#include #include #include #include #include #include #include #include #include #include #include #include "geometry.hh" #include "clipper/clipper.hpp" extern "C" { #include "tile.h" #include "clip.h" #include "projection.h" } drawvec decode_geometry(char **meta, int z, unsigned tx, unsigned ty, int detail, long long *bbox, unsigned initial_x, unsigned initial_y) { drawvec out; bbox[0] = LONG_LONG_MAX; bbox[1] = LONG_LONG_MAX; bbox[2] = LONG_LONG_MIN; bbox[3] = LONG_LONG_MIN; long long wx = initial_x, wy = initial_y; while (1) { draw d; deserialize_byte(meta, &d.op); if (d.op == VT_END) { break; } if (d.op == VT_MOVETO || d.op == VT_LINETO) { long long dx, dy; deserialize_long_long(meta, &dx); deserialize_long_long(meta, &dy); wx += dx << geometry_scale; wy += dy << geometry_scale; long long wwx = wx; long long wwy = wy; if (z != 0) { wwx -= tx << (32 - z); wwy -= ty << (32 - z); } if (wwx < bbox[0]) { bbox[0] = wwx; } if (wwy < bbox[1]) { bbox[1] = wwy; } if (wwx > bbox[2]) { bbox[2] = wwx; } if (wwy > bbox[3]) { bbox[3] = wwy; } d.x = wwx; d.y = wwy; } out.push_back(d); } return out; } void to_tile_scale(drawvec &geom, int z, int detail) { unsigned i; for (i = 0; i < geom.size(); i++) { geom[i].x >>= (32 - detail - z); geom[i].y >>= (32 - detail - z); } } drawvec remove_noop(drawvec geom, int type, int shift) { // first pass: remove empty linetos long long x = 0, y = 0; drawvec out; unsigned i; for (i = 0; i < geom.size(); i++) { if (geom[i].op == VT_LINETO && (geom[i].x >> shift) == x && (geom[i].y >> shift) == y) { continue; } if (geom[i].op == VT_CLOSEPATH) { out.push_back(geom[i]); } else { /* moveto or lineto */ out.push_back(geom[i]); x = geom[i].x >> shift; y = geom[i].y >> shift; } } // second pass: remove unused movetos if (type != VT_POINT) { geom = out; out.resize(0); for (i = 0; i < geom.size(); i++) { if (geom[i].op == VT_MOVETO) { if (i + 1 >= geom.size()) { continue; } if (geom[i + 1].op == VT_MOVETO) { continue; } if (geom[i + 1].op == VT_CLOSEPATH) { fprintf(stderr, "Shouldn't happen\n"); i++; // also remove unused closepath continue; } } out.push_back(geom[i]); } } // second pass: remove empty movetos if (type == VT_LINE) { geom = out; out.resize(0); for (i = 0; i < geom.size(); i++) { if (geom[i].op == VT_MOVETO) { if (i > 0 && geom[i - 1].op == VT_LINETO && (geom[i - 1].x >> shift) == (geom[i].x >> shift) && (geom[i - 1].y >> shift) == (geom[i].y >> shift)) { continue; } } out.push_back(geom[i]); } } return out; } /* XXX */ #if 0 drawvec shrink_lines(drawvec &geom, int z, int detail, int basezoom, long long *here, double droprate) { long long res = 200LL << (32 - 8 - z); long long portion = res / exp(log(sqrt(droprate)) * (basezoom - z)); unsigned i; drawvec out; for (i = 0; i < geom.size(); i++) { if (i > 0 && (geom[i - 1].op == VT_MOVETO || geom[i - 1].op == VT_LINETO) && geom[i].op == VT_LINETO) { double dx = (geom[i].x - geom[i - 1].x); double dy = (geom[i].y - geom[i - 1].y); long long d = sqrt(dx * dx + dy * dy); long long n; long long next = LONG_LONG_MAX; for (n = *here; n < *here + d; n = next) { int within; if (n % res < portion) { next = (n / res) * res + portion; within = 1; } else { next = (n / res + 1) * res; within = 0; } if (next > *here + d) { next = *here + d; } //printf("drawing from %lld to %lld in %lld\n", n - *here, next - *here, d); double f1 = (n - *here) / (double) d; double f2 = (next - *here) / (double) d; if (within) { out.push_back(draw(VT_MOVETO, geom[i - 1].x + f1 * (geom[i].x - geom[i - 1].x), geom[i - 1].y + f1 * (geom[i].y - geom[i - 1].y))); out.push_back(draw(VT_LINETO, geom[i - 1].x + f2 * (geom[i].x - geom[i - 1].x), geom[i - 1].y + f2 * (geom[i].y - geom[i - 1].y))); } else { out.push_back(draw(VT_MOVETO, geom[i - 1].x + f2 * (geom[i].x - geom[i - 1].x), geom[i - 1].y + f2 * (geom[i].y - geom[i - 1].y))); } } *here += d; } else { out.push_back(geom[i]); } } return out; } #endif static void decode_clipped(ClipperLib::PolyNode *t, drawvec &out) { // To make the GeoJSON come out right, we need to do each of the // outer rings followed by its children if any, and then go back // to do any outer-ring children of those children as a new top level. ClipperLib::Path p = t->Contour; for (unsigned i = 0; i < p.size(); i++) { out.push_back(draw((i == 0) ? VT_MOVETO : VT_LINETO, p[i].X, p[i].Y)); } if (p.size() > 0) { out.push_back(draw(VT_LINETO, p[0].X, p[0].Y)); } for (int n = 0; n < t->ChildCount(); n++) { ClipperLib::Path p = t->Childs[n]->Contour; for (unsigned i = 0; i < p.size(); i++) { out.push_back(draw((i == 0) ? VT_MOVETO : VT_LINETO, p[i].X, p[i].Y)); } if (p.size() > 0) { out.push_back(draw(VT_LINETO, p[0].X, p[0].Y)); } } for (int n = 0; n < t->ChildCount(); n++) { for (int m = 0; m < t->Childs[n]->ChildCount(); m++) { decode_clipped(t->Childs[n]->Childs[m], out); } } } drawvec clean_or_clip_poly(drawvec &geom, int z, int detail, int buffer, bool clip) { ClipperLib::Clipper clipper(ClipperLib::ioStrictlySimple); bool has_area = false; for (unsigned i = 0; i < geom.size(); i++) { if (geom[i].op == VT_MOVETO) { unsigned j; for (j = i + 1; j < geom.size(); j++) { if (geom[j].op != VT_LINETO) { break; } } double area = 0; for (unsigned k = i; k < j; k++) { area += (long double) geom[k].x * (long double) geom[i + ((k - i + 1) % (j - i))].y; area -= (long double) geom[k].y * (long double) geom[i + ((k - i + 1) % (j - i))].x; } area = area / 2; if (area != 0) { has_area = true; } ClipperLib::Path path; drawvec tmp; for (unsigned k = i; k < j; k++) { path.push_back(ClipperLib::IntPoint(geom[k].x, geom[k].y)); } if (!clipper.AddPath(path, ClipperLib::ptSubject, true)) { #if 0 fprintf(stderr, "Couldn't add polygon for clipping:"); for (unsigned k = i; k < j; k++) { fprintf(stderr, " %lld,%lld", geom[k].x, geom[k].y); } fprintf(stderr, "\n"); #endif } i = j - 1; } else { fprintf(stderr, "Unexpected operation in polygon %d\n", (int) geom[i].op); exit(EXIT_FAILURE); } } if (clip) { long long area = 0xFFFFFFFF; if (z != 0) { area = 1LL << (32 - z); } long long clip_buffer = buffer * area / 256; ClipperLib::Path edge; edge.push_back(ClipperLib::IntPoint(-clip_buffer, -clip_buffer)); edge.push_back(ClipperLib::IntPoint(area + clip_buffer, -clip_buffer)); edge.push_back(ClipperLib::IntPoint(area + clip_buffer, area + clip_buffer)); edge.push_back(ClipperLib::IntPoint(-clip_buffer, area + clip_buffer)); edge.push_back(ClipperLib::IntPoint(-clip_buffer, -clip_buffer)); clipper.AddPath(edge, ClipperLib::ptClip, true); } ClipperLib::PolyTree clipped; if (clip) { if (!clipper.Execute(ClipperLib::ctIntersection, clipped)) { fprintf(stderr, "Polygon clip failed\n"); } } else { if (!has_area) { drawvec out; return out; } if (!clipper.Execute(ClipperLib::ctUnion, clipped)) { fprintf(stderr, "Polygon clean failed\n"); } } drawvec out; for (int i = 0; i < clipped.ChildCount(); i++) { decode_clipped(clipped.Childs[i], out); } return out; } drawvec close_poly(drawvec &geom) { drawvec out; for (unsigned i = 0; i < geom.size(); i++) { if (geom[i].op == VT_MOVETO) { unsigned j; for (j = i + 1; j < geom.size(); j++) { if (geom[j].op != VT_LINETO) { break; } } if (j - 1 > i) { if (geom[j - 1].x != geom[i].x || geom[j - 1].y != geom[i].y) { fprintf(stderr, "Internal error: polygon not closed\n"); } } for (unsigned n = i; n < j - 1; n++) { out.push_back(geom[n]); } out.push_back(draw(VT_CLOSEPATH, 0, 0)); i = j - 1; } } return out; } static bool inside(draw d, int edge, long long minx, long long miny, long long maxx, long long maxy) { switch (edge) { case 0: // top return d.y > miny; case 1: // right return d.x < maxx; case 2: // bottom return d.y < maxy; case 3: // left return d.x > minx; } fprintf(stderr, "internal error inside\n"); exit(EXIT_FAILURE); } // http://stackoverflow.com/questions/563198/how-do-you-detect-where-two-line-segments-intersect static draw get_line_intersection(draw p0, draw p1, draw p2, draw p3) { double s1_x = p1.x - p0.x; double s1_y = p1.y - p0.y; double s2_x = p3.x - p2.x; double s2_y = p3.y - p2.y; double t; // s = (-s1_y * (p0.x - p2.x) + s1_x * (p0.y - p2.y)) / (-s2_x * s1_y + s1_x * s2_y); t = (s2_x * (p0.y - p2.y) - s2_y * (p0.x - p2.x)) / (-s2_x * s1_y + s1_x * s2_y); return draw(VT_LINETO, p0.x + (t * s1_x), p0.y + (t * s1_y)); } static draw intersect(draw a, draw b, int edge, long long minx, long long miny, long long maxx, long long maxy) { switch (edge) { case 0: // top return get_line_intersection(a, b, draw(VT_MOVETO, minx, miny), draw(VT_MOVETO, maxx, miny)); break; case 1: // right return get_line_intersection(a, b, draw(VT_MOVETO, maxx, miny), draw(VT_MOVETO, maxx, maxy)); break; case 2: // bottom return get_line_intersection(a, b, draw(VT_MOVETO, maxx, maxy), draw(VT_MOVETO, minx, maxy)); break; case 3: // left return get_line_intersection(a, b, draw(VT_MOVETO, minx, maxy), draw(VT_MOVETO, minx, miny)); break; } fprintf(stderr, "internal error intersecting\n"); exit(EXIT_FAILURE); } // http://en.wikipedia.org/wiki/Sutherland%E2%80%93Hodgman_algorithm static drawvec clip_poly1(drawvec &geom, long long minx, long long miny, long long maxx, long long maxy) { drawvec out = geom; for (int edge = 0; edge < 4; edge++) { if (out.size() > 0) { drawvec in = out; out.resize(0); draw S = in[in.size() - 1]; for (unsigned e = 0; e < in.size(); e++) { draw E = in[e]; if (inside(E, edge, minx, miny, maxx, maxy)) { if (!inside(S, edge, minx, miny, maxx, maxy)) { out.push_back(intersect(S, E, edge, minx, miny, maxx, maxy)); } out.push_back(E); } else if (inside(S, edge, minx, miny, maxx, maxy)) { out.push_back(intersect(S, E, edge, minx, miny, maxx, maxy)); } S = E; } } } if (out.size() > 0) { // If the polygon begins and ends outside the edge, // the starting and ending points will be left as the // places where it intersects the edge. Need to add // another point to close the loop. if (out[0].x != out[out.size() - 1].x || out[0].y != out[out.size() - 1].y) { out.push_back(out[0]); } if (out.size() < 