#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "mvt.hpp" #include "projection.hpp" #include "geometry.hpp" int minzoom = 0; int maxzoom = 32; void printq(const char *s) { putchar('"'); for (; *s; s++) { if (*s == '\\' || *s == '"') { printf("\\%c", *s); } else if (*s >= 0 && *s < ' ') { printf("\\u%04x", *s); } else { putchar(*s); } } putchar('"'); } struct lonlat { int op; double lon; double lat; int x; int y; lonlat(int nop, double nlon, double nlat, int nx, int ny) { this->op = nop; this->lon = nlon; this->lat = nlat; this->x = nx; this->y = ny; } }; void handle(std::string message, int z, unsigned x, unsigned y, int describe, std::set const &to_decode) { int within = 0; mvt_tile tile; try { if (!tile.decode(message)) { fprintf(stderr, "Couldn't parse tile %d/%u/%u\n", z, x, y); exit(EXIT_FAILURE); } } catch (protozero::unknown_pbf_wire_type_exception e) { fprintf(stderr, "PBF decoding error in tile %d/%u/%u\n", z, x, y); exit(EXIT_FAILURE); } printf("{ \"type\": \"FeatureCollection\""); if (describe) { printf(", \"properties\": { \"zoom\": %d, \"x\": %d, \"y\": %d }", z, x, y); if (projection != projections) { printf(", \"crs\": { \"type\": \"name\", \"properties\": { \"name\": "); printq(projection->alias); printf(" } }"); } } printf(", \"features\": [\n"); bool first_layer = true; for (size_t l = 0; l < tile.layers.size(); l++) { mvt_layer &layer = tile.layers[l]; int extent = layer.extent; if (to_decode.size() != 0 && !to_decode.count(layer.name)) { continue; } if (describe) { if (!first_layer) { printf(",\n"); } printf("{ \"type\": \"FeatureCollection\""); printf(", \"properties\": { \"layer\": "); printq(layer.name.c_str()); printf(", \"version\": %d, \"extent\": %d", layer.version, layer.extent); printf(" }"); printf(", \"features\": [\n"); first_layer = false; within = 0; } for (size_t f = 0; f < layer.features.size(); f++) { mvt_feature &feat = layer.features[f]; if (within) { printf(",\n"); } within = 1; printf("{ \"type\": \"Feature\""); if (feat.has_id) { printf(", \"id\": %llu", feat.id); } printf(", \"properties\": { "); for (size_t t = 0; t + 1 < feat.tags.size(); t += 2) { if (t != 0) { printf(", "); } if (feat.tags[t] >= layer.keys.size()) { fprintf(stderr, "Error: out of bounds feature key\n"); exit(EXIT_FAILURE); } if (feat.tags[t + 1] >= layer.values.size()) { fprintf(stderr, "Error: out of bounds feature value\n"); exit(EXIT_FAILURE); } const char *key = layer.keys[feat.tags[t]].c_str(); mvt_value const &val = layer.values[feat.tags[t + 1]]; if (val.type == mvt_string) { printq(key); printf(": "); printq(val.string_value.c_str()); } else if (val.type == mvt_int) { printq(key); printf(": %lld", (long long) val.numeric_value.int_value); } else if (val.type == mvt_double) { printq(key); double v = val.numeric_value.double_value; if (v == (long long) v) { printf(": %lld", (long long) v); } else { printf(": %g", v); } } else if (val.type == mvt_float) { printq(key); double v = val.numeric_value.float_value; if (v == (long long) v) { printf(": %lld", (long long) v); } else { printf(": %g", v); } } else if (val.type == mvt_sint) { printq(key); printf(": %lld", (long long) val.numeric_value.sint_value); } else if (val.type == mvt_uint) { printq(key); printf(": %lld", (long long) val.numeric_value.uint_value); } else if (val.type == mvt_bool) { printq(key); printf(": %s", val.numeric_value.bool_value ? "true" : "false"); } } printf(" }, \"geometry\": { "); std::vector ops; for (size_t g = 0; g < feat.geometry.size(); g++) { int op = feat.geometry[g].op; long long px = feat.geometry[g].x; long