quiet", no_argument, 0, 'q'}, {"no-progress-indicator", no_argument, 0, 'Q'}, {"version", no_argument, 0, 'v'}, {"", 0, 0, 0}, {"prevent", required_argument, 0, 'p'}, {"additional", required_argument, 0, 'a'}, {"check-polygons", no_argument, &additional[A_DEBUG_POLYGON], 1}, {"no-polygon-splitting", no_argument, &prevent[P_POLYGON_SPLIT], 1}, {"prefer-radix-sort", no_argument, &additional[A_PREFER_RADIX_SORT], 1}, {0, 0, 0, 0}, }; static struct option long_options[sizeof(long_options_orig) / sizeof(long_options_orig[0])]; static char getopt_str[sizeof(long_options_orig) / sizeof(long_options_orig[0]) * 2 + 1]; { size_t out = 0; size_t cout = 0; for (size_t lo = 0; long_options_orig[lo].name != NULL; lo++) { if (long_options_orig[lo].val != 0) { long_options[out++] = long_options_orig[lo]; if (long_options_orig[lo].val > ' ') { getopt_str[cout++] = long_options_orig[lo].val; if (long_options_orig[lo].has_arg == required_argument) { getopt_str[cout++] = ':'; } } } } long_options[out] = {0, 0, 0, 0}; getopt_str[cout] = '\0'; for (size_t lo = 0; long_options[lo].name != NULL; lo++) { if (long_options[lo].flag != NULL) { if (*long_options[lo].flag != 0) { fprintf(stderr, "Internal error: reused %s\n", long_options[lo].name); exit(EXIT_FAILURE); } *long_options[lo].flag = 1; } } for (size_t lo = 0; long_options[lo].name != NULL; lo++) { if (long_options[lo].flag != NULL) { *long_options[lo].flag = 0; } } } while ((i = getopt_long(argc, argv, getopt_str, long_options, NULL)) != -1) { switch (i) { case 0: break; case 'n': name = optarg; break; case 'N': description = optarg; break; case 'l': layername = optarg; break; case 'A': attribution = optarg; break; case 'L': { char *cp = strchr(optarg, ':'); if (cp == NULL || cp == optarg) { fprintf(stderr, "%s: -L requires layername:file\n", argv[0]); exit(EXIT_FAILURE); } struct source src; src.layer = std::string(optarg).substr(0, cp - optarg); src.file = std::string(cp + 1); sources.push_back(src); } break; case 'z': if (strcmp(optarg, "g") == 0) { maxzoom = MAX_ZOOM; guess_maxzoom = true; } else { maxzoom = atoi(optarg); } break; case 'Z': minzoom = atoi(optarg); break; case 'B': if (strcmp(optarg, "g") == 0) { basezoom = -2; } else if (optarg[0] == 'g' || optarg[0] == 'f') { basezoom = -2; if (optarg[0] == 'g') { basezoom_marker_width = atof(optarg + 1); } else { basezoom_marker_width = sqrt(50000 / atof(optarg + 1)); } if (basezoom_marker_width == 0 || atof(optarg + 1) == 0) { fprintf(stderr, "%s: Must specify value >0 with -B%c\n", argv[0], optarg[0]); exit(EXIT_FAILURE); } } else { basezoom = atoi(optarg); if (basezoom == 0 && strcmp(optarg, "0") != 0) { fprintf(stderr, "%s: Couldn't understand -B%s\n", argv[0], optarg); exit(EXIT_FAILURE); } } break; case 'd': full_detail = atoi(optarg); break; case 'D': low_detail = atoi(optarg); break; case 'm': min_detail = atoi(optarg); break; case 'o': if (out_mbtiles != NULL) { fprintf(stderr, "%s: Can't specify both %s and %s as output\n", argv[0], out_mbtiles, optarg); exit(EXIT_FAILURE); } if (out_dir != NULL) { fprintf(stderr, "%s: Can't specify both %s and %s as output\n", argv[0], out_dir, optarg); exit(EXIT_FAILURE); } out_mbtiles = optarg; break; case 'e': if (out_mbtiles != NULL) { fprintf(stderr, "%s: Can't specify both %s and %s as output\n", argv[0], out_mbtiles, optarg); exit(EXIT_FAILURE); } if (out_dir != NULL) { fprintf(stderr, "%s: Can't specify both %s and %s as output\n", argv[0], out_dir, optarg); exit(EXIT_FAILURE); } out_dir = optarg; break; case 'x': exclude.insert(std::string(optarg)); break; case 'y': exclude_all = 1; include.insert(std::string(optarg)); break; case 'X': exclude_all = 1; break; case 'J': filter = read_filter(optarg); break; case 'j': filter = parse_filter(optarg); break; case 'r': if (strcmp(optarg, "g") == 0) { droprate = -2; } else if (optarg[0] == 'g' || optarg[0] == 'f') { droprate = -2; if (optarg[0] == 'g') { basezoom_marker_width = atof(optarg + 1); } else { basezoom_marker_width = sqrt(50000 / atof(optarg + 1)); } if (basezoom_marker_width == 0 || atof(optarg + 1) == 0) { fprintf(stderr, "%s: Must specify value >0 with -r%c\n", argv[0], optarg[0]); exit(EXIT_FAILURE); } } else { droprate = atof(optarg); } break; case 'b': buffer = atoi(optarg); break; case 'f': force = 1; break; case 'F': forcetable = 1; break; case 't': tmpdir = optarg; if (tmpdir[0] != '/') { fprintf(stderr, "Warning: temp directory %s doesn't begin with /\n", tmpdir); } break; case 'g': gamma = atof(optarg); break; case 'q': quiet = 1; break; case 'Q': quiet_progress = 1; break; case 'p': { char *cp; for (cp = optarg; *cp != '\0'; cp++) { if (has_name(long_options, &prevent[*cp & 0xFF])) { prevent[*cp & 0xFF] = 1; } else { fprintf(stderr, "%s: Unknown option -p%c\n", argv[0], *cp); exit(EXIT_FAILURE); } } } break; case 'a': { char *cp; for (cp = optarg; *cp != '\0'; cp++) { if (has_name(long_options, &additional[*cp & 0xFF])) { additional[*cp & 0xFF] = 1; } else { fprintf(stderr, "%s: Unknown option -a%c\n", argv[0], *cp); exit(EXIT_FAILURE); } } } break; case 'v': fprintf(stderr, VERSION); exit(EXIT_FAILURE); case 'P': read_parallel = 1; break; case 's': set_projection_or_exit(optarg); break; case 'S': simplification = atof(optarg); if (simplification <= 0) { fprintf(stderr, "%s: --simplification must be > 0\n", argv[0]); exit(EXIT_FAILURE); } break; case 'M': max_tile_size = atoll(optarg); break; case 'c': postfilter = optarg; break; case 'C': prefilter = optarg; break; case 'T': set_attribute_type(attribute_types, optarg); break; default: { int width = 7 + strlen(argv[0]); fprintf(stderr, "Unknown option -%c\n", i); fprintf(stderr, "Usage: %s [options] [file.json ...]", argv[0]); for (size_t lo = 0; long_options_orig[lo].name != NULL && strlen(long_options_orig[lo].name) > 0; lo++) { if (long_options_orig[lo].val == 0) { fprintf(stderr, "\n %s\n ", long_options_orig[lo].name); width = 8; continue; } if (width + strlen(long_options_orig[lo].name) + 9 >= 80) { fprintf(stderr, "\n "); width = 8; } width += strlen(long_options_orig[lo].name) + 9; if (strcmp(long_options_orig[lo].name, "output") == 0) { fprintf(stderr, " --%s=output.mbtiles", long_options_orig[lo].name); width += 9; } else if (long_options_orig[lo].has_arg) { fprintf(stderr, " [--%s=...]", long_options_orig[lo].name); } else { fprintf(stderr, " [--%s]", long_options_orig[lo].name); } } if (width + 16 >= 80) { fprintf(stderr, "\n "); width = 8; } fprintf(stderr, "\n"); exit(EXIT_FAILURE); } } } signal(SIGPIPE, SIG_IGN); files_open_at_start = open("/dev/null", O_RDONLY | O_CLOEXEC); if (files_open_at_start < 0) { perror("open /dev/null"); exit(EXIT_FAILURE); } if (close(files_open_at_start) != 