3) { // fprintf(stderr, "Polygon degenerated to a line segment\n"); out.clear(); return out; } out[0].op = VT_MOVETO; for (unsigned i = 1; i < out.size(); i++) { out[i].op = VT_LINETO; } } return out; } drawvec simple_clip_poly(drawvec &geom, long long minx, long long miny, long long maxx, long long maxy) { drawvec out; for (unsigned i = 0; i < geom.size(); i++) { if (geom[i].op == VT_MOVETO) { unsigned j; for (j = i + 1; j < geom.size(); j++) { if (geom[j].op != VT_LINETO) { break; } } drawvec tmp; for (unsigned k = i; k < j; k++) { tmp.push_back(geom[k]); } tmp = clip_poly1(tmp, minx, miny, maxx, maxy); if (tmp.size() > 0) { if (tmp[0].x != tmp[tmp.size() - 1].x || tmp[0].y != tmp[tmp.size() - 1].y) { fprintf(stderr, "Internal error: Polygon ring not closed\n"); exit(EXIT_FAILURE); } } for (unsigned k = 0; k < tmp.size(); k++) { out.push_back(tmp[k]); } i = j - 1; } else { fprintf(stderr, "Unexpected operation in polygon %d\n", (int) geom[i].op); exit(EXIT_FAILURE); } } return out; } drawvec simple_clip_poly(drawvec &geom, int z, int detail, int buffer) { long long area = 0xFFFFFFFF; if (z != 0) { area = 1LL << (32 - z); } long long clip_buffer = buffer * area / 256; return simple_clip_poly(geom, -clip_buffer, -clip_buffer, area + clip_buffer, area + clip_buffer); } drawvec reduce_tiny_poly(drawvec &geom, int z, int detail, bool *reduced, double *accum_area) { drawvec out; long long pixel = (1 << (32 - detail - z)) * 2; *reduced = true; bool included_last_outer = false; for (unsigned i = 0; i < geom.size(); i++) { if (geom[i].op == VT_MOVETO) { unsigned j; for (j = i + 1; j < geom.size(); j++) { if (geom[j].op != VT_LINETO) { break; } } double area = 0; for (unsigned k = i; k < j; k++) { area += (long double) geom[k].x * (long double) geom[i + ((k - i + 1) % (j - i))].y; area -= (long double) geom[k].y * (long double) geom[i + ((k - i + 1) % (j - i))].x; } area = area / 2; // XXX There is an ambiguity here: If the area of a ring is 0 and it is followed by holes, // we don't know whether the area-0 ring was a hole too or whether it was the outer ring // that these subsequent holes are somehow being subtracted from. I hope that if a polygon // was simplified down to nothing, its holes also became nothing. if (area != 0) { // These are pixel coordinates, so area > 0 for the outer ring. // If the outer ring of a polygon was reduced to a pixel, its // inner rings must just have their area de-accumulated rather // than being drawn since we don't really know where they are. if (fabs(area) <= pixel * pixel || (area < 0 && !included_last_outer)) { // printf("area is only %f vs %lld so using square\n", area, pixel * pixel); *accum_area += area; if (area > 0 && *accum_area > pixel * pixel) { // XXX use centroid; out.push_back(draw(VT_MOVETO, geom[i].x - pixel / 2, geom[i].y - pixel / 2)); out.push_back(draw(VT_LINETO, geom[i].x + pixel / 2, geom[i].y - pixel / 2)); out.push_back(draw(VT_LINETO, geom[i].x + pixel / 2, geom[i].y + pixel / 2)); out.push_back(draw(VT_LINETO, geom[i].x - pixel / 2, geom[i].y + pixel / 2)); out.push_back(draw(VT_LINETO, geom[i].x - pixel / 2, geom[i].y - pixel / 2)); *accum_area -= pixel * pixel; } if (area > 0) { included_last_outer = false; } } else { // printf("area is %f so keeping instead of %lld\n", area, pixel * pixel); for (unsigned k = i; k <= j && k < geom.size(); k++) { out.push_back(geom[k]); } *reduced = false; if (area > 0) { included_last_outer = true; } } } i = j - 1; } else { fprintf(stderr, "how did we get here with %d in %d?