#ifdef MTRACE #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "jsonpull.h" #include "tile.h" #include "pool.h" #include "mbtiles.h" #include "projection.h" #include "version.h" #include "memfile.h" int low_detail = 12; int full_detail = -1; int min_detail = 7; int quiet = 0; int geometry_scale = 0; #define GEOM_POINT 0 /* array of positions */ #define GEOM_MULTIPOINT 1 /* array of arrays of positions */ #define GEOM_LINESTRING 2 /* array of arrays of positions */ #define GEOM_MULTILINESTRING 3 /* array of arrays of arrays of positions */ #define GEOM_POLYGON 4 /* array of arrays of arrays of positions */ #define GEOM_MULTIPOLYGON 5 /* array of arrays of arrays of arrays of positions */ #define GEOM_TYPES 6 const char *geometry_names[GEOM_TYPES] = { "Point", "MultiPoint", "LineString", "MultiLineString", "Polygon", "MultiPolygon", }; int geometry_within[GEOM_TYPES] = { -1, /* point */ GEOM_POINT, /* multipoint */ GEOM_POINT, /* linestring */ GEOM_LINESTRING, /* multilinestring */ GEOM_LINESTRING, /* polygon */ GEOM_POLYGON, /* multipolygon */ }; int mb_geometry[GEOM_TYPES] = { VT_POINT, VT_POINT, VT_LINE, VT_LINE, VT_POLYGON, VT_POLYGON, }; int CPUS; int TEMP_FILES; void init_cpus() { CPUS = sysconf(_SC_NPROCESSORS_ONLN); if (CPUS < 1) { CPUS = 1; } // Round down to a power of 2 CPUS = 1 << (int) (log(CPUS) / log(2)); TEMP_FILES = 64; struct rlimit rl; if (getrlimit(RLIMIT_NOFILE, &rl) != 0) { perror("getrlimit"); } else { TEMP_FILES = rl.rlim_cur / 3; if (TEMP_FILES > CPUS * 4) { TEMP_FILES = CPUS * 4; } } } size_t fwrite_check(const void *ptr, size_t size, size_t nitems, FILE *stream, const char *fname) { size_t w = fwrite(ptr, size, nitems, stream); if (w != nitems) { fprintf(stderr, "%s: Write to temporary file failed: %s\n", fname, strerror(errno)); exit(EXIT_FAILURE); } return w; } void serialize_int(FILE *out, int n, long long *fpos, const char *fname) { serialize_long_long(out, n, fpos, fname); } void serialize_long_long(FILE *out, long long n, long long *fpos, const char *fname) { unsigned long long zigzag = (n << 1) ^ (n >> 63); while (1) { unsigned char b = zigzag & 0x7F; if ((zigzag >> 7) != 0) { b |= 0x80; if (putc(b, out) == EOF) { fprintf(stderr, "%s: Write to temporary file failed: %s\n", fname, strerror(errno)); exit(EXIT_FAILURE); } *fpos += 1; zigzag >>= 7; } else { if (putc(b, out) == EOF) { fprintf(stderr, "%s: Write to temporary file failed: %s\n", fname, strerror(errno)); exit(EXIT_FAILURE); } *fpos += 1; break; } } } void serialize_byte(FILE *out, signed char n, long long *fpos, const char *fname) { fwrite_check(&n, sizeof(signed char), 1, out, fname); *fpos += sizeof(signed char); } void serialize_uint(FILE *out, unsigned n, long long *fpos, const char *fname) { fwrite_check(&n, sizeof(unsigned), 1, out, fname); *fpos += sizeof(unsigned); } void serialize_string(FILE *out, const char *s, long long *fpos, const char *fname) { int len = strlen(s); serialize_int(out, len + 1, fpos, fname); fwrite_check(s, sizeof(char), len, out, fname); fwrite_check("", sizeof(char), 1, out, fname); *fpos += len + 1; } void parse_geometry(int t, json_object *j, long long *bbox, long long *fpos, FILE *out, int op, const char *fname, int line, long long *wx, long long *wy, int *initialized, unsigned *initial_x, unsigned *initial_y) { if (j == NULL || j->type != JSON_ARRAY) { fprintf(stderr, "%s:%d: expected array for type %d\n", fname, line, t); return; } int within = geometry_within[t]; if (within >= 0) { int i; for (i = 0; i < j->length; i++) { if (within == GEOM_POINT) { if (i == 0 || mb_geometry[t] == GEOM_MULTIPOINT) { op = VT_MOVETO; } else { op = VT_LINETO; } } parse_geometry(within, j->array[i], bbox, fpos, out, op, fname, line, wx, wy, initialized, initial_x, initial_y); } } else { if (j->length >= 2 && j->array[0]->type == JSON_NUMBER && j->array[1]->type == JSON_NUMBER) { long long x, y; double lon = j->array[0]->number; double lat = j->array[1]->number; latlon2tile(lat, lon, 32, &x, &y); if (j->length > 2) { static int warned = 0; if (!warned) { fprintf(stderr, "%s:%d: ignoring dimensions beyond two\n", fname, line); warned = 1; } } if (bbox != NULL) { if (x < bbox[0]) { bbox[0] = x; } if (y < bbox[1]) { bbox[1] = y; } if (x > bbox[2]) { bbox[2] = x; } if (y > bbox[3]) { bbox[3] = y; } } if (!*initialized) { *initial_x = (x >> geometry_scale) << geometry_scale; *initial_y = (y >> geometry_scale) << geometry_scale; *wx = x; *wy = y; *initialized = 1; } serialize_byte(out, op, fpos, fname); serialize_long_long(out, (x >> geometry_scale) - (*wx >> geometry_scale), fpos, fname); serialize_long_long(out, (y >> geometry_scale) - (*wy >> geometry_scale), fpos, fname); *wx = x; *wy = y; } else { fprintf(stderr, "%s:%d: malformed point\n", fname, line); } } if (t == GEOM_POLYGON) { // Note that this is not using the correct meaning of closepath. // // We are using it here to close an entire Polygon, to distinguish // the Polygons within a MultiPolygon from each other. // // This will be undone in fix_polygon(), which needs to know which // rings come from which Polygons so that it can make the winding order // of the outer ring be the opposite of the order of the inner rings. serialize_byte(out, VT_CLOSEPATH, fpos, fname); } } void deserialize_int(char **f, int *n) { long long ll; deserialize_long_long(f, &ll); *n = ll; } void deserialize_long_long(char **f, long long *n) { unsigned long long zigzag = 0; int shift = 0; while (1) { if ((**f & 0x80) == 0) { zigzag |= ((unsigned long long) **f) << shift; *f += 1; shift += 7; break; } else { zigzag |= ((unsigned long long) (**f & 0x7F)) << shift; *f += 1; shift += 7; } } *n = (zigzag >> 1) ^ (-(zigzag & 1)); } void deserialize_uint(char **f, unsigned *n) { memcpy(n, *f, sizeof(unsigned)); *f += sizeof(unsigned); } void deserialize_byte(char **f, signed char *n) { memcpy(n, *f, sizeof(signed char)); *f += sizeof(signed char); } struct pool_val *deserialize_string(char **f, struct pool *p, int