#ifdef MTRACE #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include extern "C" { #include "jsonpull/jsonpull.h" } #include "pool.hpp" #include "projection.hpp" #include "memfile.hpp" #include "main.hpp" #include "mbtiles.hpp" #include "geojson.hpp" #include "geometry.hpp" #include "options.hpp" #include "serial.hpp" #include "text.hpp" #include "read_json.hpp" static long long parse_geometry1(int t, json_object *j, long long *bbox, drawvec &geom, int op, const char *fname, int line, int *initialized, unsigned *initial_x, unsigned *initial_y, json_object *feature) { parse_geometry(t, j, geom, op, fname, line, feature); for (size_t i = 0; i < geom.size(); i++) { if (geom[i].op == VT_MOVETO || geom[i].op == VT_LINETO) { long long x = geom[i].x; long long y = geom[i].y; if (x < bbox[0]) { bbox[0] = x; } if (y < bbox[1]) { bbox[1] = y; } if (x > bbox[2]) { bbox[2] = x; } if (y > bbox[3]) { bbox[3] = y; } if (!*initialized) { if (x < 0 || x >= (1LL << 32) || y < 0 || y >= (1LL < 32)) { *initial_x = 1LL << 31; *initial_y = 1LL << 31; } else { *initial_x = (x >> geometry_scale) << geometry_scale; *initial_y = (y >> geometry_scale) << geometry_scale; } *initialized = 1; } geom[i].x = x >> geometry_scale; geom[i].y = y >> geometry_scale; } } return geom.size(); } int serialize_geometry(json_object *geometry, json_object *properties, json_object *id, const char *reading, int line, volatile long long *layer_seq, volatile long long *progress_seq, long long *metapos, long long *geompos, long long *indexpos, std::set *exclude, std::set *include, int exclude_all, FILE *metafile, FILE *geomfile, FILE *indexfile, struct memfile *poolfile, struct memfile *treefile, const char *fname, int basezoom, int layer, double droprate, long long *file_bbox, json_object *tippecanoe, int segment, int *initialized, unsigned *initial_x, unsigned *initial_y, struct reader *readers, int maxzoom, json_object *feature, std::map *layermap, std::string layername, bool uses_gamma) { json_object *geometry_type = json_hash_get(geometry, "type"); if (geometry_type == NULL) { static int warned = 0; if (!warned) { fprintf(stderr, "%s:%d: null geometry (additional not reported)\n", reading, line); json_context(feature); warned = 1; } return 0; } if (geometry_type->type != JSON_STRING) { fprintf(stderr, "%s:%d: geometry type is not a string\n", reading, line); json_context(feature); return 0; } json_object *coordinates = json_hash_get(geometry, "coordinates"); if (coordinates == NULL || coordinates->type != JSON_ARRAY) { fprintf(stderr, "%s:%d: feature without coordinates array\n", reading, line); json_context(feature); return 0; } int t; for (t = 0; t < GEOM_TYPES; t++) { if (strcmp(geometry_type->string, geometry_names[t]) == 0) { break; } } if (t >= GEOM_TYPES) { fprintf(stderr, "%s:%d: Can't handle geometry type %s\n", reading, line, geometry_type->string); json_context(feature); return 0; } int tippecanoe_minzoom = -1; int tippecanoe_maxzoom = -1; std::string tippecanoe_layername; if (tippecanoe != NULL) { json_object *min = json_hash_get(tippecanoe, "minzoom"); if (min != NULL && min->type == JSON_NUMBER) { tippecanoe_minzoom = min->number; } if (min != NULL && min->type == JSON_STRING) { tippecanoe_minzoom = atoi(min->string); } json_object *max = json_hash_get(tippecanoe, "maxzoom"); if (max != NULL && max->type == JSON_NUMBER) { tippecanoe_maxzoom = max->number; } if (max != NULL && max->type == JSON_STRING) { tippecanoe_maxzoom = atoi(max->string); } json_object *ln = json_hash_get(tippecanoe, "layer"); if (ln != NULL && (ln->type == JSON_STRING || ln->type == JSON_NUMBER)) { tippecanoe_layername = std::string(ln->string); } } bool has_id = false; unsigned long long id_value = 0; if (id != NULL) { if (id->type == JSON_NUMBER) { if (id->number >= 0) { char *err = NULL; id_value = strtoull(id->string, &err, 10); if (err != NULL && *err != '\0') { fprintf(stderr, "Warning: Can't represent non-integer feature ID %s\n", id->string); } else { has_id = true; } } else { fprintf(stderr, "Warning: Can't represent negative feature ID %s\n", id->string); } } else { char *s = json_stringify(id); fprintf(stderr, "Warning: Can't represent non-numeric feature ID %s\n", s); free(s); // stringify } } long long bbox[] = {LLONG_MAX, LLONG_MAX, LLONG_MIN, LLONG_MIN}; if (tippecanoe_layername.size() != 0) { if (layermap->count(tippecanoe_layername) == 0) { layermap->insert(std::pair(tippecanoe_layername, layermap_entry(layermap->size()))); } auto ai = layermap->find(tippecanoe_layername); if (ai != layermap->end()) { layer = ai->second.id; layername = tippecanoe_layername; } else { fprintf(stderr, "Internal error: can't find layer name %s\n", tippecanoe_layername.c_str()); exit(EXIT_FAILURE); } } size_t nprop = 0; if (properties != NULL && properties->type == JSON_HASH) { nprop = properties->length; } char *metakey[nprop]; std::vector metaval; metaval.resize(nprop); int metatype[nprop]; size_t m = 0; for (size_t i = 0; i < nprop; i++) { if (properties->keys[i]->type == JSON_STRING) { std::string s(properties->keys[i]->string); if (exclude_all) { if (include->count(s) == 0) { continue; } } else if (exclude->count(s) != 0) { continue; } int type = -1; std::string val; stringify_value(properties->values[i], type, val, reading, line, feature); if (type >= 0) { metakey[m] = properties->keys[i]->string; metatype[m] = type; metaval[m] = val; m++; type_and_string tas; tas.string = s; tas.type = type; auto fk = layermap->find(layername); fk->second.file_keys.insert(tas); } } } drawvec dv; long long g = parse_geometry1(t, coordinates, bbox, dv, VT_MOVETO, fname, line, initialized, initial_x, initial_y, feature); if (mb_geometry[t] == VT_POLYGON) { dv = fix_polygon(dv); } bool inline_meta = true; // Don't inline metadata for features that will span several tiles at maxzoom if (g > 0 && (bbox[2] < bbox[0] || bbox[3] < bbox[1])) { fprintf(stderr, "Internal error: impossible feature bounding box %llx,%llx,%llx,%llx\n", bbox[0], bbox[1], bbox[2], bbox[3]); } if (bbox[2] - bbox[0] > (2LL << (32 - maxzoom)) || bbox[3] - bbox[1] > (2LL << (32 - maxzoom))) { inline_meta = false; if (prevent[P_CLIPPING]) { static volatile long long warned = 0; long long extent = ((bbox[2] - bbox[0]) / ((1LL << (32 - maxzoom)) + 1)) * ((bbox[3] - bbox[1]) / ((1LL << (32 - maxzoom)) + 1)); if (extent > warned) { fprintf(stderr, "Warning: %s:%d: Large unclipped (-pc) feature may be duplicated across %lld tiles\n", fname, line, extent); warned = extent; if (extent > 10000) { fprintf(stderr, "Exiting because this can't be right.\n"); exit(EXIT_FAILURE); } } } } double extent = 0; if (additional[A_DROP_SMALLEST_AS_NEEDED]) { if (mb_geometry[t] == VT_POLYGON) { for (size_t i = 0; i < dv.size(); i++) { if (dv[i].op == VT_MOVETO) { size_t j; for (j = i + 1; j < dv.size(); j++) { if (dv[j].op != VT_LINETO) { break; } } extent += get_area(dv, i, j); i = j - 1; } } } else if (mb_geometry[t] == VT_LINE) { for (size_t i = 1; i < dv.size(); i++) { if (dv[i].op == VT_LINETO) { double xd = dv[i].x - dv[i - 1].x; double yd = dv[i].y - dv[i - 1].y; extent += sqrt(xd * xd + yd * yd); } } } } long long geomstart = *geompos; long long bbox_index; serial_feature sf; sf.layer = layer; sf.segment = segment; sf.t = mb_geometry[t]; sf.has_id = has_id; sf.id = id_value; sf.has_tippecanoe_minzoom = (tippecanoe_minzoom != -1); sf.tippecanoe_minzoom = tippecanoe_minzoom; sf.has_tippecanoe_maxzoom = (tippecanoe_maxzoom != -1); sf.tippecanoe_maxzoom = tippecanoe_maxzoom; sf.geometry = dv; sf.m = m; sf.feature_minzoom = 0; // Will be filled in during index merging sf.extent = (long long) extent; if (prevent[P_INPUT_ORDER]) { sf.seq = *layer_seq; } else { sf.seq = 0; } // Calculate