\n", geom[i].op, (int) geom.size()); for (unsigned n = 0; n < geom.size(); n++) { fprintf(stderr, "%d/%lld/%lld ", geom[n].op, geom[n].x, geom[n].y); } fprintf(stderr, "\n"); out.push_back(geom[i]); } } return out; } drawvec clip_point(drawvec &geom, int z, int detail, long long buffer) { drawvec out; unsigned i; long long min = 0; long long area = 0xFFFFFFFF; if (z != 0) { area = 1LL << (32 - z); min -= buffer * area / 256; area += buffer * area / 256; } for (i = 0; i < geom.size(); i++) { if (geom[i].x >= min && geom[i].y >= min && geom[i].x <= area && geom[i].y <= area) { out.push_back(geom[i]); } } return out; } int quick_check(long long *bbox, int z, int detail, long long buffer) { long long min = 0; long long area = 0xFFFFFFFF; if (z != 0) { area = 1LL << (32 - z); min -= buffer * area / 256; area += buffer * area / 256; } // bbox entirely outside the tile if (bbox[0] > area || bbox[1] > area) { return 0; } if (bbox[2] < min || bbox[3] < min) { return 0; } // bbox entirely within the tile if (bbox[0] > min && bbox[1] > min && bbox[2] < area && bbox[3] < area) { return 1; } // some overlap of edge return 2; } drawvec clip_lines(drawvec &geom, int z, int detail, long long buffer) { drawvec out; unsigned i; long long min = 0; long long area = 0xFFFFFFFF; if (z != 0) { area = 1LL << (32 - z); min -= buffer * area / 256; area += buffer * area / 256; } for (i = 0; i < geom.size(); i++) { if (i > 0 && (geom[i - 1].op == VT_MOVETO || geom[i - 1].op == VT_LINETO) && geom[i].op == VT_LINETO) { double x1 = geom[i - 1].x; double y1 = geom[i - 1].y; double x2 = geom[i - 0].x; double y2 = geom[i - 0].y; int c = clip(&x1, &y1, &x2, &y2, min, min, area, area); if (c > 1) { // clipped out.push_back(draw(VT_MOVETO, x1, y1)); out.push_back(draw(VT_LINETO, x2, y2)); out.push_back(draw(VT_MOVETO, geom[i].x, geom[i].y)); } else if (c == 1) { // unchanged out.push_back(geom[i]); } else { // clipped away entirely out.push_back(draw(VT_MOVETO, geom[i].x, geom[i].y)); } } else { out.push_back(geom[i]); } } return out; } static double square_distance_from_line(long long point_x, long long point_y, long long segA_x, long long segA_y, long long segB_x, long long segB_y) { double p2x = segB_x - segA_x; double p2y = segB_y - segA_y; double something = p2x * p2x + p2y * p2y; double u = 0 == something ? 0 : ((point_x - segA_x) * p2x + (point_y - segA_y) * p2y) / something; if (u > 1) { u = 1; } else if (u < 0) { u = 0; } double x = segA_x + u * p2x; double y = segA_y + u * p2y; double dx = x - point_x; double dy = y - point_y; return dx * dx + dy * dy; } // https://github.com/Project-OSRM/osrm-backend/blob/733d1384a40f/Algorithms/DouglasePeucker.cpp static void douglas_peucker(drawvec &geom, int start, int n, double e) { e = e * e; std::stack recursion_stack; { int left_border = 0; int right_border = 1; // Sweep linerarily over array and identify those ranges that need to be checked do { if (geom[start + right_border].necessary) { recursion_stack.push(left_border); recursion_stack.push(right_border); left_border = right_border; } ++right_border; } while (right_border < n); } while (!recursion_stack.empty()) { // pop next element int second = recursion_stack.top(); recursion_stack.pop(); int first = recursion_stack.top(); recursion_stack.pop(); double max_distance = -1; int farthest_element_index = second; // find index idx of element with max_distance int i; for (i = first + 1; i < second; i++) { double temp_dist = square_distance_from_line(geom[start + i].x, geom[start + i].y, geom[start + first].x, geom[start + first].y, geom[start + second].x, geom[start + second].y); double distance = fabs(temp_dist); if (distance > e && distance > max_distance) { farthest_element_index = i; max_distance = distance; } } if (max_distance > e) { // mark idx as necessary geom[start + farthest_element_index].necessary = 1; if (1 < farthest_element_index - first) { recursion_stack.push(first); recursion_stack.push(farthest_element_index); } if (1 < second - farthest_element_index) { recursion_stack.push(farthest_element_index); recursion_stack.push(second); } } } } // If any line segment crosses a tile boundary, add a node there // that cannot be simplified away, to prevent the edge of any // feature from jumping abruptly at the tile boundary. drawvec impose_tile_boundaries(drawvec &geom, long long extent) { drawvec out; for (unsigned i = 0; i < geom.size(); i++) { if (i > 0 && geom[i].op == VT_LINETO && (geom[i - 1].op == VT_MOVETO || geom[i - 1].op == VT_LINETO)) { double x1 = geom[i - 1].x; double y1 = geom[i - 1].y; double x2 = geom[i - 0].x; double y2 = geom[i - 0].y; int c = clip(&x1, &y1, &x2, &y2, 0, 0, extent, extent); if (c > 1) { // clipped if (x1 != geom[i - 1].x || y1 != geom[i - 1].y) { out.push_back(draw(VT_LINETO, x1, y1)); out[out.size() - 1].necessary = 1; } if (x2 != geom[i - 0].x || y2 != geom[i - 0].y) { out.push_back(draw(VT_LINETO, x2, y2)); out[out.size() - 1].necessary = 1; } } } out.push_back(geom[i]); } return out; } drawvec simplify_lines(drawvec &geom, int z, int detail) { int res = 1 << (32 - detail - z); long long area = 0xFFFFFFFF; if (z != 0) { area = 1LL << (32 - z); } unsigned i; for (i = 0; i < geom.size(); i++) { if (geom[i].op == VT_MOVETO) { geom[i].necessary = 1; } else if (geom[i].op == VT_LINETO) { geom[i].necessary = 0; } else { geom[i].necessary = 1; } } geom = impose_tile_boundaries(geom, area); for (i = 0; i < geom.size(); i++) { if (geom[i].op == VT_MOVETO) { unsigned j; for (j = i + 1; j < geom.size(); j++) { if (geom[j].op != VT_LINETO) { break; } } geom[i].necessary = 1; geom[j - 1].necessary = 1; douglas_peucker(geom, i, j - i, res); i = j - 1; } } drawvec out; for (i = 0; i < geom.size(); i++) { if (geom[i].necessary) { out.push_back(geom[i]); } } return out; } drawvec reorder_lines(drawvec &geom) { // Only reorder simple linestrings with a single moveto if (geom.size() == 0) { return geom; } unsigned i; for (i = 0; i < geom.size(); i++) { if (geom[i].op == VT_MOVETO) { if (i != 0) { return geom; } } else if (geom[i].op == VT_LINETO) { if (i == 0) { return geom; } } else { return geom; } } // Reorder anything that goes up and to the left // instead of down and to the right // so that it will coalesce better unsigned long long l1 = encode(geom[0].x, geom[0].y); unsigned long long l2 = encode(geom[geom.size() - 1].x, geom[geom.size() - 1].y); if (l1 > l2) { drawvec out; for (i = 0; i < geom.size(); i++) { out.push_back(geom[geom.size() - 