type) { struct pool_val *ret; int len; deserialize_int(f, &len); ret = pool(p, *f, type); *f += len; return ret; } struct index { long long start; long long end; unsigned long long index; int segment; }; int indexcmp(const void *v1, const void *v2) { const struct index *i1 = (const struct index *) v1; const struct index *i2 = (const struct index *) v2; if (i1->index < i2->index) { return -1; } else if (i1->index > i2->index) { return 1; } return 0; } struct merge { long long start; long long end; struct merge *next; }; static void insert(struct merge *m, struct merge **head, unsigned char *map, int bytes) { while (*head != NULL && indexcmp(map + m->start, map + (*head)->start) > 0) { head = &((*head)->next); } m->next = *head; *head = m; } static void merge(struct merge *merges, int nmerges, unsigned char *map, FILE *f, int bytes, long long nrec) { int i; struct merge *head = NULL; long long along = 0; long long reported = -1; for (i = 0; i < nmerges; i++) { if (merges[i].start < merges[i].end) { insert(&(merges[i]), &head, map, bytes); } } while (head != NULL) { fwrite_check(map + head->start, bytes, 1, f, "merge temporary"); head->start += bytes; struct merge *m = head; head = m->next; m->next = NULL; if (m->start < m->end) { insert(m, &head, map, bytes); } along++; long long report = 100 * along / nrec; if (report != reported) { if (!quiet) { fprintf(stderr, "Merging: %lld%%\r", report); } reported = report; } } } struct stringpool { long long left; long long right; long long off; }; static unsigned char swizzle[256] = { 0x00, 0xBF, 0x18, 0xDE, 0x93, 0xC9, 0xB1, 0x5E, 0xDF, 0xBE, 0x72, 0x5A, 0xBB, 0x42, 0x64, 0xC6, 0xD8, 0xB7, 0x15, 0x74, 0x1C, 0x8B, 0x91, 0xF5, 0x29, 0x46, 0xEC, 0x6F, 0xCA, 0x20, 0xF0, 0x06, 0x27, 0x61, 0x87, 0xE0, 0x6E, 0x43, 0x50, 0xC5, 0x1B, 0xB4, 0x37, 0xC3, 0x69, 0xA6, 0xEE, 0x80, 0xAF, 0x9B, 0xA1, 0x76, 0x23, 0x24, 0x53, 0xF3, 0x5B, 0x65, 0x19, 0xF4, 0xFC, 0xDD, 0x26, 0xE8, 0x10, 0xF7, 0xCE, 0x92, 0x48, 0xF6, 0x94, 0x60, 0x07, 0xC4, 0xB9, 0x97, 0x6D, 0xA4, 0x11, 0x0D, 0x1F, 0x4D, 0x13, 0xB0, 0x5D, 0xBA, 0x31, 0xD5, 0x8D, 0x51, 0x36, 0x96, 0x7A, 0x03, 0x7F, 0xDA, 0x17, 0xDB, 0xD4, 0x83, 0xE2, 0x79, 0x6A, 0xE1, 0x95, 0x38, 0xFF, 0x28, 0xB2, 0xB3, 0xA7, 0xAE, 0xF8, 0x54, 0xCC, 0xDC, 0x9A, 0x6B, 0xFB, 0x3F, 0xD7, 0xBC, 0x21, 0xC8, 0x71, 0x09, 0x16, 0xAC, 0x3C, 0x8A, 0x62, 0x05, 0xC2, 0x8C, 0x32, 0x4E, 0x35, 0x9C, 0x5F, 0x75, 0xCD, 0x2E, 0xA2, 0x3E, 0x1A, 0xC1, 0x8E, 0x14, 0xA0, 0xD3, 0x7D, 0xD9, 0xEB, 0x5C, 0x70, 0xE6, 0x9E, 0x12, 0x3B, 0xEF, 0x1E, 0x49, 0xD2, 0x98, 0x39, 0x7E, 0x44, 0x4B, 0x6C, 0x88, 0x02, 0x2C, 0xAD, 0xE5, 0x9F, 0x40, 0x7B, 0x4A, 0x3D, 0xA9, 0xAB, 0x0B, 0xD6, 0x2F, 0x90, 0x2A, 0xB6, 0x1D, 0xC7, 0x22, 0x55, 0x34, 0x0A, 0xD0, 0xB5, 0x68, 0xE3, 0x59, 0xFD, 0xFA, 0x57, 0x77, 0x25, 0xA3, 0x04, 0xB8, 0x33, 0x89, 0x78, 0x82, 0xE4, 0xC0, 0x0E, 0x8F, 0x85, 0xD1, 0x84, 0x08, 0x67, 0x47, 0x9D, 0xCB, 0x58, 0x4C, 0xAA, 0xED, 0x52, 0xF2, 0x4F, 0xF1, 0x66, 0xCF, 0xA5, 0x56, 0xEA, 0x7C, 0xE9, 0x63, 0xE7, 0x01, 0xF9, 0xFE, 0x0C, 0x99, 0x2D, 0x0F, 0x3A, 0x41, 0x45, 0xA8, 0x30, 0x2B, 0x73, 0xBD, 0x86, 0x81, }; int swizzlecmp(char *a, char *b) { while (*a || *b) { int aa = swizzle[(unsigned char) *a]; int bb = swizzle[(unsigned char) *b]; int cmp = aa - bb; if (cmp != 0) { return cmp; } a++; b++; } return 0; } long long addpool(struct memfile *poolfile, struct memfile *treefile, char *s, char type) { long long *sp = &treefile->tree; while (*sp != 0) { int cmp = swizzlecmp(s, poolfile->map + ((struct stringpool *) (treefile->map + *sp))->off + 1); if (cmp == 0) { cmp = type - (poolfile->map + ((struct stringpool *) (treefile->map + *sp))->off)[0]; } if (cmp < 0) { sp = &(((struct stringpool *) (treefile->map + *sp))->left); } else if (cmp > 0) { sp = &(((struct stringpool *) (treefile->map + *sp))->right); } else { return ((struct stringpool *) (treefile->map + *sp))->off; } } // *sp is probably in the memory-mapped file, and will move if the file grows. long long ssp; if (sp == &treefile->tree) { ssp = -1; } else { ssp = ((char *) sp) - treefile->map; } long long off = poolfile->off; if (memfile_write(poolfile, &type, 1) < 0) { perror("memfile write"); exit(EXIT_FAILURE); } if (memfile_write(poolfile, s, strlen(s) + 1) < 0) { perror("memfile write"); exit(EXIT_FAILURE); } struct stringpool tsp; tsp.left = 0; tsp.right = 0; tsp.off = off; long long p = treefile->off; if (memfile_write(treefile, &tsp, sizeof(struct stringpool)) < 0) { perror("memfile write"); exit(EXIT_FAILURE); } if (ssp == -1) { treefile->tree = p; } else { *((long long *) (treefile->map + ssp)) = p; } return off; } int serialize_geometry(json_object *geometry, json_object *properties, const char *reading, int line, long long *layer_seq, volatile long long *progress_seq, long long *metapos, long long *geompos, long long *indexpos, struct pool *exclude, struct pool *include, int exclude_all, FILE *metafile, FILE *geomfile, FILE *indexfile, struct memfile *poolfile, struct memfile *treefile, const char *fname, int maxzoom, int basezoom, int layer, double droprate, long long *file_bbox, json_object *tippecanoe, int segment, int *initialized, unsigned *initial_x, unsigned *initial_y) { json_object *geometry_type = json_hash_get(geometry, "type"); if (geometry_type == NULL) { static int warned = 0; if (!warned) { fprintf(stderr, "%s:%d: null geometry (additional not reported)\n", reading, line); warned = 1; } return 0; } if (geometry_type->type != JSON_STRING) { fprintf(stderr, "%s:%d: geometry without type\n", reading, line); return 0; } json_object *coordinates = json_hash_get(geometry, "coordinates"); if (coordinates == NULL || coordinates->type != JSON_ARRAY) { fprintf(stderr, "%s:%d: feature without coordinates array\n", reading, line); return 0; } int t; for (t = 0; t < GEOM_TYPES; t++) { if (strcmp(geometry_type->string, geometry_names[t]) == 0) { break; } } if (t >= GEOM_TYPES) { fprintf(stderr, "%s:%d: Can't handle geometry type %s\n", reading, line, geometry_type->string); return 0; } int tippecanoe_minzoom = -1; int tippecanoe_maxzoom = -1; if (tippecanoe != NULL) { json_object *min = json_hash_get(tippecanoe, "minzoom"); if (min != NULL && min->type == JSON_NUMBER) { tippecanoe_minzoom = min->number; } if (min != NULL && min->type == JSON_STRING) { tippecanoe_minzoom = atoi(min->string); } json_object *max = json_hash_get(tippecanoe, "maxzoom"); if (max != NULL && max->type == JSON_NUMBER) { tippecanoe_maxzoom = max->number; } if (max != NULL && max->type == JSON_STRING) { tippecanoe_maxzoom = atoi(max->string); } } long long bbox[] = {UINT_MAX, UINT_MAX, 0, 0}; int nprop = 0; if (properties != NULL && properties->type == JSON_HASH) { nprop = properties->length; } long long metastart = *metapos; char *metakey[nprop]; char *metaval[nprop]; int metatype[nprop]; int m = 0; int i; for (i = 0; i < nprop; i++) { if (properties->keys[i]->type == JSON_STRING) { if (exclude_all) { if (!is_pooled(include, properties->keys[i]->string, VT_STRING)) { continue; } } else if (is_pooled(exclude, properties->keys[i]->string, VT_STRING)) { continue; } metakey[m] = properties->keys[i]->string; if (properties->values[i] != NULL && properties->values[i]->type == JSON_STRING) { metatype[m] = VT_STRING; metaval[m] = properties->values[i]->string; m++; } else if (properties->values[i] != NULL && properties->values[i]->type == JSON_NUMBER) { metatype[m] = VT_NUMBER; metaval[m] = properties->values[i]->string; m++; } else if (properties->values[i] != NULL && (properties->values[i]->type == JSON_TRUE || properties->values[i]->type == JSON_FALSE)) { metatype[m] = VT_BOOLEAN; metaval[m] = properties->values[i]->type == JSON_TRUE ? "true" : "false"; m++; } else if (properties->values[i] != NULL && (properties->values[i]->type == JSON_NULL)) { ; } else { fprintf(stderr, "%s:%d: Unsupported property type for %s\n", reading, line, properties->keys[i]->string); continue; } } } serialize_int(metafile, m, metapos, fname); for (i = 0; i < m; i++) { serialize_long_long(metafile, addpool(poolfile, treefile, metakey[i], VT_STRING), metapos, fname); serialize_long_long(metafile, addpool(poolfile, treefile, metaval[i], metatype[i]), metapos, fname); } long long geomstart = *geompos; serialize_byte(geomfile, mb_geometry[t], geompos, fname); serialize_long_long(geomfile, *layer_seq, geompos, fname); serialize_long_long(geomfile, (layer << 2) | ((tippecanoe_minzoom != -1) << 1) | (tippecanoe_maxzoom != -1), geompos, fname); if (tippecanoe_minzoom != -1) { serialize_int(geomfile, tippecanoe_minzoom, geompos, fname); } if (tippecanoe_maxzoom != -1) { serialize_int(geomfile, tippecanoe_maxzoom, geompos, fname); } serialize_int(geomfile, segment, geompos, fname); serialize_long_long(geomfile, metastart, geompos, fname); long long wx = *initial_x, wy = *initial_y; parse_geometry(t, coordinates, bbox, geompos, geomfile, VT_MOVETO, fname, line, &wx, &wy, initialized, initial_x, initial_y); serialize_byte(geomfile, VT_END, geompos, fname); /* * Note that feature_minzoom for lines is the dimension * of the geometry in world coordinates, but * for points is the lowest zoom level (in tiles, * not in pixels) at which it should be drawn. * * So a line that is too small for, say, z8 * will have feature_minzoom of 18 (if tile detail is 10), * not 8. */ int feature_minzoom = 0; if (mb_geometry[t] == VT_LINE) { for (feature_minzoom = 0; feature_minzoom < 31; feature_minzoom++) { unsigned mask = 1 << (32 - (feature_minzoom + 1)); if (((bbox[0] & mask) != (bbox[2] & mask)) || ((bbox[1] & mask) != (bbox[3] & mask))) { break; } } } else if (mb_geometry[t] == VT_POINT) { double r = ((double) rand()) / RAND_MAX; if (r == 0) { r = .00000001; } feature_minzoom = basezoom - floor(log(r) / -log(droprate)); } serialize_byte(geomfile, feature_minzoom, geompos, fname); struct index index; index.start = geomstart; index.end = *geompos; index.segment = segment; // Calculate the center even if off the edge of the plane, // and then mask to bring it back into the addressable area long long midx = (bbox[0] / 2 + bbox[2] / 2) & ((1LL << 32) - 1); long long midy = (bbox[1] / 2 + bbox[3] / 2) & ((1LL << 32) - 1); index.index = encode(midx, midy); fwrite_check(&index, sizeof(struct index), 1, indexfile, fname); *indexpos += sizeof(struct index); for (i = 0; i < 2; i++) { if (bbox[i] < file_bbox[i]) { file_bbox[i] = bbox[i]; } } for (i = 2; i < 4; i++) { if (bbox[i] > file_bbox[i]) { file_bbox[i] = bbox[i]; } } if (*progress_seq % 10000 == 0) { if (!quiet) { fprintf(stderr, "Read %.2f million features\r", *progress_seq / 1000000.0); } } (*progress_seq)++; (*layer_seq)++; return 1; } void parse_json(json_pull *jp, const char *reading, long long *layer_seq, volatile long long *progress_seq, long long *metapos, long long *geompos, long long *indexpos, struct pool *exclude, struct pool *include, int exclude_all, FILE *metafile, FILE *geomfile, FILE *indexfile, struct memfile *poolfile, struct memfile *treefile, char *fname, int maxzoom, int basezoom, int layer, double droprate, long long *file_bbox, int segment, int *initialized, unsigned *initial_x, unsigned *initial_y) { long long found_hashes = 0; long long found_features = 0; long long found_geometries = 0; while (1) { json_object *j = json_read(jp); if (j == NULL) { if (jp->error != NULL) { fprintf(stderr, "%s:%d: %s\n", reading, jp->line, jp->error); } json_free(jp->root); break; } if (j->type == JSON_HASH) { found_hashes++; if (found_hashes == 50 && found_features == 0 && found_geometries == 0) { fprintf(stderr, "%s:%d: Warning: not finding any GeoJSON features or geometries in input yet after 50 objects.