#ifdef MTRACE #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef __APPLE__ #include #include #endif #include "jsonpull.h" #include "tile.h" #include "pool.h" #include "mbtiles.h" #include "projection.h" #include "version.h" #include "memfile.h" static int low_detail = 12; static int full_detail = -1; static int min_detail = 7; int quiet = 0; int geometry_scale = 0; static int prevent[256]; static int additional[256]; #define GEOM_POINT 0 /* array of positions */ #define GEOM_MULTIPOINT 1 /* array of arrays of positions */ #define GEOM_LINESTRING 2 /* array of arrays of positions */ #define GEOM_MULTILINESTRING 3 /* array of arrays of arrays of positions */ #define GEOM_POLYGON 4 /* array of arrays of arrays of positions */ #define GEOM_MULTIPOLYGON 5 /* array of arrays of arrays of arrays of positions */ #define GEOM_TYPES 6 static const char *geometry_names[GEOM_TYPES] = { "Point", "MultiPoint", "LineString", "MultiLineString", "Polygon", "MultiPolygon", }; static int geometry_within[GEOM_TYPES] = { -1, /* point */ GEOM_POINT, /* multipoint */ GEOM_POINT, /* linestring */ GEOM_LINESTRING, /* multilinestring */ GEOM_LINESTRING, /* polygon */ GEOM_POLYGON, /* multipolygon */ }; static int mb_geometry[GEOM_TYPES] = { VT_POINT, VT_POINT, VT_LINE, VT_LINE, VT_POLYGON, VT_POLYGON, }; struct source { char *layer; char *file; struct source *next; }; int CPUS; int TEMP_FILES; #define MAX_ZOOM 24 void init_cpus() { CPUS = sysconf(_SC_NPROCESSORS_ONLN); if (CPUS < 1) { CPUS = 1; } // Guard against short struct index.segment if (CPUS > 32767) { CPUS = 32767; } // Round down to a power of 2 CPUS = 1 << (int) (log(CPUS) / log(2)); TEMP_FILES = 64; struct rlimit rl; if (getrlimit(RLIMIT_NOFILE, &rl) != 0) { perror("getrlimit"); } else { TEMP_FILES = rl.rlim_cur / 3; if (TEMP_FILES > CPUS * 4) { TEMP_FILES = CPUS * 4; } } } size_t fwrite_check(const void *ptr, size_t size, size_t nitems, FILE *stream, const char *fname) { size_t w = fwrite(ptr, size, nitems, stream); if (w != nitems) { fprintf(stderr, "%s: Write to temporary file failed: %s\n", fname, strerror(errno)); exit(EXIT_FAILURE); } return w; } void serialize_int(FILE *out, int n, long long *fpos, const char *fname) { serialize_long_long(out, n, fpos, fname); } void serialize_long_long(FILE *out, long long n, long long *fpos, const char *fname) { unsigned long long zigzag = (n << 1) ^ (n >> 63); while (1) { unsigned char b = zigzag & 0x7F; if ((zigzag >> 7) != 0) { b |= 0x80; if (putc(b, out) == EOF) { fprintf(stderr, "%s: Write to temporary file failed: %s\n", fname, strerror(errno)); exit(EXIT_FAILURE); } *fpos += 1; zigzag >>= 7; } else { if (putc(b, out) == EOF) { fprintf(stderr, "%s: Write to temporary file failed: %s\n", fname, strerror(errno)); exit(EXIT_FAILURE); } *fpos += 1; break; } } } void serialize_byte(FILE *out, signed char n, long long *fpos, const char *fname) { fwrite_check(&n, sizeof(signed char), 1, out, fname); *fpos += sizeof(signed char); } void serialize_uint(FILE *out, unsigned n, long long *fpos, const char *fname) { fwrite_check(&n, sizeof(unsigned), 1, out, fname); *fpos += sizeof(unsigned); } void parse_geometry(int t, json_object *j, long long *bbox, long long *fpos, FILE *out, int op, const char *fname, int line, long long *wx, long long *wy, int *initialized, unsigned *initial_x, unsigned *initial_y) { if (j == NULL || j->type != JSON_ARRAY) { fprintf(stderr, "%s:%d: expected array for type %d\n", fname, line, t); return; } int within = geometry_within[t]; if (within >= 0) { size_t i; for (i = 0; i < j->length; i++) { if (within == GEOM_POINT) { if (i == 0 || mb_geometry[t] == GEOM_MULTIPOINT) { op = VT_MOVETO; } else { op = VT_LINETO; } } parse_geometry(within, j->array[i], bbox, fpos, out, op, fname, line, wx, wy, initialized, initial_x, initial_y); } } else { if (j->length >= 2 && j->array[0]->type == JSON_NUMBER && j->array[1]->type == JSON_NUMBER) { long long x, y; double lon = j->array[0]->number; double lat = j->array[1]->number; latlon2tile(lat, lon, 32, &x, &y); if (j->length > 2) { static int warned = 0; if (!warned) { fprintf(stderr, "%s:%d: ignoring dimensions beyond two\n", fname, line); warned = 1; } } if (bbox != NULL) { if (x < bbox[0]) { bbox[0] = x; } if (y < bbox[1]) { bbox[1] = y; } if (x > bbox[2]) { bbox[2] = x; } if (y > bbox[3]) { bbox[3] = y; } } if (!*initialized) { if (x < 0 || x >= (1LL << 32) || y < 0 || y >= (1LL < 32)) { *initial_x = 1LL << 31; *initial_y = 1LL << 31; *wx = 1LL << 31; *wy = 1LL << 31; } else { *initial_x = (x >> geometry_scale) << geometry_scale; *initial_y = (y >> geometry_scale) << geometry_scale; *wx = x; *wy = y; } *initialized = 1; } serialize_byte(out, op, fpos, fname); serialize_long_long(out, (x >> geometry_scale) - (*wx >> geometry_scale), fpos, fname); serialize_long_long(out, (y >> geometry_scale) - (*wy >> geometry_scale), fpos, fname); *wx = x; *wy = y; } else { fprintf(stderr, "%s:%d: malformed point\n", fname, line); } } if (t == GEOM_POLYGON) { // Note that this is not using the correct meaning of closepath. // // We are using it here to close an entire Polygon, to distinguish // the Polygons within a MultiPolygon from each other. // // This will be undone in fix_polygon(), which needs to know which // rings come from which Polygons so that it can make the winding order // of the outer ring be the opposite of the order of the inner rings. serialize_byte(out, VT_CLOSEPATH, fpos, fname); } } void deserialize_int(char **f, int *n) { long long ll; deserialize_long_long(f, &ll); *n = ll; } void deserialize_long_long(char **f, long long *n) { unsigned long long zigzag = 0; int shift = 0; while (1) { if ((**f & 0x80) == 0) { zigzag |= ((unsigned long long) **f) << shift; *f += 1; shift += 7; break; } else { zigzag |= ((unsigned long long) (**f & 0x7F)) << shift; *f += 1; shift += 7; } } *n = (zigzag >> 1) ^ (-(zigzag & 1)); } void deserialize_uint(char **f, unsigned *n) { memcpy(n, *f, sizeof(unsigned)); *f += sizeof(unsigned); } void deserialize_byte(char **f, signed char *n) { memcpy(n, *f, sizeof(signed char)); *f += sizeof(signed char); } struct index { long long start; long long end; unsigned long long index; short segment; unsigned long long seq : (64 - 16); // pack with segment to stay in 32 bytes }; int indexcmp(const void *v1, const void *v2) { const struct index *i1 = (const struct index *) v1; const struct index *i2 = (const struct index *) v2; if (i1->index < i2->index) { return -1; } else if (i1->index > i2->index) { return 1; } if (i1->seq < i2->seq) { return -1; } else if (i1->seq > i2->seq) { return 1; } return 0; } struct merge { long long start; long long end; struct merge *next; }; static void insert(struct merge *m, struct merge **head, unsigned char *map) { while (*head != NULL && indexcmp(map + m->start, map + (*head)->start) > 0) { head = &((*head)->next); } m->next = *head; *head = m; } static void merge(struct merge *merges, int nmerges, unsigned char *map, FILE *f, int bytes, long long nrec, char *geom_map, FILE *geom_out, long long *geompos, long long *along, long long *reported, long long geom_total) { int i; struct merge *head = NULL; for (i = 0; i < nmerges; i++) { if (merges[i].start < merges[i].end) { insert(&(merges[i]), &head, map); } } while (head != NULL) { struct index *ix = (struct index *) (map + head->start); fwrite_check(geom_map + ix->start, 1, ix->end - ix->start, geom_out, "merge geometry"); *geompos += ix->end - ix->start; // Count this as a half-accomplishment, since we already half-counted it *along += (ix->end - ix->start) / 2; if (!quiet && 100 * *along / geom_total != *reported) { fprintf(stderr, "Reordering geometry: %lld%% \r", 100 * *along / geom_total); *reported = 100 * *along / geom_total; } fwrite_check(map + head->start, bytes, 1, f, "merge temporary"); head->start += bytes; struct merge *m = head; head = m->next; m->next = NULL; if (m->start < m->end) { insert(m, &head, map); } } } struct stringpool { long long left; long long right; long long off; }; static unsigned char swizzle[256] = { 0x00, 0xBF, 0x18, 0xDE, 0x93, 0xC9, 0xB1, 0x5E, 0xDF, 0xBE, 0x72, 0x5A, 0xBB, 0x42, 0x64, 0xC6, 0xD8, 0xB7, 0x15, 0x74, 0x1C, 0x8B, 0x91, 0xF5, 0x29, 0x46, 0xEC, 0x6F, 0xCA, 0x20, 0xF0, 0x06, 0x27, 0x61, 0x87, 0xE0, 0x6E, 0x43, 0x50, 0xC5, 0x1B, 0xB4, 0x37, 0xC3, 0x69, 0xA6, 0xEE, 0x80, 0xAF, 0x9B, 0xA1, 0x76, 0x23, 0x24, 0x53, 0xF3, 0x5B, 0x65, 0x19, 0xF4, 0xFC, 0xDD, 0x26, 0xE8, 0x10, 0xF7, 0xCE, 0x92, 0x48, 0xF6, 0x94, 0x60, 0x07, 0xC4, 0xB9, 0x97, 0x6D, 0xA4, 0x11, 0x0D, 0x1F, 0x4D, 0x13, 0xB0, 0x5D, 0xBA, 0x31, 0xD5, 0x8D, 0x51, 0x36, 0x96, 0x7A, 0x03, 0x7F, 0xDA, 0x17, 0xDB, 0xD4, 0x83, 0xE2, 0x79, 0x6A, 0xE1, 0x95, 0x38, 0xFF, 0x28, 0xB2, 0xB3, 0xA7, 0xAE, 0xF8, 0x54, 0xCC, 0xDC, 0x9A, 0x6B, 0xFB, 0x3F, 0xD7, 0xBC, 0x21, 0xC8, 0x71, 0x09, 0x16, 0xAC, 0x3C, 0x8A, 0x62, 0x05, 0xC2, 0x8C, 0x32, 0x4E, 0x35, 0x9C, 0x5F, 0x75, 0xCD, 0x2E, 0xA2, 0x3E, 0x1A, 0xC1, 0x8E, 0x14, 0xA0, 0xD3, 0x7D, 0xD9, 0xEB, 0x5C, 0x70, 0xE6, 0x9E, 0x12, 0x3B, 0xEF, 0x1E, 0x49, 0xD2, 0x98, 0x39, 0x7E, 0x44, 0x4B, 0x6C, 0x88, 0x02, 0x2C, 0xAD, 0xE5, 0x9F, 0x40, 0x7B, 0x4A, 0x3D, 0xA9, 0xAB, 0x0B, 0xD6, 0x2F, 0x90, 0x2A, 0xB6, 0x1D, 0xC7, 0x22, 0x55, 0x34, 0x0A, 0xD0, 0xB5, 0x68, 0xE3, 0x59, 0xFD, 0xFA, 0x57, 0x77, 0x25, 0xA3, 0x04, 0xB8, 0x33, 0x89, 0x78, 0x82, 0xE4, 0xC0, 0x0E, 0x8F, 0x85, 0xD1, 0x84, 0x08, 0x67, 0x47, 0x9D, 0xCB, 0x58, 0x4C, 0xAA, 0xED, 0x52, 0xF2, 0x4F, 0xF1, 0x66, 0xCF, 0xA5, 0x56, 0xEA, 0x7C, 0xE9, 0x63, 0xE7, 0x01, 0xF9, 0xFE, 0x0C, 0x99, 0x2D, 0x0F, 0x3A, 0x41, 0x45, 0xA8, 0x30, 0x2B, 0x73, 0xBD, 0x86, 0x81, }; int swizzlecmp(char *a, char *b) { while (*a || *b) { int aa = swizzle[(unsigned char) *a]; int bb = swizzle[(unsigned char) *b]; int cmp = aa - bb; if (cmp != 0) { return cmp; } a++; b++; } return 0; } long long addpool(struct memfile *poolfile, struct memfile *treefile, char *s, char type) { long long *sp = &treefile->tree; while (*sp != 0) { int cmp = swizzlecmp(s, poolfile->map + ((struct stringpool *) (treefile->map + *sp))->off + 1); if (cmp == 0) { cmp = type - (poolfile->map + ((struct stringpool *) (treefile->map + *sp))->off)[0]; } if (cmp < 0) { sp = &(((struct stringpool *) (treefile->map + *sp))->left); } else if (cmp > 0) { sp = &(((struct stringpool *) (treefile->map + *sp))->right); } else { return ((struct stringpool *) (treefile->map + *sp))->off; } } // *sp is probably in the memory-mapped file, and will move if the file grows. long long ssp; if (sp == &treefile->tree) { ssp = -1; } else { ssp = ((char *) sp) - treefile->map; } long long off = poolfile->off; if (memfile_write(poolfile, &type, 1) < 0) { perror("memfile write"); exit(EXIT_FAILURE); } if (memfile_write(poolfile, s, strlen(s) + 1) < 0) { perror("memfile write"); exit(EXIT_FAILURE); } struct stringpool tsp; tsp.left = 0; tsp.right = 0; tsp.off = off; long long p = treefile->off; if (memfile_write(treefile, &tsp, sizeof(struct stringpool)) < 0) { perror("memfile write"); exit(EXIT_FAILURE); } if (ssp == -1) { treefile->tree = p; } else { *((long long *) (treefile->map + ssp)) = p; } return off; } int serialize_geometry(json_object *geometry, json_object *properties, const