1 - i]); } out[0].op = VT_MOVETO; out[out.size() - 1].op = VT_LINETO; return out; } return geom; } drawvec fix_polygon(drawvec &geom) { int outer = 1; drawvec out; unsigned i; for (i = 0; i < geom.size(); i++) { if (geom[i].op == VT_CLOSEPATH) { outer = 1; } else if (geom[i].op == VT_MOVETO) { // Find the end of the ring unsigned j; for (j = i + 1; j < geom.size(); j++) { if (geom[j].op != VT_LINETO) { break; } } // Make a temporary copy of the ring. // Close it if it isn't closed. drawvec ring; for (unsigned a = i; a < j; a++) { ring.push_back(geom[a]); } if (j - i != 0 && (ring[0].x != ring[j - i - 1].x || ring[0].y != ring[j - i - 1].y)) { ring.push_back(ring[0]); } // Reverse ring if winding order doesn't match // inner/outer expectation double area = 0; for (unsigned k = 0; k < ring.size(); k++) { area += (long double) ring[k].x * (long double) ring[(k + 1) % ring.size()].y; area -= (long double) ring[k].y * (long double) ring[(k + 1) % ring.size()].x; } if ((area > 0) != outer) { drawvec tmp; for (int a = ring.size() - 1; a >= 0; a--) { tmp.push_back(ring[a]); } ring = tmp; } // Copy ring into output, fixing the moveto/lineto ops if necessary because of // reversal or closing for (unsigned a = 0; a < ring.size(); a++) { if (a == 0) { out.push_back(draw(VT_MOVETO, ring[a].x, ring[a].y)); } else { out.push_back(draw(VT_LINETO, ring[a].x, ring[a].y)); } } // Next ring or polygon begins on the non-lineto that ended this one // and is not an outer ring unless there is a terminator first i = j - 1; outer = 0; } else { fprintf(stderr, "Internal error: polygon ring begins with %d, not moveto\n", geom[i].op); exit(EXIT_FAILURE); } } return out; } std::vector chop_polygon(std::vector &geoms) { while (1) { bool again = false; std::vector out; for (unsigned i = 0; i < geoms.size(); i++) { if (geoms[i].size() > 700) { long long midx = 0, midy = 0, count = 0; long long maxx = LONG_LONG_MIN, maxy = LONG_LONG_MIN, minx = LONG_LONG_MAX, miny = LONG_LONG_MAX; for (unsigned j = 0; j < geoms[i].size(); j++) { if (geoms[i][j].op == VT_MOVETO || geoms[i][j].op == VT_LINETO) { midx += geoms[i][j].x; midy += geoms[i][j].y; count++; if (geoms[i][j].x > maxx) { maxx = geoms[i][j].x; } if (geoms[i][j].y > maxy) { maxy = geoms[i][j].y; } if (geoms[i][j].x < minx) { minx = geoms[i][j].x; } if (geoms[i][j].y < miny) { miny = geoms[i][j].y; } } } midx /= count; midy /= count; drawvec c1, c2; if (maxy - miny > maxx - minx) { // printf("clipping y to %lld %lld %lld %lld\n", minx, miny, maxx, midy); c1 = simple_clip_poly(geoms[i], minx, miny, maxx, midy); // printf(" and %lld %lld %lld %lld\n", minx, midy, maxx, maxy); c2 = simple_clip_poly(geoms[i], minx, midy, maxx, maxy); } else { // printf("clipping x to %lld %lld %lld %lld\n", minx, miny, midx, maxy); c1 = simple_clip_poly(geoms[i], minx, miny, midx, maxy); // printf(" and %lld %lld %lld %lld\n", midx, midy, maxx, maxy); c2 = simple_clip_poly(geoms[i], midx, miny, maxx, maxy); } if (c1.size() >= geoms[i].size()) { fprintf(stderr, "Subdividing complex polygon failed\n"); } else { out.push_back(c1); } if (c2.size() >= geoms[i].size()) { fprintf(stderr, "Subdividing complex polygon failed\n"); } else { out.push_back(c2); } again = true; } else { out.push_back(geoms[i]); } } if (!again) { return out; } geoms = out; } }