long py = feat.geometry[g].y; if (op == VT_MOVETO || op == VT_LINETO) { long long scale = 1LL << (32 - z); long long wx = scale * x + (scale / extent) * px; long long wy = scale * y + (scale / extent) * py; double lat, lon; projection->unproject(wx, wy, 32, &lon, &lat); ops.push_back(lonlat(op, lon, lat, px, py)); } else { ops.push_back(lonlat(op, 0, 0, 0, 0)); } } if (feat.type == VT_POINT) { if (ops.size() == 1) { printf("\"type\": \"Point\", \"coordinates\": [ %f, %f ]", ops[0].lon, ops[0].lat); } else { printf("\"type\": \"MultiPoint\", \"coordinates\": [ "); for (size_t i = 0; i < ops.size(); i++) { if (i != 0) { printf(", "); } printf("[ %f, %f ]", ops[i].lon, ops[i].lat); } printf(" ]"); } } else if (feat.type == VT_LINE) { int movetos = 0; for (size_t i = 0; i < ops.size(); i++) { if (ops[i].op == VT_MOVETO) { movetos++; } } if (movetos < 2) { printf("\"type\": \"LineString\", \"coordinates\": [ "); for (size_t i = 0; i < ops.size(); i++) { if (i != 0) { printf(", "); } printf("[ %f, %f ]", ops[i].lon, ops[i].lat); } printf(" ]"); } else { printf("\"type\": \"MultiLineString\", \"coordinates\": [ [ "); int state = 0; for (size_t i = 0; i < ops.size(); i++) { if (ops[i].op == VT_MOVETO) { if (state == 0) { printf("[ %f, %f ]", ops[i].lon, ops[i].lat); state = 1; } else { printf(" ], [ "); printf("[ %f, %f ]", ops[i].lon, ops[i].lat); state = 1; } } else { printf(", [ %f, %f ]", ops[i].lon, ops[i].lat); } } printf(" ] ]"); } } else if (feat.type == VT_POLYGON) { std::vector > rings; std::vector areas; for (size_t i = 0; i < ops.size(); i++) { if (ops[i].op == VT_MOVETO) { rings.push_back(std::vector()); areas.push_back(0); } int n = rings.size() - 1; if (n >= 0) { if (ops[i].op == VT_CLOSEPATH) { rings[n].push_back(rings[n][0]); } else { rings[n].push_back(ops[i]); } } } int outer = 0; for (size_t i = 0; i < rings.size(); i++) { long double area = 0; for (size_t k = 0; k < rings[i].size(); k++) { if (rings[i][k].op != VT_CLOSEPATH) { area += rings[i][k].x * rings[i][(k + 1) % rings[i].size()].y; area -= rings[i][k].y * rings[i][(k + 1) % rings[i].size()].x; } } areas[i] = area; if (areas[i] >= 0 || i == 0) { outer++; } // printf("area %f\n", area / .00000274 / .00000274); } if (outer > 1) { printf("\"type\": \"MultiPolygon\", \"coordinates\": [ [ [ "); } else { printf("\"type\": \"Polygon\", \"coordinates\": [ [ "); } int state = 0; for (size_t i = 0; i < rings.size(); i++) { if (areas[i] >= 0) { if (state != 0) { // new multipolygon printf(" ] ], [ [ "); } state = 1; } if (state == 2) { // new ring in the same polygon printf(" ], [ "); } for (size_t j = 0; j < rings[i].size(); j++) { if (rings[i][j].op != VT_CLOSEPATH) { if (j != 0) { printf(", "); } printf("[ %f, %f ]", rings[i][j].lon, rings[i][j].lat); } else { if (j != 0) { printf(", "); } printf("[ %f, %f ]", rings[i][0].lon, rings[i][0].lat); } } state = 2; } if (outer > 1) { printf(" ] ] ]"); } else { printf(" ] ]"); } } printf(" } }\n"); } if (describe) { printf("] }\n"); } } printf("] }\n"); } void decode(char *fname, int z, unsigned x, unsigned y, std::set const &to_decode) { sqlite3 *db; int oz = z; unsigned ox = x, oy = y; int fd = open(fname, O_RDONLY); if (fd >= 0) { struct stat st; if (fstat(fd, &st) == 0) { if (st.st_size < 50 * 1024 * 1024) { char *map = (char *) mmap(NULL, st.st_size, PROT_READ, MAP_PRIVATE, fd, 0); if (map != NULL && map != MAP_FAILED) { if (strcmp(map, "SQLite format 3") != 0) { if (z >= 0) { std::string s = std::string(map, st.st_size); handle(s, z, x, y, 1, to_decode); munmap(map, st.st_size); return; } else { fprintf(stderr, "Must