the center even if off the edge of the plane, // and then mask to bring it back into the addressable area long long midx = (bbox[0] / 2 + bbox[2] / 2) & ((1LL << 32) - 1); long long midy = (bbox[1] / 2 + bbox[3] / 2) & ((1LL << 32) - 1); bbox_index = encode(midx, midy); if (additional[A_DROP_DENSEST_AS_NEEDED] || additional[A_CALCULATE_FEATURE_DENSITY] || additional[A_INCREASE_GAMMA_AS_NEEDED] || uses_gamma) { sf.index = bbox_index; } if (inline_meta) { sf.metapos = -1; for (size_t i = 0; i < m; i++) { sf.keys.push_back(addpool(poolfile, treefile, metakey[i], VT_STRING)); sf.values.push_back(addpool(poolfile, treefile, metaval[i].c_str(), metatype[i])); } } else { sf.metapos = *metapos; for (size_t i = 0; i < m; i++) { serialize_long_long(metafile, addpool(poolfile, treefile, metakey[i], VT_STRING), metapos, fname); serialize_long_long(metafile, addpool(poolfile, treefile, metaval[i].c_str(), metatype[i]), metapos, fname); } } serialize_feature(geomfile, &sf, geompos, fname, *initial_x >> geometry_scale, *initial_y >> geometry_scale, false); struct index index; index.start = geomstart; index.end = *geompos; index.segment = segment; index.seq = *layer_seq; index.t = sf.t; index.index = bbox_index; fwrite_check(&index, sizeof(struct index), 1, indexfile, fname); *indexpos += sizeof(struct index); for (size_t i = 0; i < 2; i++) { if (bbox[i] < file_bbox[i]) { file_bbox[i] = bbox[i]; } } for (size_t i = 2; i < 4; i++) { if (bbox[i] > file_bbox[i]) { file_bbox[i] = bbox[i]; } } if (*progress_seq % 10000 == 0) { checkdisk(readers, CPUS); if (!quiet) { fprintf(stderr, "Read %.2f million features\r", *progress_seq / 1000000.0); } } (*progress_seq)++; (*layer_seq)++; return 1; } void check_crs(json_object *j, const char *reading) { json_object *crs = json_hash_get(j, "crs"); if (crs != NULL) { json_object *properties = json_hash_get(crs, "properties"); if (properties != NULL) { json_object *name = json_hash_get(properties, "name"); if (name->type == JSON_STRING) { if (strcmp(name->string, projection->alias) != 0) { fprintf(stderr, "%s: Warning: GeoJSON specified projection \"%s\", not \"%s\".\n", reading, name->string, projection->alias); } } } } } void parse_json(json_pull *jp, const char *reading, volatile long long *layer_seq, volatile long long *progress_seq, long long *metapos, long long *geompos, long long *indexpos, std::set *exclude, std::set *include, int exclude_all, FILE *metafile, FILE *geomfile, FILE *indexfile, struct memfile *poolfile, struct memfile *treefile, char *fname, int basezoom, int layer, double droprate, long long *file_bbox, int segment, int *initialized, unsigned *initial_x, unsigned *initial_y, struct reader *readers, int maxzoom, std::map *layermap, std::string layername, bool uses_gamma) { long long found_hashes = 0; long long found_features = 0; long long found_geometries = 0; while (1) { json_object *j = json_read(jp); if (j == NULL) { if (jp->error != NULL) { fprintf(stderr, "%s:%d: %s\n", reading, jp->line, jp->error); if (jp->root != NULL) { json_context(jp->root); } } json_free(jp->root); break; } if (j->type == JSON_HASH) { found_hashes++; if (found_hashes == 50 && found_features == 0 && found_geometries == 0) { fprintf(stderr, "%s:%d: Warning: not finding any GeoJSON features or geometries in input yet after 50 objects.