0) { perror("close"); exit(EXIT_FAILURE); } if (full_detail <= 0) { full_detail = 12; } if (full_detail < min_detail || low_detail < min_detail) { fprintf(stderr, "%s: Full detail and low detail must be at least minimum detail\n", argv[0]); exit(EXIT_FAILURE); } // Need two checks: one for geometry representation, the other for // index traversal when guessing base zoom and drop rate if (!guess_maxzoom) { if (maxzoom > 32 - full_detail) { maxzoom = 32 - full_detail; fprintf(stderr, "Highest supported zoom with detail %d is %d\n", full_detail, maxzoom); } } if (maxzoom > MAX_ZOOM) { maxzoom = MAX_ZOOM; fprintf(stderr, "Highest supported zoom is %d\n", maxzoom); } if (minzoom > maxzoom) { fprintf(stderr, "minimum zoom -Z cannot be greater than maxzoom -z\n"); exit(EXIT_FAILURE); } if (basezoom == -1) { if (!guess_maxzoom) { basezoom = maxzoom; } } geometry_scale = 32 - (full_detail + maxzoom); if (geometry_scale < 0) { geometry_scale = 0; if (!guess_maxzoom) { fprintf(stderr, "Full detail + maxzoom > 32, so you are asking for more detail than is available.\n"); } } if ((basezoom < 0 || droprate < 0) && (gamma < 0)) { // Can't use randomized (as opposed to evenly distributed) dot dropping // if rate and base aren't known during feature reading. gamma = 0; fprintf(stderr, "Forcing -g0 since -B or -r is not known\n"); } if (out_mbtiles == NULL && out_dir == NULL) { fprintf(stderr, "%s: must specify -o out.mbtiles or -e directory\n", argv[0]); exit(EXIT_FAILURE); } if (out_mbtiles != NULL && out_dir != NULL) { fprintf(stderr, "%s: Options -o and -e cannot be used together\n", argv[0]); exit(EXIT_FAILURE); } if (out_mbtiles != NULL) { if (force) { unlink(out_mbtiles); } outdb = mbtiles_open(out_mbtiles, argv, forcetable); } if (out_dir != NULL) { check_dir(out_dir, force, forcetable); } int ret = EXIT_SUCCESS; for (i = optind; i < argc; i++) { struct source src; src.layer = ""; src.file = std::string(argv[i]); sources.push_back(src); } if (sources.size() == 0) { struct source src; src.layer = ""; src.file = ""; // standard input sources.push_back(src); } if (layername != NULL) { for (size_t a = 0; a < sources.size(); a++) { sources[a].layer = layername; } } long long file_bbox[4] = {UINT_MAX, UINT_MAX, 0, 0}; ret = read_input(sources, name ? name : out_mbtiles ? out_mbtiles : out_dir, maxzoom, minzoom, basezoom, basezoom_marker_width, outdb, out_dir, &exclude, &include, exclude_all, filter, droprate, buffer, tmpdir, gamma, read_parallel, forcetable, attribution, gamma != 0, file_bbox, prefilter, postfilter, description, guess_maxzoom, &attribute_types, argv[0]); if (outdb != NULL) { mbtiles_close(outdb, argv[0]); } #ifdef MTRACE muntrace(); #endif i = open("/dev/null", O_RDONLY | O_CLOEXEC); // i < files_open_at_start is not an error, because reading from a pipe closes stdin if (i > files_open_at_start) { fprintf(stderr, "Internal error: did not close all files: %d\n", i); exit(EXIT_FAILURE); } if (filter != NULL) { json_free(filter); } return ret; } int mkstemp_cloexec(char *name) { int fd = mkstemp(name); if (fd >= 0) { if (fcntl(fd, F_SETFD, FD_CLOEXEC) < 0) { perror("cloexec for temporary file"); exit(EXIT_FAILURE); } } return fd; } FILE *fopen_oflag(const char *name, const char *mode, int oflag) { int fd = open(name, oflag); if (fd < 0) { return NULL; } return fdopen(fd, mode); }