specify zoom/x/y to decode a single pbf file\n"); exit(EXIT_FAILURE); } } } munmap(map, st.st_size); } } else { perror("fstat"); } close(fd); } else { perror(fname); } if (sqlite3_open(fname, &db) != SQLITE_OK) { fprintf(stderr, "%s: %s\n", fname, sqlite3_errmsg(db)); exit(EXIT_FAILURE); } if (z < 0) { printf("{ \"type\": \"FeatureCollection\", \"properties\": {\n"); const char *sql2 = "SELECT name, value from metadata order by name;"; sqlite3_stmt *stmt2; if (sqlite3_prepare_v2(db, sql2, -1, &stmt2, NULL) != SQLITE_OK) { fprintf(stderr, "%s: select failed: %s\n", fname, sqlite3_errmsg(db)); exit(EXIT_FAILURE); } int within = 0; while (sqlite3_step(stmt2) == SQLITE_ROW) { if (within) { printf(",\n"); } within = 1; const unsigned char *name = sqlite3_column_text(stmt2, 0); const unsigned char *value = sqlite3_column_text(stmt2, 1); printq((char *) name); printf(": "); printq((char *) value); } sqlite3_finalize(stmt2); const char *sql = "SELECT tile_data, zoom_level, tile_column, tile_row from tiles where zoom_level between ? and ? order by zoom_level, tile_column, tile_row;"; sqlite3_stmt *stmt; if (sqlite3_prepare_v2(db, sql, -1, &stmt, NULL) != SQLITE_OK) { fprintf(stderr, "%s: select failed: %s\n", fname, sqlite3_errmsg(db)); exit(EXIT_FAILURE); } sqlite3_bind_int(stmt, 1, minzoom); sqlite3_bind_int(stmt, 2, maxzoom); printf("\n}, \"features\": [\n"); within = 0; while (sqlite3_step(stmt) == SQLITE_ROW) { if (within) { printf(",\n"); } within = 1; int len = sqlite3_column_bytes(stmt, 0); int tz = sqlite3_column_int(stmt, 1); int tx = sqlite3_column_int(stmt, 2); int ty = sqlite3_column_int(stmt, 3); ty = (1LL << tz) - 1 - ty; const char *s = (const char *) sqlite3_column_blob(stmt, 0); handle(std::string(s, len), tz, tx, ty, 1, to_decode); } printf("] }\n"); sqlite3_finalize(stmt); } else { int handled = 0; while (z >= 0 && !handled) { const char *sql = "SELECT tile_data from tiles where zoom_level = ? and tile_column = ? and tile_row = ?;"; sqlite3_stmt *stmt; if (sqlite3_prepare_v2(db, sql, -1, &stmt, NULL) != SQLITE_OK) { fprintf(stderr, "%s: select failed: %s\n", fname, sqlite3_errmsg(db)); exit(EXIT_FAILURE); } sqlite3_bind_int(stmt, 1, z); sqlite3_bind_int(stmt, 2, x); sqlite3_bind_int(stmt, 3, (1LL << z) - 1 - y); while (sqlite3_step(stmt) == SQLITE_ROW) { int len = sqlite3_column_bytes(stmt, 0); const char *s = (const char *) sqlite3_column_blob(stmt, 0); if (z != oz) { fprintf(stderr, "%s: Warning: using tile %d/%u/%u instead of %d/%u/%u\n", fname, z, x, y, oz, ox, oy); } handle(std::string(s, len), z, x, y, 0, to_decode); handled = 1; } sqlite3_finalize(stmt); z--; x /= 2; y /= 2; } } if (sqlite3_close(db) != SQLITE_OK) { fprintf(stderr, "%s: could not close database: %s\n", fname, sqlite3_errmsg(db)); exit(EXIT_FAILURE); } } void usage(char **argv) { fprintf(stderr, "Usage: %s [-t projection] [-Z minzoom] [-z maxzoom] [-l layer ...] file.mbtiles [zoom x y]\n", argv[0]); exit(EXIT_FAILURE); } int main(int argc, char **argv) { extern int optind; extern char *optarg; int i; std::set to_decode; while ((i = getopt(argc, argv, "t:Z:z:l:")) != -1) { switch (i) { case 't': set_projection_or_exit(optarg); break; case 'z': maxzoom = atoi(optarg); break; case 'Z': minzoom = atoi(optarg); break; case 'l': to_decode.insert(optarg); break; default: usage(argv); } } if (argc == optind + 4) { decode(argv[optind], atoi(argv[optind + 1]), atoi(argv[optind + 2]), atoi(argv[optind + 3]), to_decode); } else if (argc == optind + 1) { decode(argv[optind], -1, -1, -1, to_decode); } else { usage(argv); } return 0; }