char *reading, int line, volatile long long *layer_seq, volatile long long *progress_seq, long long *metapos, long long *geompos, long long *indexpos, struct pool *exclude, struct pool *include, int exclude_all, FILE *metafile, FILE *geomfile, FILE *indexfile, struct memfile *poolfile, struct memfile *treefile, const char *fname, int basezoom, int layer, double droprate, long long *file_bbox, json_object *tippecanoe, int segment, int *initialized, unsigned *initial_x, unsigned *initial_y) { json_object *geometry_type = json_hash_get(geometry, "type"); if (geometry_type == NULL) { static int warned = 0; if (!warned) { fprintf(stderr, "%s:%d: null geometry (additional not reported)\n", reading, line); warned = 1; } return 0; } if (geometry_type->type != JSON_STRING) { fprintf(stderr, "%s:%d: geometry without type\n", reading, line); return 0; } json_object *coordinates = json_hash_get(geometry, "coordinates"); if (coordinates == NULL || coordinates->type != JSON_ARRAY) { fprintf(stderr, "%s:%d: feature without coordinates array\n", reading, line); return 0; } int t; for (t = 0; t < GEOM_TYPES; t++) { if (strcmp(geometry_type->string, geometry_names[t]) == 0) { break; } } if (t >= GEOM_TYPES) { fprintf(stderr, "%s:%d: Can't handle geometry type %s\n", reading, line, geometry_type->string); return 0; } int tippecanoe_minzoom = -1; int tippecanoe_maxzoom = -1; if (tippecanoe != NULL) { json_object *min = json_hash_get(tippecanoe, "minzoom"); if (min != NULL && min->type == JSON_NUMBER) { tippecanoe_minzoom = min->number; } if (min != NULL && min->type == JSON_STRING) { tippecanoe_minzoom = atoi(min->string); } json_object *max = json_hash_get(tippecanoe, "maxzoom"); if (max != NULL && max->type == JSON_NUMBER) { tippecanoe_maxzoom = max->number; } if (max != NULL && max->type == JSON_STRING) { tippecanoe_maxzoom = atoi(max->string); } } long long bbox[] = {UINT_MAX, UINT_MAX, 0, 0}; int nprop = 0; if (properties != NULL && properties->type == JSON_HASH) { nprop = properties->length; } long long metastart = *metapos; char *metakey[nprop]; char *metaval[nprop]; int metatype[nprop]; int mustfree[nprop]; int m = 0; int i; for (i = 0; i < nprop; i++) { if (properties->keys[i]->type == JSON_STRING) { if (exclude_all) { if (!is_pooled(include, properties->keys[i]->string, VT_STRING)) { continue; } } else if (is_pooled(exclude, properties->keys[i]->string, VT_STRING)) { continue; } metakey[m] = properties->keys[i]->string; mustfree[m] = 0; if (properties->values[i] != NULL && properties->values[i]->type == JSON_STRING) { metatype[m] = VT_STRING; metaval[m] = properties->values[i]->string; m++; } else if (properties->values[i] != NULL && properties->values[i]->type == JSON_NUMBER) { metatype[m] = VT_NUMBER; metaval[m] = properties->values[i]->string; m++; } else if (properties->values[i] != NULL && (properties->values[i]->type == JSON_TRUE || properties->values[i]->type == JSON_FALSE)) { metatype[m] = VT_BOOLEAN; metaval[m] = properties->values[i]->type == JSON_TRUE ? "true" : "false"; m++; } else if (properties->values[i] != NULL && (properties->values[i]->type == JSON_NULL)) { ; } else { metatype[m] = VT_STRING; metaval[m] = json_stringify(properties->values[i]); mustfree[m] = 1; m++; } } } for (i = 0; i < m; i++) { serialize_long_long(metafile, addpool(poolfile, treefile, metakey[i], VT_STRING), metapos, fname); serialize_long_long(metafile, addpool(poolfile, treefile, metaval[i], metatype[i]), metapos, fname); if (mustfree[i]) { free(metaval[i]); } } long long geomstart = *geompos; serialize_byte(geomfile, mb_geometry[t], geompos, fname); serialize_long_long(geomfile, *layer_seq, geompos, fname); serialize_long_long(geomfile, (layer << 2) | ((tippecanoe_minzoom != -1) << 1) | (tippecanoe_maxzoom != -1), geompos, fname); if (tippecanoe_minzoom != -1) { serialize_int(geomfile, tippecanoe_minzoom, geompos, fname); } if (tippecanoe_maxzoom != -1) { serialize_int(geomfile, tippecanoe_maxzoom, geompos, fname); } serialize_int(geomfile, segment, geompos, fname); serialize_long_long(geomfile, metastart, geompos, fname); serialize_int(geomfile, m, geompos, fname); long long wx = *initial_x, wy = *initial_y; parse_geometry(t, coordinates, bbox, geompos, geomfile, VT_MOVETO, fname, line, &wx, &wy, initialized, initial_x, initial_y); serialize_byte(geomfile, VT_END, geompos, fname); /* * Note that feature_minzoom for lines is the dimension * of the geometry in world coordinates, but * for points is the lowest zoom level (in tiles, * not in pixels) at which it should be drawn. * * So a line that is too small for, say, z8 * will have feature_minzoom of 18 (if tile detail is 10), * not 8. */ int feature_minzoom = 0; if (mb_geometry[t] == VT_LINE) { for (feature_minzoom = 0; feature_minzoom < 31; feature_minzoom++) { unsigned mask = 1 << (32 - (feature_minzoom + 1)); if (((bbox[0] & mask) != (bbox[2] & mask)) || ((bbox[1] & mask) != (bbox[3] & mask))) { break; } } } else if (mb_geometry[t] == VT_POINT) { double r = ((double) rand()) / RAND_MAX; if (r == 0) { r = .00000001; } feature_minzoom = basezoom - floor(log(r) / -log(droprate)); } serialize_byte(geomfile, feature_minzoom, geompos, fname); struct index index; index.start = geomstart; index.end = *geompos; index.segment = segment; index.seq = *layer_seq; // Calculate the center even if off the edge of the plane, // and then mask to bring it back into the addressable area long long midx = (bbox[0] / 2 + bbox[2] / 2) & ((1LL << 32) - 1); long long midy = (bbox[1] / 2 + bbox[3] / 2) & ((1LL << 32) - 1); index.index = encode(midx, midy); fwrite_check(&index, sizeof(struct