\n", reading, jp->line); } } json_object *type = json_hash_get(j, "type"); if (type == NULL || type->type != JSON_STRING) { continue; } if (found_features == 0) { int i; int is_geometry = 0; for (i = 0; i < GEOM_TYPES; i++) { if (strcmp(type->string, geometry_names[i]) == 0) { is_geometry = 1; break; } } if (is_geometry) { if (j->parent != NULL) { if (j->parent->type == JSON_ARRAY) { if (j->parent->parent->type == JSON_HASH) { json_object *geometries = json_hash_get(j->parent->parent, "geometries"); if (geometries != NULL) { // Parent of Parent must be a GeometryCollection is_geometry = 0; } } } else if (j->parent->type == JSON_HASH) { json_object *geometry = json_hash_get(j->parent, "geometry"); if (geometry != NULL) { // Parent must be a Feature is_geometry = 0; } } } } if (is_geometry) { if (found_features != 0 && found_geometries == 0) { fprintf(stderr, "%s:%d: Warning: found a mixture of features and bare geometries\n", reading, jp->line); } found_geometries++; serialize_geometry(j, NULL, NULL, reading, jp->line, layer_seq, progress_seq, metapos, geompos, indexpos, exclude, include, exclude_all, metafile, geomfile, indexfile, poolfile, treefile, fname, basezoom, layer, droprate, file_bbox, NULL, segment, initialized, initial_x, initial_y, readers, maxzoom, j, layermap, layername, uses_gamma); json_free(j); continue; } } if (strcmp(type->string, "Feature") != 0) { if (strcmp(type->string, "FeatureCollection") == 0) { check_crs(j, reading); } continue; } if (found_features == 0 && found_geometries != 0) { fprintf(stderr, "%s:%d: Warning: found a mixture of features and bare geometries\n", reading, jp->line); } found_features++; json_object *geometry = json_hash_get(j, "geometry"); if (geometry == NULL) { fprintf(stderr, "%s:%d: feature with no geometry\n", reading, jp->line); json_context(j); json_free(j); continue; } json_object *properties = json_hash_get(j, "properties"); if (properties == NULL || (properties->type != JSON_HASH && properties->type != JSON_NULL)) { fprintf(stderr, "%s:%d: feature without properties hash\n", reading, jp->line); json_context(j); json_free(j); continue; } json_object *tippecanoe = json_hash_get(j, "tippecanoe"); json_object *id = json_hash_get(j, "id"); json_object *geometries = json_hash_get(geometry, "geometries"); if (geometries != NULL) { size_t g; for (g = 0; g < geometries->length; g++) { serialize_geometry(geometries->array[g], properties, id, reading, jp->line, layer_seq, progress_seq, metapos, geompos, indexpos, exclude, include, exclude_all, metafile, geomfile, indexfile, poolfile, treefile, fname, basezoom, layer, droprate, file_bbox, tippecanoe, segment, initialized, initial_x, initial_y, readers, maxzoom, j, layermap, layername, uses_gamma); } } else { serialize_geometry(geometry, properties, id, reading, jp->line, layer_seq, progress_seq, metapos, geompos, indexpos, exclude, include, exclude_all, metafile, geomfile, indexfile, poolfile, treefile, fname, basezoom, layer, droprate, file_bbox, tippecanoe, segment, initialized, initial_x, initial_y, readers, maxzoom, j, layermap, layername, uses_gamma); } json_free(j); /* XXX check for any non-features in the outer object */ } } void *run_parse_json(void *v) { struct parse_json_args *pja = (struct parse_json_args *) v; parse_json(pja->jp, pja->reading, pja->layer_seq, pja->progress_seq, pja->metapos, pja->geompos, pja->indexpos, pja->exclude, pja->include, pja->exclude_all, pja->metafile, pja->geomfile, pja->indexfile, pja->poolfile, pja->treefile, pja->fname, pja->basezoom, pja->layer, pja->droprate, pja->file_bbox, pja->segment, pja->initialized, pja->initial_x, pja->initial_y, pja->readers, pja->maxzoom, pja->layermap, *pja->layername, pja->uses_gamma); return NULL; } struct jsonmap { char *map; unsigned long long off; unsigned long long end; }; ssize_t json_map_read(struct json_pull *jp, char *buffer, size_t n) { struct jsonmap *jm = (struct jsonmap *) jp->source; if (jm->off + n >= jm->end) { n = jm->end - jm->off; } memcpy(buffer, jm->map + jm->off, n); jm->off += n; return n; } struct json_pull *json_begin_map(char *map, long long len) { struct jsonmap *jm = new jsonmap; if (jm == NULL) { perror("Out of memory"); exit(EXIT_FAILURE); } jm->map = map; jm->off = 0; jm->end = len; return json_begin(json_map_read, jm); } void json_end_map(struct json_pull *jp) { delete (struct jsonmap *) jp->source; json_end(jp); }