\n", reading, jp->line); } } json_object *type = json_hash_get(j, "type"); if (type == NULL || type->type != JSON_STRING) { continue; } if (found_features == 0) { int i; int is_geometry = 0; for (i = 0; i < GEOM_TYPES; i++) { if (strcmp(type->string, geometry_names[i]) == 0) { is_geometry = 1; break; } } if (is_geometry) { if (j->parent != NULL) { if (j->parent->type == JSON_ARRAY) { if (j->parent->parent->type == JSON_HASH) { json_object *geometries = json_hash_get(j->parent->parent, "geometries"); if (geometries != NULL) { // Parent of Parent must be a GeometryCollection is_geometry = 0; } } } else if (j->parent->type == JSON_HASH) { json_object *geometry = json_hash_get(j->parent, "geometry"); if (geometry != NULL) { // Parent must be a Feature is_geometry = 0; } } } } if (is_geometry) { if (found_features != 0 && found_geometries == 0) { fprintf(stderr, "%s:%d: Warning: found a mixture of features and bare geometries\n", reading, jp->line); } found_geometries++; serialize_geometry(j, NULL, reading, jp->line, layer_seq, progress_seq, metapos, geompos, indexpos, exclude, include, exclude_all, metafile, geomfile, indexfile, poolfile, treefile, fname, maxzoom, basezoom, layer, droprate, file_bbox, NULL, segment, initialized, initial_x, initial_y); json_free(j); continue; } } if (strcmp(type->string, "Feature") != 0) { continue; } if (found_features == 0 && found_geometries != 0) { fprintf(stderr, "%s:%d: Warning: found a mixture of features and bare geometries\n", reading, jp->line); } found_features++; json_object *geometry = json_hash_get(j, "geometry"); if (geometry == NULL) { fprintf(stderr, "%s:%d: feature with no geometry\n", reading, jp->line); json_free(j); continue; } json_object *properties = json_hash_get(j, "properties"); if (properties == NULL || (properties->type != JSON_HASH && properties->type != JSON_NULL)) { fprintf(stderr, "%s:%d: feature without properties hash\n", reading, jp->line); json_free(j); continue; } json_object *tippecanoe = json_hash_get(j, "tippecanoe"); json_object *geometries = json_hash_get(geometry, "geometries"); if (geometries != NULL) { int g; for (g = 0; g < geometries->length; g++) { serialize_geometry(geometries->array[g], properties, reading, jp->line, layer_seq, progress_seq, metapos, geompos, indexpos, exclude, include, exclude_all, metafile, geomfile, indexfile, poolfile, treefile, fname, maxzoom, basezoom, layer, droprate, file_bbox, tippecanoe, segment, initialized, initial_x, initial_y); } } else { serialize_geometry(geometry, properties, reading, jp->line, layer_seq, progress_seq, metapos, geompos, indexpos, exclude, include, exclude_all, metafile, geomfile, indexfile, poolfile, treefile, fname, maxzoom, basezoom, layer, droprate, file_bbox, tippecanoe, segment, initialized, initial_x, initial_y); } json_free(j); /* XXX check for any non-features in the outer object */ } if (!quiet) { fprintf(stderr, " \r"); // (stderr, "Read 10000.00 million features\r", *progress_seq / 1000000.0); } } struct parse_json_args { json_pull *jp; const char *reading; long long *layer_seq; volatile long long *progress_seq; long long *metapos; long long *geompos; long long *indexpos; struct pool *exclude; struct pool *include; int exclude_all; FILE *metafile; FILE *geomfile; FILE *indexfile; struct memfile *poolfile; struct memfile *treefile; char *fname; int maxzoom; int basezoom; int layer; double droprate; long long *file_bbox; int segment; int *initialized; unsigned *initial_x; unsigned *initial_y; }; void *run_parse_json(void *v) { struct parse_json_args *pja = v; parse_json(pja->jp, pja->reading, pja->layer_seq, pja->progress_seq, pja->metapos, pja->geompos, pja->indexpos, pja->exclude, pja->include, pja->exclude_all, pja->metafile, pja->geomfile, pja->indexfile, pja->poolfile, pja->treefile, pja->fname, pja->maxzoom, pja->basezoom, pja->layer, pja->droprate, pja->file_bbox, pja->segment, pja->initialized, pja->initial_x, pja->initial_y); return NULL; } struct jsonmap { char *map; long long off; long long end; }; int json_map_read(struct json_pull *jp, char *buffer, int n) { struct jsonmap *jm = jp->source; if (jm->off + n >= jm->end) { n = jm->end - jm->off; } memcpy(buffer, jm->map + jm->off, n); jm->off += n; return n; } struct json_pull *json_begin_map(char *map, long long len) { struct jsonmap *jm = malloc(sizeof(struct jsonmap)); jm->map = map; jm->off = 0; jm->end = len; return json_begin(json_map_read, jm); } struct reader { char *metaname; char *poolname; char *treename; char *geomname; char *indexname; int metafd; int poolfd; int treefd; int geomfd; int indexfd; FILE *metafile; struct memfile *poolfile; struct memfile *treefile; FILE *geomfile; FILE *indexfile; long long metapos; long long geompos; long long indexpos; long long *file_bbox; struct stat geomst; struct stat metast; char *geom_map; }; int read_json(int argc, char **argv, char *fname, const char *layername, int maxzoom, int minzoom, int basezoom, double basezoom_marker_width, sqlite3 *outdb, struct pool *exclude, struct pool *include, int exclude_all, double droprate, int buffer, const char *tmpdir, double gamma, char *prevent, char *additional, int read_parallel) { int ret = EXIT_SUCCESS; struct reader reader[CPUS]; int i; for (i = 0; i < CPUS; i++) { struct reader *r = reader + i; r->metaname = malloc(strlen(tmpdir) + strlen("/meta.XXXXXXXX") + 1); r->poolname = malloc(strlen(tmpdir) + strlen("/pool.XXXXXXXX") + 1); r->treename = malloc(strlen(tmpdir) + strlen("/tree.XXXXXXXX") + 1); r->geomname = malloc(strlen(tmpdir) + strlen("/geom.XXXXXXXX") + 1); r->indexname = malloc(strlen(tmpdir) + strlen("/index.XXXXXXXX") + 1); sprintf(r->metaname, "%s%s", tmpdir, "/meta.XXXXXXXX"); sprintf(r->poolname, "%s%s", tmpdir, "/pool.XXXXXXXX"); sprintf(r->treename, "%s%s", tmpdir, "/tree.XXXXXXXX"); sprintf(r->geomname, "%s%s", tmpdir, "/geom.XXXXXXXX"); sprintf(r->indexname, "%s%s", tmpdir, "/index.XXXXXXXX"); r->metafd = mkstemp(r->metaname); if (r->metafd < 0) { perror(r->metaname); exit(EXIT_FAILURE); } r->poolfd = mkstemp(r->poolname); if (r->poolfd < 0) { perror(r->poolname); exit(EXIT_FAILURE); } r->treefd = mkstemp(r->treename); if (r->treefd < 0) { perror(r->treename); exit(EXIT_FAILURE); } r->geomfd = mkstemp(r->geomname); if (r->geomfd < 