index), 1, indexfile, fname); *indexpos += sizeof(struct index); for (i = 0; i < 2; i++) { if (bbox[i] < file_bbox[i]) { file_bbox[i] = bbox[i]; } } for (i = 2; i < 4; i++) { if (bbox[i] > file_bbox[i]) { file_bbox[i] = bbox[i]; } } if (*progress_seq % 10000 == 0) { if (!quiet) { fprintf(stderr, "Read %.2f million features\r", *progress_seq / 1000000.0); } } (*progress_seq)++; (*layer_seq)++; return 1; } void parse_json(json_pull *jp, const char *reading, volatile long long *layer_seq, volatile long long *progress_seq, long long *metapos, long long *geompos, long long *indexpos, struct pool *exclude, struct pool *include, int exclude_all, FILE *metafile, FILE *geomfile, FILE *indexfile, struct memfile *poolfile, struct memfile *treefile, char *fname, int basezoom, int layer, double droprate, long long *file_bbox, int segment, int *initialized, unsigned *initial_x, unsigned *initial_y) { long long found_hashes = 0; long long found_features = 0; long long found_geometries = 0; while (1) { json_object *j = json_read(jp); if (j == NULL) { if (jp->error != NULL) { fprintf(stderr, "%s:%d: %s\n", reading, jp->line, jp->error); } json_free(jp->root); break; } if (j->type == JSON_HASH) { found_hashes++; if (found_hashes == 50 && found_features == 0 && found_geometries == 0) { fprintf(stderr, "%s:%d: Warning: not finding any GeoJSON features or geometries in input yet after 50 objects.\n", reading, jp->line); } } json_object *type = json_hash_get(j, "type"); if (type == NULL || type->type != JSON_STRING) { continue; } if (found_features == 0) { int i; int is_geometry = 0; for (i = 0; i < GEOM_TYPES; i++) { if (strcmp(type->string, geometry_names[i]) == 0) { is_geometry = 1; break; } } if (is_geometry) { if (j->parent != NULL) { if (j->parent->type == JSON_ARRAY) { if (j->parent->parent->type == JSON_HASH) { json_object *geometries = json_hash_get(j->parent->parent, "geometries"); if (geometries != NULL) { // Parent of Parent must be a GeometryCollection is_geometry = 0; } } } else if (j->parent->type == JSON_HASH) { json_object *geometry = json_hash_get(j->parent, "geometry"); if (geometry != NULL) { // Parent must be a Feature is_geometry = 0; } } } } if (is_geometry) { if (found_features != 0 && found_geometries == 0) { fprintf(stderr, "%s:%d: Warning: found a mixture of features and bare geometries\n", reading, jp->line); } found_geometries++; serialize_geometry(j, NULL, reading, jp->line, layer_seq, progress_seq, metapos, geompos, indexpos, exclude, include, exclude_all, metafile, geomfile, indexfile, poolfile, treefile, fname, basezoom, layer, droprate, file_bbox, NULL, segment, initialized, initial_x, initial_y); json_free(j); continue; } } if (strcmp(type->string, "Feature") != 0) { continue; } if (found_features == 0 && found_geometries != 0) { fprintf(stderr, "%s:%d: Warning: found a mixture of features and bare geometries\n", reading, jp->line); } found_features++; json_object *geometry = json_hash_get(j, "geometry"); if (geometry == NULL) { fprintf(stderr, "%s:%d: feature with no geometry\n", reading, jp->line); json_free(j); continue; } json_object *properties = json_hash_get(j, "properties"); if (properties == NULL || (properties->type != JSON_HASH && properties->type != JSON_NULL)) { fprintf(stderr, "%s:%d: feature without properties hash\n", reading, jp->line); json_free(j); continue; } json_object *tippecanoe = json_hash_get(j, "tippecanoe"); json_object *geometries = json_hash_get(geometry, "geometries"); if (geometries != NULL) { size_t g; for (g = 0; g < geometries->length; g++) { serialize_geometry(geometries->array[g], properties, reading, jp->line, layer_seq, progress_seq, metapos, geompos, indexpos, exclude, include, exclude_all, metafile, geomfile, indexfile, poolfile, treefile, fname, basezoom, layer, droprate, file_bbox, tippecanoe, segment, initialized, initial_x, initial_y); } } else { serialize_geometry(geometry, properties, reading, jp->line, layer_seq, progress_seq, metapos, geompos, indexpos, exclude, include, exclude_all, metafile, geomfile, indexfile, poolfile, treefile, fname, basezoom, layer, droprate, file_bbox, tippecanoe, segment, initialized, initial_x, initial_y); } json_free(j); /* XXX check for any non-features in the outer object */ } } struct parse_json_args { json_pull *jp; const char *reading; volatile long long *layer_seq; volatile long long *progress_seq; long long *metapos; long long *geompos; long long *indexpos; struct pool *exclude; struct pool *include; int exclude_all; FILE *metafile; FILE *geomfile; FILE *indexfile; struct memfile *poolfile; struct memfile *treefile; char *fname; int basezoom; int layer; double droprate; long long *file_bbox; int segment; int *initialized; unsigned *initial_x; unsigned *initial_y; }; void *run_parse_json(void *v) { struct parse_json_args *pja = v; parse_json(pja->jp, pja->reading, pja->layer_seq, pja->progress_seq, pja->metapos, pja->geompos, pja->indexpos, pja->exclude, pja->include, pja->exclude_all, pja->metafile, pja->geomfile, pja->indexfile, pja->poolfile, pja->treefile, pja->fname, pja->basezoom, pja->layer, pja->droprate, pja->file_bbox, pja->segment, pja->initialized, pja->initial_x, pja->initial_y); return NULL; } struct jsonmap { char *map; unsigned long long off; unsigned long long end; }; ssize_t json_map_read(struct json_pull *jp, char *buffer, size_t n) { struct jsonmap *jm = jp->source; if (jm->off + n >= jm->end) { n = jm->end - jm->off; } memcpy(buffer, jm->map + jm->off, n); jm->off += n; return n; } struct json_pull *json_begin_map(char *map, long long