#include #include #include #include #include #include #include #include "vector_tile.pb.h" extern "C" { #include "projection.h" } // https://github.com/mapbox/mapnik-vector-tile/blob/master/src/vector_tile_compression.hpp inline bool is_compressed(std::string const &data) { return data.size() > 2 && (((uint8_t) data[0] == 0x78 && (uint8_t) data[1] == 0x9C) || ((uint8_t) data[0] == 0x1F && (uint8_t) data[1] == 0x8B)); } // https://github.com/mapbox/mapnik-vector-tile/blob/master/src/vector_tile_compression.hpp inline int decompress(std::string const &input, std::string &output) { z_stream inflate_s; inflate_s.zalloc = Z_NULL; inflate_s.zfree = Z_NULL; inflate_s.opaque = Z_NULL; inflate_s.avail_in = 0; inflate_s.next_in = Z_NULL; if (inflateInit2(&inflate_s, 32 + 15) != Z_OK) { fprintf(stderr, "error: %s\n", inflate_s.msg); } inflate_s.next_in = (Bytef *) input.data(); inflate_s.avail_in = input.size(); size_t length = 0; do { output.resize(length + 2 * input.size()); inflate_s.avail_out = 2 * input.size(); inflate_s.next_out = (Bytef *) (output.data() + length); int ret = inflate(&inflate_s, Z_FINISH); if (ret != Z_STREAM_END && ret != Z_OK && ret != Z_BUF_ERROR) { fprintf(stderr, "error: %s\n", inflate_s.msg); return 0; } length += (2 * input.size() - inflate_s.avail_out); } while (inflate_s.avail_out == 0); inflateEnd(&inflate_s); output.resize(length); return 1; } int dezig(unsigned n) { return (n >> 1) ^ (-(n & 1)); } void handle(std::string message, int z, unsigned x, unsigned y) { GOOGLE_PROTOBUF_VERIFY_VERSION; // https://github.com/mapbox/mapnik-vector-tile/blob/master/examples/c%2B%2B/tileinfo.cpp mapnik::vector::tile tile; if (is_compressed(message)) { std::string uncompressed; decompress(message, uncompressed); if (!tile.ParseFromString(uncompressed)) { fprintf(stderr, "Couldn't decompress tile %d/%u/%u\n", z, x, y); exit(EXIT_FAILURE); } } else if (!tile.ParseFromString(message)) { fprintf(stderr, "Couldn't parse tile %d/%u/%u\n", z, x, y); exit(EXIT_FAILURE); } for (int l = 0; l < tile.layers_size(); l++) { mapnik::vector::tile_layer layer = tile.layers(l); int extent = layer.extent(); for (int f = 0; f < layer.features_size(); f++) { mapnik::vector::tile_feature feat = layer.features(f); int px = 0, py = 0; for (int g = 0; g < feat.geometry_size(); g++) { uint32_t geom = feat.geometry(g); uint32_t op = geom & 7; uint32_t count = geom >> 3; if (op == 1 || op == 2) { if (op == 1) { printf("\n"); } for (unsigned k = 0; k < count; k++) { px += dezig(feat.geometry(g + 1)); py += dezig(feat.geometry(g + 2)); g += 2; long long scale = 1LL << (32 - z); long long wx = scale * x + (scale / extent) * (px + .5); long long wy = scale * y + (scale / extent) * (py + .5); double lat, lon; tile2latlon(wx, wy, 32, &lat, &lon); printf("%f,%f ", lat, lon); } } } } } } void decode(char *fname, int z, unsigned x, unsigned y) { sqlite3 *db; int oz = z; unsigned ox = x, oy = y; if (sqlite3_open(fname, &db) != SQLITE_OK) { fprintf(stderr, "%s: %s\n", fname, sqlite3_errmsg(db)); exit(EXIT_FAILURE); } int handled = 0; while (z >= 0 && !handled) { const char *sql = "SELECT tile_data from tiles where zoom_level = ? and tile_column = ? and tile_row = ?;"; sqlite3_stmt *stmt; if (sqlite3_prepare_v2(db, sql, -1, &stmt, NULL) != SQLITE_OK) { fprintf(stderr, "%s: select failed: %s\n", fname, sqlite3_errmsg(db)); exit(EXIT_FAILURE); } sqlite3_bind_int(stmt, 1, z); sqlite3_bind_int(stmt, 2, x); sqlite3_bind_int(stmt, 3, (1LL << z) - 1 - y); while (sqlite3_step(stmt) == SQLITE_ROW) { int len = sqlite3_column_bytes(stmt, 0); const char *s = (const char *) sqlite3_column_blob(stmt, 0); if (z != oz) { fprintf(stderr, "%s: Warning: using tile %d/%u/%u instead of %d/%u/%u\n", fname, z, x, y, oz, ox, oy); } handle(std::string(s, len), z, x, y); handled = 1; } sqlite3_finalize(stmt); z--; x /= 2; y /= 2; } if (sqlite3_close(db) != SQLITE_OK) { fprintf(stderr, "%s: could not close database: %s\n", fname, sqlite3_errmsg(db)); exit(EXIT_FAILURE); } } void usage(char **argv) { fprintf(stderr, "Usage: %s file.mbtiles zoom x y\n", argv[0]); exit(EXIT_FAILURE); } int main(int argc, char **argv) { extern int optind; // extern char *optarg; int i; while ((i = getopt(argc, argv, "")) != -1) { usage(argv); } if (argc != optind + 4) { usage(argv); } decode(argv[optind], atoi(argv[optind + 1]), atoi(argv[optind + 2]), atoi(argv[optind + 3])); return 0; }