0) { perror(r->geomname); exit(EXIT_FAILURE); } r->indexfd = mkstemp(r->indexname); if (r->indexfd < 0) { perror(r->indexname); exit(EXIT_FAILURE); } r->metafile = fopen(r->metaname, "wb"); if (r->metafile == NULL) { perror(r->metaname); exit(EXIT_FAILURE); } r->poolfile = memfile_open(r->poolfd); if (r->poolfile == NULL) { perror(r->poolname); exit(EXIT_FAILURE); } r->treefile = memfile_open(r->treefd); if (r->treefile == NULL) { perror(r->treename); exit(EXIT_FAILURE); } r->geomfile = fopen(r->geomname, "wb"); if (r->geomfile == NULL) { perror(r->geomname); exit(EXIT_FAILURE); } r->indexfile = fopen(r->indexname, "wb"); if (r->indexfile == NULL) { perror(r->indexname); exit(EXIT_FAILURE); } r->metapos = 0; r->geompos = 0; r->indexpos = 0; unlink(r->metaname); unlink(r->poolname); unlink(r->treename); unlink(r->geomname); unlink(r->indexname); // To distinguish a null value { struct stringpool p; memfile_write(r->treefile, &p, sizeof(struct stringpool)); } r->file_bbox = malloc(4 * sizeof(long long)); r->file_bbox[0] = r->file_bbox[1] = UINT_MAX; r->file_bbox[2] = r->file_bbox[3] = 0; } volatile long long progress_seq = 0; int initialized[CPUS]; unsigned initial_x[CPUS], initial_y[CPUS]; for (i = 0; i < CPUS; i++) { initialized[i] = initial_x[i] = initial_y[i] = 0; } int nlayers; if (layername != NULL) { nlayers = 1; } else { nlayers = argc; if (nlayers == 0) { nlayers = 1; } } int nsources = argc; if (nsources == 0) { nsources = 1; } int source; for (source = 0; source < nsources; source++) { const char *reading; int fd; if (source >= argc) { reading = "standard input"; fd = 0; } else { reading = argv[source]; fd = open(argv[source], O_RDONLY); if (fd < 0) { perror(argv[source]); continue; } } struct stat st; char *map = NULL; off_t off = 0; if (read_parallel) { if (fstat(fd, &st) == 0) { off = lseek(fd, 0, SEEK_CUR); if (off >= 0) { map = mmap(NULL, st.st_size - off, PROT_READ, MAP_PRIVATE, fd, off); } } } if (map != NULL && map != MAP_FAILED) { long long segs[CPUS + 1]; segs[0] = 0; segs[CPUS] = st.st_size - off; int i; for (i = 1; i < CPUS; i++) { segs[i] = off + (st.st_size - off) * i / CPUS; while (segs[i] < st.st_size && map[segs[i]] != '\n') { segs[i]++; } } long long layer_seq[CPUS]; for (i = 0; i < CPUS; i++) { // To preserve feature ordering, unique id for each segment // begins with that segment's offset into the input layer_seq[i] = segs[i]; } struct parse_json_args pja[CPUS]; pthread_t pthreads[CPUS]; for (i = 0; i < CPUS; i++) { pja[i].jp = json_begin_map(map + segs[i], segs[i + 1] - segs[i]); pja[i].reading = reading; pja[i].layer_seq = &layer_seq[i]; pja[i].progress_seq = &progress_seq; pja[i].metapos = &reader[i].metapos; pja[i].geompos = &reader[i].geompos; pja[i].indexpos = &reader[i].indexpos; pja[i].exclude = exclude; pja[i].include = include; pja[i].exclude_all = exclude_all; pja[i].metafile = reader[i].metafile; pja[i].geomfile = reader[i].geomfile; pja[i].indexfile = reader[i].indexfile; pja[i].poolfile = reader[i].poolfile; pja[i].treefile = reader[i].treefile; pja[i].fname = fname; pja[i].maxzoom = maxzoom; pja[i].basezoom = basezoom; pja[i].layer = source; pja[i].droprate = droprate; pja[i].file_bbox = reader[i].file_bbox; pja[i].segment = i; pja[i].initialized = &initialized[i]; pja[i].initial_x = &initial_x[i]; pja[i].initial_y = &initial_y[i]; if (pthread_create(&pthreads[i], NULL, run_parse_json, &pja[i]) != 0) { perror("pthread_create"); exit(EXIT_FAILURE); } } for (i = 0; i < CPUS; i++) { void *retval; if (pthread_join(pthreads[i], &retval) != 0) { perror("pthread_join"); } free(pja[i].jp->source); json_end(pja[i].jp); } } else { FILE *fp = fdopen(fd, "r"); if (fp == NULL) { perror(argv[source]); close(fd); continue; } long long layer_seq = 0; json_pull *jp = json_begin_file(fp); parse_json(jp, reading, &layer_seq, &progress_seq, &reader[0].metapos, &reader[0].geompos, &reader[0].indexpos, exclude, include, exclude_all, reader[0].metafile, reader[0].geomfile, reader[0].indexfile, reader[0].poolfile, reader[0].treefile, fname, maxzoom, basezoom, source, droprate, reader[0].file_bbox, 0, &initialized[0], &initial_x[0], &initial_y[0]); json_end(jp); fclose(fp); } } for (i = 0; i < CPUS; i++) { fclose(reader[i].metafile); fclose(reader[i].geomfile); fclose(reader[i].indexfile); memfile_close(reader[i].treefile); if (fstat(reader[i].geomfd, &reader[i].geomst) != 0) { perror("stat geom\n"); exit(EXIT_FAILURE); } if (fstat(reader[i].metafd, &reader[i].metast) != 0) { perror("stat meta\n"); exit(EXIT_FAILURE); } } struct pool file_keys1[nlayers]; struct pool *file_keys[nlayers]; for (i = 0; i < nlayers; i++) { pool_init(&file_keys1[i], 0); file_keys[i] = &file_keys1[i]; } char *layernames[nlayers]; for (i = 0; i < nlayers; i++) { if (layername != NULL) { layernames[i] = strdup(layername); } else { char *src = argv[i]; if (argc < 1) { src = fname; } char *trunc = layernames[i] = malloc(strlen(src) + 1); const char *ocp, *use = src; for (ocp = src; *ocp; ocp++) { if (*ocp == '/' && ocp[1] != '\0') { use = ocp + 1; } } strcpy(trunc, use); char *cp = strstr(trunc, ".json"); if (cp != NULL) { *cp = '\0'; } cp = strstr(trunc, ".mbtiles"); if (cp != NULL) { *cp = '\0'; } char *out = trunc; for (cp = trunc; *cp; cp++) { if (isalpha(*cp) || isdigit(*cp) || *cp == '_') { *out++ = *cp; } } *out = '\0'; if (!quiet) { printf("using layer %d name %s\n", i, trunc); } } } /* Join the sub-indices together */ char indexname[strlen(tmpdir) + strlen("/index.XXXXXXXX") + 1]; sprintf(indexname, "%s%s", tmpdir, "/index.XXXXXXXX"); int indexfd = mkstemp(indexname); if (indexfd < 0) { perror(indexname); exit(EXIT_FAILURE); } FILE *indexfile = fopen(indexname, "wb"); if (indexfile == NULL) { perror(indexname); exit(EXIT_FAILURE); } unlink(indexname); long long indexpos = 0; for (i = 0; i < CPUS; i++) { if (reader[i].indexpos > 0) { void *map = mmap(NULL, reader[i].indexpos, PROT_READ, MAP_PRIVATE, reader[i].indexfd, 0); if (map == MAP_FAILED) { perror("mmap"); exit(EXIT_FAILURE); } if (fwrite(map, reader[i].indexpos, 1, indexfile) != 1) { perror("Reunify index"); exit(EXIT_FAILURE); } if (munmap(map, reader[i].indexpos) != 0) { perror("unmap unmerged index"); } if (close(reader[i].indexfd) != 0) { perror("close unmerged index"); } indexpos += reader[i].indexpos; } } fclose(indexfile); /* Sort the index by geometry */ { int bytes = sizeof(struct index); if (!quiet) { fprintf(stderr, "Sorting %lld features\n", (long long) indexpos / bytes); } int page = sysconf(_SC_PAGESIZE); long long unit = (50 * 1024 * 1024 / bytes) * bytes; while (unit % page != 0) { unit += bytes; } int nmerges = (indexpos + unit - 1) / unit; struct merge merges[nmerges]; long long start; for (start = 0; start < indexpos; start += unit) { long long end = start + unit; if (end > indexpos) { end = indexpos; } if (nmerges != 1) { if (!quiet) { fprintf(stderr, "Sorting part %lld of %d\r", start / unit + 1, nmerges); } } merges[start / unit].start = start; merges[start / unit].end = end; merges[start / unit].next = NULL; // MAP_PRIVATE to avoid disk writes if it fits in memory void *map = mmap(NULL, end - start, PROT_READ | PROT_WRITE, MAP_PRIVATE, indexfd, start); if (map == MAP_FAILED) { perror("mmap"); exit(EXIT_FAILURE); } qsort(map, (end - start) / bytes, bytes, indexcmp); // Sorting and then copying avoids the need to // write out intermediate stages of the sort. void *map2 = mmap(NULL, end - start, PROT_READ | PROT_WRITE, MAP_SHARED, indexfd, start); if (map2 == MAP_FAILED) { perror("mmap (write)"); exit(EXIT_FAILURE); } memcpy(map2, map, end - start); munmap(map, end - start); munmap(map2, end - start); } if (nmerges != 1) { if (!quiet) { fprintf(stderr, "\n"); } } void *map = mmap(NULL, indexpos, PROT_READ, MAP_PRIVATE, indexfd, 0); if (map == MAP_FAILED) { perror("mmap"); exit(EXIT_FAILURE); } FILE *f = fopen(indexname, "w"); if (f == NULL) { perror(indexname); exit(EXIT_FAILURE); } merge(merges, nmerges, (unsigned char *) map, f, bytes, indexpos / bytes); munmap(map, indexpos); fclose(f); close(indexfd); } indexfd = open(indexname, O_RDONLY); if (indexfd < 0) { perror("reopen sorted index"); exit(EXIT_FAILURE); } if (basezoom < 0 || droprate < 0) { struct index *map = mmap(NULL, indexpos, PROT_READ, MAP_PRIVATE, indexfd, 0); if (map == MAP_FAILED) { perror("mmap"); exit(EXIT_FAILURE); } #define MAX_ZOOM 30 struct tile { unsigned x; unsigned y; long long count; long long fullcount; double gap; unsigned long long previndex; } tile[MAX_ZOOM + 1], max[MAX_ZOOM + 1]; { int i; for (i = 0; i <= MAX_ZOOM; i++) { tile[i].x = tile[i].y = tile[i].count = tile[i].fullcount = tile[i].gap = tile[i].previndex = 0; max[i].x = max[i].y = max[i].count = max[i].fullcount = 0; } } long long indices = indexpos / sizeof(struct index); long long i; for (i = 0; i < indices; i++) { unsigned xx, yy; decode(map[i].index, &xx, &yy); int z; for (z = 0; z <= MAX_ZOOM; z++) { unsigned xxx = 0, yyy = 0; if (z != 0) { xxx = xx >> (32 - z); yyy = yy >> (32 - z); } double scale = (double) (1LL << (64 - 2 * (z + 8))); if (tile[z].x != xxx || tile[z].y != yyy) { if (tile[z].count > max[z].count) { max[z] = tile[z]; } tile[z].x = xxx; tile[z].y = yyy; tile[z].count = 0; tile[z].fullcount = 0; tile[z].gap = 0; tile[z].previndex = 0; } tile[z].fullcount++; // Keep in sync with write_tile() if (gamma > 0) { if (tile[z].gap > 0) { if (map[i].index == tile[z].previndex) { continue; // Exact duplicate: can't fulfil the gap requirement } if (exp(log((map[i].index - tile[z].previndex) / scale) * gamma) >= tile[z].gap) { // Dot is further from the previous than the nth root of the gap, // so produce it, and choose a new gap at the next point. tile[z].gap = 0; } else { continue; } } else { tile[z].gap = (map[i].index - tile[z].previndex) / scale; if (tile[z].gap == 0) { continue; // Exact duplicate: skip } else if (tile[z].gap < 1) { continue; // Narrow dot spacing: need to stretch out } else { tile[z].gap = 0; // Wider spacing than minimum: so pass through unchanged } } tile[z].previndex = map[i].index; } tile[z].count++; } } int z; for (z = MAX_ZOOM; z >= 0; z--) { if (tile[z].count > max[z].count) { max[z] = tile[z]; } } int max_features = 50000 / (basezoom_marker_width * basezoom_marker_width); int obasezoom = basezoom; if (basezoom < 0) { basezoom = MAX_ZOOM; for (z = MAX_ZOOM; z >= 0; z--) { if (max[z].count < max_features) { basezoom = z; } // printf("%d/%u/%u %lld\n", z, max[z].x, max[z].y, max[z].count); } fprintf(stderr, "Choosing a base zoom of -B%d to keep %lld features in tile %d/%u/%u.\n", basezoom, max[basezoom].count, basezoom, max[basezoom].x, max[basezoom].y); } if (obasezoom < 0 && basezoom > maxzoom) { fprintf(stderr, "Couldn't find a suitable base zoom. Working from the other direction.\n"); if (gamma == 0) { fprintf(stderr, "You might want to try -g1 to limit near-duplicates.\n"); } if (droprate < 0) { if (maxzoom == 0) { droprate = 2.5; } else { droprate = exp(log((long double) max[0].count / max[maxzoom].count) / (maxzoom)); fprintf(stderr, "Choosing a drop rate of -r%f to get from %lld to %lld in %d zooms\n", droprate, max[maxzoom].count, max[0].count, maxzoom); } } basezoom = 0; for (z = 0; z <= maxzoom; z++) { double zoomdiff = log((long double) max[z].count / max_features) / log(droprate); if (zoomdiff + z > basezoom) { basezoom = ceil(zoomdiff + z); } } fprintf(stderr, "Choosing a base zoom of -B%d to keep %f features in tile %d/%u/%u.\n", basezoom, max[maxzoom].count * exp(log(droprate) * (maxzoom - basezoom)), maxzoom, max[maxzoom].x, max[maxzoom].y); } else if (droprate < 0) { droprate = 1; for (z = basezoom - 1; z >= 0; z--) { double interval = exp(log(droprate) * (basezoom - z)); if (max[z].count / interval >= max_features) { interval = (long double) max[z].count / max_features; droprate = exp(log(interval) / (basezoom - z)); interval = exp(log(droprate) * (basezoom - z)); fprintf(stderr, "Choosing a drop rate of -r%f to keep %f features in tile %d/%u/%u.