len) { struct jsonmap *jm = malloc(sizeof(struct jsonmap)); if (jm == NULL) { perror("Out of memory"); exit(EXIT_FAILURE); } jm->map = map; jm->off = 0; jm->end = len; return json_begin(json_map_read, jm); } struct reader { char *metaname; char *poolname; char *treename; char *geomname; char *indexname; int metafd; int poolfd; int treefd; int geomfd; int indexfd; FILE *metafile; struct memfile *poolfile; struct memfile *treefile; FILE *geomfile; FILE *indexfile; long long metapos; long long geompos; long long indexpos; long long *file_bbox; struct stat geomst; struct stat metast; char *geom_map; }; struct sort_arg { int task; int cpus; long long indexpos; struct merge *merges; int indexfd; int nmerges; long long unit; int bytes; }; void *run_sort(void *v) { struct sort_arg *a = v; long long start; for (start = a->task * a->unit; start < a->indexpos; start += a->unit * a->cpus) { long long end = start + a->unit; if (end > a->indexpos) { end = a->indexpos; } a->merges[start / a->unit].start = start; a->merges[start / a->unit].end = end; a->merges[start / a->unit].next = NULL; // MAP_PRIVATE to avoid disk writes if it fits in memory void *map = mmap(NULL, end - start, PROT_READ | PROT_WRITE, MAP_PRIVATE, a->indexfd, start); if (map == MAP_FAILED) { perror("mmap in run_sort"); exit(EXIT_FAILURE); } qsort(map, (end - start) / a->bytes, a->bytes, indexcmp); // Sorting and then copying avoids disk access to // write out intermediate stages of the sort. void *map2 = mmap(NULL, end - start, PROT_READ | PROT_WRITE, MAP_SHARED, a->indexfd, start); if (map2 == MAP_FAILED) { perror("mmap (write)"); exit(EXIT_FAILURE); } memcpy(map2, map, end - start); munmap(map, end - start); munmap(map2, end - start); } return NULL; } void do_read_parallel(char *map, long long len, long long initial_offset, const char *reading, struct reader *reader, volatile long long *progress_seq, struct pool *exclude, struct pool *include, int exclude_all, char *fname, int basezoom, int source, int nlayers, double droprate, int *initialized, unsigned *initial_x, unsigned *initial_y) { long long segs[CPUS + 1]; segs[0] = 0; segs[CPUS] = len; int i; for (i = 1; i < CPUS; i++) { segs[i] = len * i / CPUS; while (segs[i] < len && map[segs[i]] != '\n') { segs[i]++; } } volatile long long layer_seq[CPUS]; for (i = 0; i < CPUS; i++) { // To preserve feature ordering, unique id for each segment // begins with that segment's offset into the input layer_seq[i] = segs[i] + initial_offset; } struct parse_json_args pja[CPUS]; pthread_t pthreads[CPUS]; for (i = 0; i < CPUS; i++) { pja[i].jp = json_begin_map(map + segs[i], segs[i + 1] - segs[i]); pja[i].reading = reading; pja[i].layer_seq = &layer_seq[i]; pja[i].progress_seq = progress_seq; pja[i].metapos = &reader[i].metapos; pja[i].geompos = &reader[i].geompos; pja[i].indexpos = &reader[i].indexpos; pja[i].exclude = exclude; pja[i].include = include; pja[i].exclude_all = exclude_all; pja[i].metafile = reader[i].metafile; pja[i].geomfile = reader[i].geomfile; pja[i].indexfile = reader[i].indexfile; pja[i].poolfile = reader[i].poolfile; pja[i].treefile = reader[i].treefile; pja[i].fname = fname; pja[i].basezoom = basezoom; pja[i].layer = source < nlayers ? source : 0; pja[i].droprate = droprate; pja[i].file_bbox = reader[i].file_bbox; pja[i].segment = i; pja[i].initialized = &initialized[i]; pja[i].initial_x = &initial_x[i]; pja[i].initial_y = &initial_y[i]; if (pthread_create(&pthreads[i], NULL, run_parse_json, &pja[i]) != 0) { perror("pthread_create"); exit(EXIT_FAILURE); } } for (i = 0; i < CPUS; i++) { void *retval; if (pthread_join(pthreads[i], &retval) != 0) { perror("pthread_join"); } free(pja[i].jp->source); json_end(pja[i].jp); } } struct read_parallel_arg { int fd; FILE *fp; long long offset; long long len; volatile int *is_parsing; const char *reading; struct reader *reader; volatile long long *progress_seq; struct pool *exclude; struct pool *include; int exclude_all; char *fname; int maxzoom; int basezoom; int source; int nlayers; double droprate; int *initialized; unsigned *initial_x; unsigned *initial_y; }; void *run_read_parallel(void *v) { struct read_parallel_arg *a = v; struct stat st; if (fstat(a->fd, &st) != 0) { perror("stat read temp"); } if (a->len != st.st_size) { fprintf(stderr, "wrong number of bytes in temporary: %lld vs %lld\n", a->len, (long long) st.st_size); } a->len = st.st_size; char *map = mmap(NULL, a->len, PROT_READ, MAP_PRIVATE, a->fd, 0); if (map == NULL || map == MAP_FAILED) { perror("map intermediate input"); exit(EXIT_FAILURE); } do_read_parallel(map, a->len, a->offset, a->reading, a->reader, a->progress_seq, a->exclude, a->include, a->exclude_all, a->fname, a->basezoom, a->source, a->nlayers, a->droprate, a->initialized, a->initial_x, a->initial_y); if (munmap(map, a->len) != 0) { perror("munmap source file"); } if (fclose(a->fp) != 0) { perror("close source file"); } *(a->is_parsing) = 0; free(a); return NULL; } void start_parsing(int fd, FILE *fp, long long offset, long long len, volatile int *is_parsing, pthread_t *parallel_parser, const char *reading, struct reader *reader, volatile long long *progress_seq, struct pool *exclude, struct pool *include, int exclude_all, char *fname, int basezoom, int source, int nlayers, double droprate, int *initialized, unsigned *initial_x, unsigned *initial_y) { // This has to kick off an intermediate thread to start the parser threads, // so the main thread can get back to reading the next input stage while // the intermediate thread waits for the completion of the parser threads. *is_parsing = 1; struct