#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "mvt.hpp" #include "projection.hpp" #include "geometry.hpp" #include "write_json.hpp" int minzoom = 0; int maxzoom = 32; bool force = false; void do_stats(mvt_tile &tile, size_t size, bool compressed, int z, unsigned x, unsigned y) { printf("{ \"zoom\": %d, \"x\": %u, \"y\": %u, \"bytes\": %zu, \"compressed\": %s", z, x, y, size, compressed ? "true" : "false"); printf(", \"layers\": { "); for (size_t i = 0; i < tile.layers.size(); i++) { if (i != 0) { printf(", "); } fprintq(stdout, tile.layers[i].name.c_str()); int points = 0, lines = 0, polygons = 0; for (size_t j = 0; j < tile.layers[i].features.size(); j++) { if (tile.layers[i].features[j].type == mvt_point) { points++; } else if (tile.layers[i].features[j].type == mvt_linestring) { lines++; } else if (tile.layers[i].features[j].type == mvt_polygon) { polygons++; } } printf(": { \"points\": %d, \"lines\": %d, \"polygons\": %d, \"extent\": %lld }", points, lines, polygons, tile.layers[i].extent); } printf(" } }\n"); } void handle(std::string message, int z, unsigned x, unsigned y, int describe, std::set const &to_decode, bool pipeline, bool stats) { mvt_tile tile; bool was_compressed; try { if (!tile.decode(message, was_compressed)) { fprintf(stderr, "Couldn't parse tile %d/%u/%u\n", z, x, y); exit(EXIT_FAILURE); } } catch (protozero::unknown_pbf_wire_type_exception e) { fprintf(stderr, "PBF decoding error in tile %d/%u/%u\n", z, x, y); exit(EXIT_FAILURE); } if (stats) { do_stats(tile, message.size(), was_compressed, z, x, y); return; } if (!pipeline) { printf("{ \"type\": \"FeatureCollection\""); if (describe) { printf(", \"properties\": { \"zoom\": %d, \"x\": %d, \"y\": %d", z, x, y); if (!was_compressed) { printf(", \"compressed\": false"); } printf(" }"); if (projection != projections) { printf(", \"crs\": { \"type\": \"name\", \"properties\": { \"name\": "); fprintq(stdout, projection->alias); printf(" } }"); } } printf(", \"features\": [\n"); } bool first_layer = true; for (size_t l = 0; l < tile.layers.size(); l++) { mvt_layer &layer = tile.layers[l]; if (layer.extent <= 0) { fprintf(stderr, "Impossible layer extent %lld in mbtiles\n", layer.extent); exit(EXIT_FAILURE); } if (to_decode.size() != 0 && !to_decode.count(layer.name)) { continue; } if (!pipeline) { if (describe) { if (!first_layer) { printf(",\n"); } printf("{ \"type\": \"FeatureCollection\""); printf(", \"properties\": { \"layer\": "); fprintq(stdout, layer.name.c_str()); printf(", \"version\": %d, \"extent\": %lld", layer.version, layer.extent); printf(" }"); printf(", \"features\": [\n"); first_layer = false; } } // X and Y are unsigned, so no need to check <0 if (x > (1 << z) || y > (1 << z)) { fprintf(stderr, "Impossible tile %d/%u/%u\n", z, x, y); exit(EXIT_FAILURE); } layer_to_geojson(stdout, layer, z, x, y, !pipeline, pipeline, pipeline, 0, 0, 0, !force); if (!pipeline) { if (describe) { printf("] }\n"); } } } if (!pipeline) { printf("] }\n"); } } void decode(char *fname, int z, unsigned x, unsigned y, std::set const &to_decode, bool pipeline, bool stats) { sqlite3 *db; int oz = z; unsigned ox = x, oy = y; int fd = open(fname, O_RDONLY | O_CLOEXEC); if (fd >= 0) { struct stat st; if (fstat(fd, &st) == 0) { if (st.st_size < 50 * 1024 * 1024) { char *map = (char *) mmap(NULL, st.st_size, PROT_READ, MAP_PRIVATE, fd, 0); if (map != NULL && map != MAP_FAILED) { if (strcmp(map, "SQLite format 3") != 0) { if (z >= 0) { std::string s = std::string(map, st.st_size); handle(s, z, x, y, 1, to_decode, pipeline, stats); munmap(map, st.st_size); return; } else { fprintf(stderr, "Must specify zoom/x/y to decode a single pbf file\n"); exit(EXIT_FAILURE); } } } munmap(map, st.st_size); } } else { perror("fstat"); } if (close(fd) != 0) { perror("close"); exit(EXIT_FAILURE); } } else { perror(fname); } if (sqlite3_open(fname, &db) != SQLITE_OK) { fprintf(stderr, "%s: %s\n", fname, sqlite3_errmsg(db)); exit(EXIT_FAILURE); } if (z < 0) { int within = 0; if (!pipeline && !stats) { printf("{ \"type\": \"FeatureCollection\", \"properties\": {\n"); const char *sql2 = "SELECT name, value from metadata order by name;"; sqlite3_stmt *stmt2; if (sqlite3_prepare_v2(db, sql2, -1, &stmt2, NULL) != SQLITE_OK) { fprintf(stderr, "%s: select failed: %s\n", fname, sqlite3_errmsg(db)); exit(EXIT_FAILURE); } while (sqlite3_step(stmt2) == SQLITE_ROW) { if (within) { printf(",\n"); } within = 1; const unsigned char *name = sqlite3_column_text(stmt2, 0); const unsigned char *value = sqlite3_column_text(stmt2, 1); if (name == NULL || value == NULL) { fprintf(stderr, "Corrupt mbtiles file: null metadata\n"); exit(EXIT_FAILURE); } fprintq(stdout, (char *) name); printf(": "); fprintq(stdout, (char *) value); } sqlite3_finalize(stmt2); } if (stats) { printf("[\n"); } const char *sql = "SELECT tile_data, zoom_level, tile_column, tile_row from tiles where zoom_level between ? and ? order by zoom_level, tile_column, tile_row;"; sqlite3_stmt *stmt; if (sqlite3_prepare_v2(db, sql, -1, &stmt, NULL) != SQLITE_OK) { fprintf(stderr, "%s: select failed: %s\n", fname, sqlite3_errmsg(db)); exit(EXIT_FAILURE); } sqlite3_bind_int(stmt, 1, minzoom); sqlite3_bind_int(stmt, 2, maxzoom); if (!pipeline && !stats) { printf("\n}, \"features\": [\n"); } within = 0; while (sqlite3_step(stmt) == SQLITE_ROW) { if (!pipeline && !stats) { if (within) { printf(",\n"); } within = 1; } if (stats) { if (within) { printf(",\n"); } within = 1; } int len = sqlite3_column_bytes(stmt, 0); int tz = sqlite3_column_int(stmt, 1); int tx = sqlite3_column_int(stmt, 2); int ty = sqlite3_column_int(stmt, 3); if (tz < 0 || tz >= 32) { fprintf(stderr, "Impossible zoom level %d in mbtiles\n", tz); exit(EXIT_FAILURE); } ty = (1LL << tz) - 1 - ty; const char *s = (const char *) sqlite3_column_blob(stmt, 0); handle(std::string(s, len), tz, tx, ty, 1, to_decode, pipeline, stats); } if (!pipeline && !stats) { printf("] }\n"); } if (stats) { printf("]\n"); } sqlite3_finalize(stmt); } else { int handled = 0; while (z >= 0 && !handled) { const char *sql = "SELECT tile_data from tiles where zoom_level = ? and tile_column = ? and tile_row = ?;"; sqlite3_stmt *stmt; if (sqlite3_prepare_v2(db, sql, -1, &stmt, NULL) != SQLITE_OK) { fprintf(stderr, "%s: select failed: %s\n", fname, sqlite3_errmsg(db)); exit(EXIT_FAILURE); } sqlite3_bind_int(stmt, 1, z); sqlite3_bind_int(stmt, 2, x); sqlite3_bind_int(stmt, 3, (1LL << z) - 1 - y); while (sqlite3_step(stmt) == SQLITE_ROW) { int len = sqlite3_column_bytes(stmt, 0); const char *s = (const char *) sqlite3_column_blob(stmt, 0); if (z != oz) { fprintf(stderr, "%s: Warning: using tile %d/%u/%u instead of %d/%u/%u\n", fname, z, x, y, oz, ox, oy); } handle(std::string(s, len), z, x, y, 0, to_decode, pipeline, stats); handled = 1; } sqlite3_finalize(stmt); z--; x /= 2; y /= 2; } } if (sqlite3_close(db) != SQLITE_OK) { fprintf(stderr, "%s: could not close database: %s\n", fname, sqlite3_errmsg(db)); exit(EXIT_FAILURE); } } void usage(char **argv) { fprintf(stderr, "Usage: %s [-s projection] [-Z minzoom] [-z maxzoom] [-l layer ...] file.mbtiles [zoom x y]\n", argv[0]); exit(EXIT_FAILURE); } int main(int argc, char **argv) { extern int optind; extern char *optarg; int i; std::set to_decode; bool pipeline = false; bool stats = false; struct option long_options[] = { {"projection", required_argument, 0, 's'}, {"maximum-zoom", required_argument, 0, 'z'}, {"minimum-zoom", required_argument, 0, 'Z'}, {"layer", required_argument, 0, 'l'}, {"tag-layer-and-zoom", no_argument, 0, 'c'}, {"stats", no_argument, 0, 'S'}, {"force", no_argument, 0, 'f'}, {0, 0, 0, 0}, }; std::string getopt_str; for (size_t lo = 0; long_options[lo].name != NULL; lo++) { if (long_options[lo].val > ' ') { getopt_str.push_back(long_options[lo].val); if (long_options[lo].has_arg == required_argument) { getopt_str.push_back(':'); } } } while ((i = getopt_long(argc, argv, getopt_str.c_str(), long_options, NULL)) != -1) { switch (i) { case 0: break; case 's': set_projection_or_exit(optarg); break; case 'z': maxzoom = atoi(optarg); break; case 'Z': minzoom = atoi(optarg); break; case 'l': to_decode.insert(optarg); break; case 'c': pipeline = true; break; case 'S': stats = true; break; case 'f': force = true; break; default: usage(argv); } } if (argc == optind + 4) { decode(argv[optind], atoi(argv[optind + 1]), atoi(argv[optind + 2]), atoi(argv[optind + 3]), to_decode, pipeline, stats); } else if (argc == optind + 1) { decode(argv[optind], -1, -1, -1, to_decode, pipeline, stats); } else { usage(argv); } return 0; }