\n", droprate, max[z].count / interval, z, max[z].x, max[z].y); } } } if (gamma > 0) { int effective = 0; for (z = 0; z < maxzoom; z++) { if (max[z].count < max[z].fullcount) { effective = z + 1; } } if (effective == 0) { fprintf(stderr, "With gamma, effective base zoom is 0, so no effective drop rate\n"); } else { double interval_0 = exp(log(droprate) * (basezoom - 0)); double interval_eff = exp(log(droprate) * (basezoom - effective)); if (effective > basezoom) { interval_eff = 1; } double scaled_0 = max[0].count / interval_0; double scaled_eff = max[effective].count / interval_eff; double rate_at_0 = scaled_0 / max[0].fullcount; double rate_at_eff = scaled_eff / max[effective].fullcount; double eff_drop = exp(log(rate_at_eff / rate_at_0) / (effective - 0)); fprintf(stderr, "With gamma, effective base zoom of %d, effective drop rate of %f\n", effective, eff_drop); } } munmap(map, indexpos); } /* Copy geometries to a new file in index order */ struct index *index_map = mmap(NULL, indexpos, PROT_READ, MAP_PRIVATE, indexfd, 0); if (index_map == MAP_FAILED) { perror("mmap index"); exit(EXIT_FAILURE); } unlink(indexname); for (i = 0; i < CPUS; i++) { reader[i].geom_map = NULL; if (reader[i].geomst.st_size > 0) { reader[i].geom_map = mmap(NULL, reader[i].geomst.st_size, PROT_READ, MAP_PRIVATE, reader[i].geomfd, 0); if (reader[i].geom_map == MAP_FAILED) { perror("mmap unsorted geometry"); exit(EXIT_FAILURE); } } } char geomname[strlen(tmpdir) + strlen("/geom.XXXXXXXX") + 1]; FILE *geomfile; int geomfd; long long geompos = 0; struct stat geomst; sprintf(geomname, "%s%s", tmpdir, "/geom.XXXXXXXX"); geomfd = mkstemp(geomname); if (geomfd < 0) { perror(geomname); exit(EXIT_FAILURE); } geomfile = fopen(geomname, "wb"); if (geomfile == NULL) { perror(geomname); exit(EXIT_FAILURE); } { geompos = 0; /* initial tile is 0/0/0 */ serialize_int(geomfile, 0, &geompos, fname); serialize_uint(geomfile, 0, &geompos, fname); serialize_uint(geomfile, 0, &geompos, fname); long long i; long long sum = 0; long long progress = 0; for (i = 0; i < indexpos / sizeof(struct index); i++) { fwrite_check(reader[index_map[i].segment].geom_map + index_map[i].start, sizeof(char), index_map[i].end - index_map[i].start, geomfile, fname); sum += index_map[i].end - index_map[i].start; geompos += index_map[i].end - index_map[i].start; long long p = 1000 * i / (indexpos / sizeof(struct index)); if (p != progress) { if (!quiet) { fprintf(stderr, "Reordering geometry: %3.1f%%\r", p / 10.0); } progress = p; } } /* end of tile */ serialize_byte(geomfile, -2, &geompos, fname); fclose(geomfile); } if (munmap(index_map, indexpos) != 0) { perror("unmap sorted index"); } for (i = 0; i < CPUS; i++) { if (reader[i].geomst.st_size > 0) { if (munmap(reader[i].geom_map, reader[i].geomst.st_size) != 0) { perror("unmap unsorted geometry"); } } if (close(reader[i].geomfd) != 0) { perror("close unsorted geometry"); } } if (close(indexfd) != 0) { perror("close sorted index"); } /* Traverse and split the geometries for each zoom level */ geomfd = open(geomname, O_RDONLY); if (geomfd < 0) { perror("reopen sorted geometry"); exit(EXIT_FAILURE); } unlink(geomname); if (fstat(geomfd, &geomst) != 0) { perror("stat sorted geom\n"); exit(EXIT_FAILURE); } int fd[TEMP_FILES]; off_t size[TEMP_FILES]; fd[0] = geomfd; size[0] = geomst.st_size; int j; for (j = 1; j < TEMP_FILES; j++) { fd[j] = -1; size[j] = 0; } // Create a combined string pool and a combined metadata file // but keep track of the offsets into it since we still need // segment+offset to find the data. long long pool_off[CPUS]; long long meta_off[CPUS]; char poolname[strlen(tmpdir) + strlen("/pool.XXXXXXXX") + 1]; sprintf(poolname, "%s%s", tmpdir, "/pool.XXXXXXXX"); int poolfd = mkstemp(poolname); if (poolfd < 0) { perror(poolname); exit(EXIT_FAILURE); } FILE *poolfile = fopen(poolname, "wb"); if (poolfile == NULL) { perror(poolname); exit(EXIT_FAILURE); } unlink(poolname); char metaname[strlen(tmpdir) + strlen("/meta.XXXXXXXX") + 1]; sprintf(metaname, "%s%s", tmpdir, "/meta.XXXXXXXX"); int metafd = mkstemp(metaname); if (metafd < 0) { perror(metaname); exit(EXIT_FAILURE); } FILE *metafile = fopen(metaname, "wb"); if (metafile == NULL) { perror(metaname); exit(EXIT_FAILURE); } unlink(metaname); long long metapos = 0; long long poolpos = 0; for (i = 0; i < CPUS; i++) { if (reader[i].metapos > 0) { void *map = mmap(NULL, reader[i].metapos, PROT_READ, MAP_PRIVATE, reader[i].metafd, 0); if (map == MAP_FAILED) { perror("mmap"); exit(EXIT_FAILURE); } if (fwrite(map, reader[i].metapos, 1, metafile) != 1) { perror("Reunify meta"); exit(EXIT_FAILURE); } if (munmap(map, reader[i].metapos) != 0) { perror("unmap unmerged meta"); } } meta_off[i] = metapos; metapos += reader[i].metapos; if (close(reader[i].metafd) != 0) { perror("close unmerged meta"); } if (reader[i].poolfile->off > 0) { if (fwrite(reader[i].poolfile->map, reader[i].poolfile->off, 1, poolfile) != 1) { perror("Reunify string pool"); exit(EXIT_FAILURE); } } pool_off[i] = poolpos; poolpos += reader[i].poolfile->off; memfile_close(reader[i].poolfile); } fclose(poolfile); fclose(metafile); char *meta = (char *) mmap(NULL, metapos, PROT_READ, MAP_PRIVATE, metafd, 0); if (meta == MAP_FAILED) { perror("mmap meta"); exit(EXIT_FAILURE); } char *stringpool = NULL; if (poolpos > 0) { // Will be 0 if -X was specified stringpool = (char *) mmap(NULL, poolpos, PROT_READ, MAP_PRIVATE, poolfd, 0); if (stringpool == MAP_FAILED) { perror("mmap string pool"); exit(EXIT_FAILURE); } } if (geompos == 0 || metapos == 0) { fprintf(stderr, "did not read any valid geometries\n"); exit(EXIT_FAILURE); } if (!quiet) { fprintf(stderr, "%lld features, %lld bytes of geometry, %lld bytes of metadata, %lld bytes of string pool\n", progress_seq, geompos, metapos, poolpos); } unsigned midx = 0, midy = 0; int written = traverse_zooms(fd, size, meta, stringpool, file_keys, &midx, &midy, layernames, maxzoom, minzoom, basezoom, outdb, droprate, buffer, fname, tmpdir, gamma, nlayers, prevent, additional, full_detail, low_detail, min_detail, meta_off, pool_off, initial_x, initial_y); if (maxzoom != written) { fprintf(stderr, "\n\n\n*** NOTE TILES ONLY COMPLETE THROUGH ZOOM %d ***\n\n\n", written); maxzoom = written; ret = EXIT_FAILURE; } if (munmap(meta, metapos) != 0) { perror("munmap meta"); } if (close(metafd) < 0) { perror("close meta"); } if (poolpos > 0) { if (munmap(stringpool, poolpos) != 0) { perror("munmap stringpool"); } } if (close(poolfd) < 0) { perror("close pool"); } double minlat = 0, minlon = 0, maxlat = 0, maxlon = 0, midlat = 0, midlon = 0; tile2latlon(midx, midy, maxzoom, &maxlat, &minlon); tile2latlon(midx + 1, midy + 1, maxzoom, &minlat, &maxlon); midlat = (maxlat + minlat) / 2; midlon = (maxlon + minlon) / 2; long long file_bbox[4] = {UINT_MAX, UINT_MAX, 0, 0}; for (i = 0; i < CPUS; i++) { if (reader[i].file_bbox[0] < file_bbox[0]) { file_bbox[0] = reader[i].file_bbox[0]; } if (reader[i].file_bbox[1] < file_bbox[1]) { file_bbox[1] = reader[i].file_bbox[1]; } if (reader[i].file_bbox[2] > file_bbox[2]) { file_bbox[2] = reader[i].file_bbox[2]; } if (reader[i].file_bbox[3] > file_bbox[3]) { file_bbox[3] = reader[i].file_bbox[3]; } } // If the bounding box extends off the plane on either side, // a feature wrapped across the date line, so the width of the // bounding box is the whole world. if (file_bbox[0] < 0) { file_bbox[0] = 0; file_bbox[2] = (1LL << 32) - 1; } if (file_bbox[2] > (1LL << 32) - 1) { file_bbox[0] = 0; file_bbox[2] = (1LL << 32) - 1; } if (file_bbox[1] < 0) { file_bbox[1] = 0; } if (file_bbox[3] > (1LL << 32) - 1) { file_bbox[3] = (1LL << 32) - 1; } tile2latlon(file_bbox[0], file_bbox[1], 32, &maxlat, &minlon); tile2latlon(file_bbox[2], file_bbox[3], 32, &minlat, &maxlon); if (midlat < minlat) { midlat = minlat; } if (midlat > maxlat) { midlat = maxlat; } if (midlon < minlon) { midlon = minlon; } if (midlon > maxlon) { midlon = maxlon; } mbtiles_write_metadata(outdb, fname, layernames, minzoom, maxzoom, minlat, minlon, maxlat, maxlon, midlat, midlon, file_keys, nlayers); for (i = 0; i < nlayers; i++) { pool_free_strings(&file_keys1[i]); free(layernames[i]); } return ret; } int main(int argc, char **argv) { #ifdef MTRACE mtrace(); #endif init_cpus(); extern int optind; extern char *optarg; int i; char *name = NULL; char *layer = NULL; char *outdir = NULL; int maxzoom = 14; int minzoom = 0; int basezoom = -1; double basezoom_marker_width = 1; int force = 0; double droprate = 2.5; double gamma = 0; int buffer = 5; const char *tmpdir = "/tmp"; char prevent[256]; char additional[256]; struct pool exclude, include; pool_init(&exclude, 0); pool_init(&include, 0); int exclude_all = 0; int read_parallel = 0; for (i = 0; i < 256; i++) { prevent[i] = 0; additional[i] = 0; } while ((i = getopt(argc, argv, "l:n:z:Z:d:D:m:o:x:y:r:b:fXt:g:p:vqa:B:P")) != -1) { switch (i) { case 'n': name = optarg; break; case 'l': layer = optarg; break; case 'z': maxzoom = atoi(optarg); break; case 'Z': minzoom = atoi(optarg); break; case 'B': if (strcmp(optarg, "g") == 0) { basezoom = -2; basezoom_marker_width = 1; } else if (optarg[0] == 'g') { basezoom = -2; basezoom_marker_width = atof(optarg + 1); if (basezoom_marker_width == 0) { fprintf(stderr, "%s: Must specify marker width >0 with -Bg\n", argv[0]); exit(EXIT_FAILURE); } } else { basezoom = atoi(optarg); if (basezoom == 0 && strcmp(optarg, "0") != 0) { fprintf(stderr, "%s: Couldn't understand -B%s\n", argv[0], optarg); exit(EXIT_FAILURE); } } break; case 'd': full_detail = atoi(optarg); break; case 'D': low_detail = atoi(optarg); break; case 'm': min_detail = atoi(optarg); break; case 'o': outdir = optarg; break; case 'x': pool(&exclude, optarg, VT_STRING); break; case 'y': exclude_all = 1; pool(&include, optarg, VT_STRING); break; case 'X': exclude_all = 1; break; case 'r': if (strcmp(optarg, "g") == 0) { droprate = -2; } else { droprate = atof(optarg); } break; case 'b': buffer = atoi(optarg); break; case 'f': force = 1; break; case 't': tmpdir = optarg; break; case 'g': gamma = atof(optarg); break; case 'q': quiet = 1; break; case 'p': { char *cp; for (cp = optarg; *cp != '\0'; cp++) { prevent[*cp & 0xFF] = 1; } } break; case 'a': { char *cp; for (cp = optarg; *cp != '\0'; cp++) { additional[*cp & 0xFF] = 1; } } break; case 'v': fprintf(stderr, VERSION); exit(EXIT_FAILURE); case 'P': read_parallel = 1; break; default: fprintf(stderr, "Usage: %s -o out.mbtiles [-n name] [-l layername] [-z maxzoom] [-Z minzoom] [-B basezoom] [-d detail] [-D lower-detail] [-m min-detail] [-x excluded-field ...] [-y included-field ...] [-X] [-r droprate] [-b buffer] [-t tmpdir] [-a rco] [-p sfkld] [-q] [-P] [file.json ...]\n", argv[0]); exit(EXIT_FAILURE); } } if (minzoom > maxzoom) { fprintf(stderr, "minimum zoom -Z cannot be greater than maxzoom -z\n"); exit(EXIT_FAILURE); } if (basezoom == -1) { basezoom = maxzoom; } if (full_detail <= 0) { full_detail = 12; } if (full_detail < min_detail || low_detail < min_detail) { fprintf(stderr, "%s: Full detail and low detail must be at least minimum detail\n", argv[0]); exit(EXIT_FAILURE); } geometry_scale = 32 - (full_detail + maxzoom); if ((basezoom < 0 || droprate < 0) && (gamma < 0)) { // Can't use randomized (as opposed to evenly distributed) dot dropping // if rate and base aren't known during feature reading. gamma = 0; fprintf(stderr, "Forcing -g0 since -B or -r is not known\n"); } if (outdir == NULL) { fprintf(stderr, "%s: must specify -o out.mbtiles\n", argv[0]); exit(EXIT_FAILURE); } if (force) { unlink(outdir); } sqlite3 *outdb = mbtiles_open(outdir, argv); int ret = EXIT_SUCCESS; ret = read_json(argc - optind, argv + optind, name ? name : outdir, layer, maxzoom, minzoom, basezoom, basezoom_marker_width, outdb, &exclude, &include, exclude_all, droprate, buffer, tmpdir, gamma, prevent, additional, read_parallel); mbtiles_close(outdb, argv); #ifdef MTRACE muntrace(); #endif return ret; }