read_parallel_arg *rpa = malloc(sizeof(struct read_parallel_arg)); if (rpa == NULL) { perror("Out of memory"); exit(EXIT_FAILURE); } rpa->fd = fd; rpa->fp = fp; rpa->offset = offset; rpa->len = len; rpa->is_parsing = is_parsing; rpa->reading = reading; rpa->reader = reader; rpa->progress_seq = progress_seq; rpa->exclude = exclude; rpa->include = include; rpa->exclude_all = exclude_all; rpa->fname = fname; rpa->basezoom = basezoom; rpa->source = source; rpa->nlayers = nlayers; rpa->droprate = droprate; rpa->initialized = initialized; rpa->initial_x = initial_x; rpa->initial_y = initial_y; if (pthread_create(parallel_parser, NULL, run_read_parallel, rpa) != 0) { perror("pthread_create"); exit(EXIT_FAILURE); } } void radix1(int *geomfds_in, int *indexfds_in, int inputs, int prefix, int splits, long long mem, const char *tmpdir, int availfiles, FILE *geomfile, FILE *indexfile, long long *geompos_out, long long geom_total, long long *reported) { // Arranged as bits to facilitate subdividing again if a subdivided file is still huge int splitbits = log(splits) / log(2); splits = 1 << splitbits; FILE *geomfiles[splits]; FILE *indexfiles[splits]; int geomfds[splits]; int indexfds[splits]; long long geompos[splits]; int i; for (i = 0; i < splits; i++) { geompos[i] = 0; char geomname[strlen(tmpdir) + strlen("/geom.XXXXXXXX") + 1]; sprintf(geomname, "%s%s", tmpdir, "/geom.XXXXXXXX"); char indexname[strlen(tmpdir) + strlen("/index.XXXXXXXX") + 1]; sprintf(indexname, "%s%s", tmpdir, "/index.XXXXXXXX"); geomfds[i] = mkstemp(geomname); if (geomfds[i] < 0) { perror(geomname); exit(EXIT_FAILURE); } indexfds[i] = mkstemp(indexname); if (indexfds[i] < 0) { perror(indexname); exit(EXIT_FAILURE); } geomfiles[i] = fopen(geomname, "wb"); if (geomfiles[i] == NULL) { perror(geomname); exit(EXIT_FAILURE); } indexfiles[i] = fopen(indexname, "wb"); if (indexfiles[i] == NULL) { perror(indexname); exit(EXIT_FAILURE); } availfiles -= 4; unlink(geomname); unlink(indexname); } long long along = *geompos_out; for (i = 0; i < inputs; i++) { struct stat geomst, indexst; if (fstat(geomfds_in[i], &geomst) < 0) { perror("stat geom"); exit(EXIT_FAILURE); } if (fstat(indexfds_in[i], &indexst) < 0) { perror("stat index"); exit(EXIT_FAILURE); } if (indexst.st_size == 0) { continue; // no indices from this input } struct index *indexmap = mmap(NULL, indexst.st_size, PROT_READ, MAP_PRIVATE, indexfds_in[i], 0); if (indexmap == MAP_FAILED) { fprintf(stderr, "fd %lld, len %lld\n", (long long) indexfds_in[i], (long long) indexst.st_size); perror("map index"); exit(EXIT_FAILURE); } char *geommap = mmap(NULL, geomst.st_size, PROT_READ, MAP_PRIVATE, geomfds_in[i], 0); if (geommap == MAP_FAILED) { perror("map geom"); exit(EXIT_FAILURE); } long long a; for (a = 0; a < indexst.st_size / sizeof(struct index); a++) { struct index ix = indexmap[a]; unsigned long long which = (ix.index << prefix) >> (64 - splitbits); long long pos = geompos[which]; fwrite_check(geommap + ix.start, ix.end - ix.start, 1, geomfiles[which], "geom"); geompos[which] += ix.end - ix.start; // Count this as a half-accomplishment, since we will copy again along += (ix.end - ix.start) / 2; if (!quiet && 100 * along / geom_total != *reported) { fprintf(stderr, "Reordering geometry: %lld%% \r", 100 * along / geom_total); *reported = 100 * along / geom_total; } ix.start = pos; ix.end = geompos[which]; fwrite_check(&ix, sizeof(struct index), 1, indexfiles[which], "index"); } if (munmap(indexmap, indexst.st_size) < 0) { perror("unmap index"); exit(EXIT_FAILURE); } if (munmap(geommap, geomst.st_size) < 0) { perror("unmap geom"); exit(EXIT_FAILURE); } if (close(geomfds_in[i]) < 0) { perror("close geom"); exit(EXIT_FAILURE); } if (close(indexfds_in[i]) < 0) { perror("close index"); exit(EXIT_FAILURE); } availfiles += 2; } for (i = 0; i < splits; i++) { fclose(geomfiles[i]); fclose(indexfiles[i]); availfiles += 2; } for (i = 0; i < splits; i++) { int already_closed = 0; struct stat geomst, indexst; if (fstat(geomfds[i], &geomst) < 0) { perror("stat geom"); exit(EXIT_FAILURE); } if (fstat(indexfds[i], &indexst) < 0) { perror("stat index"); exit(EXIT_FAILURE); } if (indexst.st_size > 0) { struct index *indexmap = mmap(NULL, indexst.st_size, PROT_READ, MAP_PRIVATE, indexfds[i], 0); if (indexmap == MAP_FAILED) { fprintf(stderr, "fd %lld, len %lld\n", (long long) indexfds[i], (long long) indexst.st_size); perror("map index"); exit(EXIT_FAILURE); } char *geommap = mmap(NULL, geomst.st_size, PROT_READ, MAP_PRIVATE, geomfds[i], 0); if (geommap == MAP_FAILED) { perror("map geom"); exit(EXIT_FAILURE); } if (indexst.st_size > sizeof(struct index) && indexst.st_size + geomst.st_size < mem) { // XXX Unmap and remap since the sort will change the underlying file if (munmap(indexmap, indexst.st_size) < 0) { perror("unmap index"); exit(EXIT_FAILURE); } long long indexpos = indexst.st_size; int bytes = sizeof(struct index); int page = sysconf(_SC_PAGESIZE); long long unit = (50 * 1024 * 1024 / bytes) * bytes; while (unit % page != 0) { unit += bytes; } int nmerges = (indexpos + unit - 1) / unit; struct merge merges[nmerges]; int a; for (a = 0; a < nmerges; a++) { merges[a].start = merges[a].end = 0; } pthread_t pthreads[CPUS]; struct sort_arg args[CPUS]; for (a = 0; a < CPUS; a++) { args[a].task = a; args[a].cpus = CPUS; args[a].indexpos = indexpos; args[a].merges = merges; args[a].indexfd = indexfds[i]; args[a].nmerges = nmerges; args[a].unit = unit; args[a].bytes = bytes; if (pthread_create(&pthreads[a], NULL, run_sort, &args[a]) != 0) { perror("pthread_create"); exit(EXIT_FAILURE); } } for (a = 0; a < CPUS; a++) { void *retval; if (pthread_join(pthreads[a], &retval) != 0) { perror("pthread_join"); } } indexmap = mmap(NULL, indexst.st_size, PROT_READ, MAP_PRIVATE, indexfds[i], 0); if (indexmap == MAP_FAILED) { fprintf(stderr, "fd %lld, len %lld\n", (long long) indexfds[i], (long long) indexst.st_size); perror("map index"); exit(EXIT_FAILURE); } merge(merges, nmerges, (unsigned char *) indexmap, indexfile, bytes, indexpos / bytes, geommap, geomfile, geompos, &along, reported, geom_total); } else if (indexst.st_size == sizeof(struct index) || prefix + splitbits >= 64) { long long a; for (a = 0; a < indexst.st_size / sizeof(struct index); a++) { struct index ix = indexmap[a]; long long pos = *geompos; fwrite_check(geommap + ix.start, ix.end - ix.start, 1, geomfile, "geom"); *geompos += ix.end - ix.start; ix.start = pos; ix.end = *geompos; fwrite_check(&ix, sizeof(struct index), 1, indexfile, "index"); } } else { radix1(&geomfds[i], &indexfds[i], 1, prefix + splitbits, availfiles / 4, mem, tmpdir, availfiles, geomfile, indexfile, geompos_out, geom_total, reported); already_closed = 1; } if (munmap(indexmap, indexst.st_size) < 0) { perror("unmap index"); exit(EXIT_FAILURE); } if (munmap(geommap, geomst.st_size) < 0) { perror("unmap geom"); exit(EXIT_FAILURE); } } if (!already_closed) { if (close(geomfds[i]) < 0) { perror("close geom"); exit(EXIT_FAILURE); } if (close(indexfds[i]) < 0) { perror("close index"); exit(EXIT_FAILURE); } } availfiles += 2; } } void radix(struct reader *reader, int nreaders, FILE *geomfile, int geomfd, FILE *indexfile, int indexfd, const char *tmpdir, long long *geompos) { // Run through the index and geometry for each reader, // splitting the contents out by index into as many // sub-files as we can write to simultaneously. // Then sort each of those by index, recursively if it is // too big to fit in memory. // Then concatenate each of the sub-outputs into a final output. struct rlimit rl; if (getrlimit(RLIMIT_NOFILE, &rl) != 0) { perror("getrlimit"); exit(EXIT_FAILURE); } long long mem; #ifdef __APPLE__ int64_t hw_memsize; size_t len = sizeof(int64_t); if (sysctlbyname("hw.memsize", &hw_memsize, &len, NULL, 0) < 0) { perror("sysctl hw.memsize"); exit(EXIT_FAILURE); } mem = hw_memsize; #else long long pagesize = sysconf(_SC_PAGESIZE); long long pages = sysconf(_SC_PHYS_PAGES); if (pages < 0 || pagesize < 0) { perror("sysconf _SC_PAGESIZE or _SC_PHYS_PAGES"); exit(EXIT_FAILURE); } mem = (long long) pages * pagesize; #endif long long availfiles = rl.rlim_cur - 2 * nreaders // each reader has a geom and an index - 4 // pool, meta, mbtiles, mbtiles journal - 4 // top-level geom and index output, both FILE and fd - 3; // stdin, stdout, stderr // 4 because for each we have output and input FILE and fd for geom and index int splits = availfiles / 4; // Be somewhat conservative about memory availability because the whole point of this // is to keep from thrashing by working on chunks that will fit in memory. mem /= 2; long long geom_total = 0; int geomfds[nreaders]; int indexfds[nreaders]; int i; for (i = 0; i < nreaders; i++) { geomfds[i] = reader[i].geomfd; indexfds[i] = reader[i].indexfd; struct stat geomst; if (fstat(reader[i].geomfd, &geomst) < 0) { perror("stat geom"); exit(EXIT_FAILURE); } geom_total += geomst.st_size; } long long reported = -1; radix1(geomfds, indexfds, nreaders, 0, splits, mem, tmpdir, availfiles, geomfile, indexfile, geompos, geom_total, &reported); } int read_json(int argc, struct source **sourcelist, char *fname, const char *layername, int maxzoom, int minzoom, int basezoom, double basezoom_marker_width, sqlite3 *outdb, struct pool *exclude, struct pool *include, int exclude_all, double droprate, int buffer, const char *tmpdir, double gamma, int *prevent, int *additional, int read_parallel, int forcetable) { int ret = EXIT_SUCCESS; struct reader reader[CPUS]; int i; for (i = 0; i < CPUS; i++) { struct reader *r = reader + i; r->metaname = malloc(strlen(tmpdir) + strlen("/meta.XXXXXXXX") + 1); r->poolname = malloc(strlen(tmpdir) + strlen("/pool.XXXXXXXX") + 1); r->treename = malloc(strlen(tmpdir) + strlen("/tree.XXXXXXXX") + 1); r->geomname = malloc(strlen(tmpdir) + strlen("/geom.XXXXXXXX") + 1); r->indexname = malloc(strlen(tmpdir) + strlen("/index.XXXXXXXX") + 1); if (r->metaname == NULL || r->poolname == NULL || r->treename == NULL || r->geomname == NULL || r->indexname == NULL) { perror("Out of memory"); exit(EXIT_FAILURE); } sprintf(r->metaname, "%s%s", tmpdir, "/meta.XXXXXXXX"); sprintf(r->poolname, "%s%s", tmpdir, "/pool.XXXXXXXX"); sprintf(r->treename, "%s%s", tmpdir, "/tree.XXXXXXXX"); sprintf(r->geomname, "%s%s", tmpdir, "/geom.XXXXXXXX"); sprintf(r->indexname, "%s%s", tmpdir, "/index.XXXXXXXX"); r->metafd = mkstemp(r->metaname); if (r->metafd < 0) { perror(r->metaname); exit(EXIT_FAILURE); } r->poolfd = mkstemp(r->poolname); if (r->poolfd < 0) { perror(r->poolname); exit(EXIT_FAILURE); } r->treefd = mkstemp(r->treename); if (r->treefd < 0) { perror(r->treename); exit(EXIT_FAILURE); } r->geomfd = mkstemp(r->geomname); if (r->geomfd < 0) { perror(r->geomname); exit(EXIT_FAILURE); } r->indexfd = mkstemp(r->indexname); if (r->indexfd < 0) { perror(r->indexname); exit(EXIT_FAILURE); } r->metafile = fopen(r->metaname, "wb"); if (r->metafile == NULL) { perror(r->metaname); exit(EXIT_FAILURE); } r->poolfile = memfile_open(r->poolfd); if (r->poolfile == NULL) { perror(r->poolname); exit(EXIT_FAILURE); } r->treefile = memfile_open(r->treefd); if (r->treefile == NULL) { perror(r->treename); exit(EXIT_FAILURE); } r->geomfile = fopen(r->geomname, "wb"); if (r->geomfile == NULL) { perror(r->geomname); exit(EXIT_FAILURE); } r->indexfile = fopen(r->indexname, "wb"); if (r->indexfile == NULL) { perror(r->indexname); exit(EXIT_FAILURE); } r->metapos = 0; r->geompos = 0; r->indexpos = 0; unlink(r->metaname); unlink(r->poolname); unlink(r->treename); unlink(r->geomname); unlink(r->indexname); // To distinguish a null value { struct stringpool p; memfile_write(r->treefile, &p, sizeof(struct stringpool)); } // Keep metadata file from being completely empty if no attributes serialize_int(r->metafile, 0, &r->metapos, "meta"); r->file_bbox = malloc(4 * sizeof(long long)); if (r->file_bbox == NULL) { perror("Out of memory"); exit(EXIT_FAILURE); } r->file_bbox[0] = r->file_bbox[1] = UINT_MAX; r->file_bbox[2] = r->file_bbox[3] = 0; } volatile long long progress_seq = 0; int initialized[CPUS]; unsigned initial_x[CPUS], initial_y[CPUS]; for (i = 0; i < CPUS; i++) { initialized[i] = initial_x[i] = initial_y[i] = 0; } int nlayers; if (layername != NULL) { nlayers = 1; } else { nlayers = argc; if (nlayers == 0) { nlayers = 1; } } int nsources = argc; if (nsources == 0) { nsources = 1; } long overall_offset = 0; int source; for (source = 0; source < nsources; source++) { const char *reading; int fd; if (source >= argc) { reading = "standard input"; fd = 0; } else { reading = sourcelist[source]->file; fd = open(sourcelist[source]->file, O_RDONLY); if (fd < 0) { perror(sourcelist[source]->file); continue; } } struct stat st; char *map = NULL; off_t off = 0; if (read_parallel) { if (fstat(fd, &st) == 0) { off = lseek(fd, 0, SEEK_CUR); if (off >= 0) { map = mmap(NULL, st.st_size - off, PROT_READ, MAP_PRIVATE, fd, off); } } } if (map != NULL && map != MAP_FAILED) { do_read_parallel(map, st.st_size - off, overall_offset, reading, reader, &progress_seq, exclude, include, exclude_all, fname, basezoom, source, nlayers, droprate, initialized, initial_x, initial_y); overall_offset += st.st_size - off; if (munmap(map, st.st_size - off) != 0) { perror("munmap source file"); } } else { FILE *fp = fdopen(fd, "r"); if (fp == NULL) { perror(sourcelist[source]->file); close(fd); continue; } if (read_parallel) { // Serial reading of chunks that are then parsed in parallel char readname[strlen(tmpdir) + strlen("/read.XXXXXXXX") + 1]; sprintf(readname, "%s%s", tmpdir, "/read.XXXXXXXX"); int readfd = mkstemp(readname); if (readfd < 0) { perror(readname); exit(EXIT_FAILURE); } FILE *readfp = fdopen(readfd, "w"); if (readfp == NULL) { perror(readname); exit(EXIT_FAILURE); } unlink(readname); volatile int is_parsing = 0; long long ahead = 0; long long initial_offset = overall_offset; pthread_t parallel_parser; #define READ_BUF 2000 #define PARSE_MIN 10000000 char buf[READ_BUF]; int n; while ((n = fread(buf, sizeof(char), READ_BUF, fp)) > 0) { fwrite_check(buf, sizeof(char), n, readfp, reading); ahead += n; if (buf[n - 1] == '\n' && ahead > PARSE_MIN && is_parsing == 0) { if (initial_offset != 0) { if (pthread_join(parallel_parser, NULL) != 0) { perror("pthread_join"); exit(EXIT_FAILURE); } } fflush(readfp); start_parsing(readfd, readfp, initial_offset, ahead, &is_parsing, ¶llel_parser, reading, reader, &progress_seq, exclude, include, exclude_all, fname, basezoom, source, nlayers, droprate, initialized, initial_x, initial_y); initial_offset += ahead; overall_offset += ahead; ahead = 0; sprintf(readname, "%s%s", tmpdir, "/read.XXXXXXXX"); readfd = mkstemp(readname); if (readfd < 0) { perror(readname); exit(EXIT_FAILURE); } readfp = fdopen(readfd, "w"); if (readfp == NULL) { perror(readname); exit(EXIT_FAILURE); } unlink(readname); } } if (n < 0) { perror(reading); } if (initial_offset != 0) { if (pthread_join(parallel_parser, NULL) != 0) { perror("pthread_join"); exit(EXIT_FAILURE); } } fflush(readfp); if (ahead > 0) { start_parsing(readfd, readfp, initial_offset, ahead, &is_parsing, ¶llel_parser, reading, reader, &progress_seq, exclude, include, exclude_all, fname, basezoom, source, nlayers, droprate, initialized, initial_x, initial_y); if (pthread_join(parallel_parser, NULL) != 0) { perror("pthread_join"); } overall_offset += ahead; } } else { // Plain serial reading long long layer_seq = overall_offset; json_pull *jp = json_begin_file(fp); parse_json(jp, reading, &layer_seq, &progress_seq, &reader[0].metapos, &reader[0].geompos, &reader[0].indexpos, exclude, include, exclude_all, reader[0].metafile, reader[0].geomfile, reader[0].indexfile, reader[0].poolfile, reader[0].treefile, fname, basezoom, source < nlayers ? source : 0, droprate, reader[0].file_bbox, 0, &initialized[0], &initial_x[0], &initial_y[0]); json_end(jp); overall_offset = layer_seq; } fclose(fp); } } if (!quiet) { fprintf(stderr, " \r"); // (stderr, "Read 10000.00 million features\r", *progress_seq / 1000000.0); } for (i = 0; i < CPUS; i++) { fclose(reader[i].metafile); fclose(reader[i].geomfile); fclose(reader[i].indexfile); memfile_close(reader[i].treefile); if (fstat(reader[i].geomfd, &reader[i].geomst) != 0) { perror("stat geom\n"); exit(EXIT_FAILURE); } if (fstat(reader[i].metafd, &reader[i].metast) != 0) { perror("stat meta\n"); exit(EXIT_FAILURE); } } struct pool file_keys1[nlayers]; struct pool *file_keys[nlayers]; for (i = 0; i < nlayers; i++) { pool_init(&file_keys1[i], 0); file_keys[i] = &file_keys1[i]; } char *layernames[nlayers]; for (i = 0; i < nlayers; i++) { if (layername != NULL) { layernames[i] = strdup(layername); if (layernames[i] == NULL) { perror("Out of memory"); exit(EXIT_FAILURE); } } else { char *src; if (argc < 1) { src = fname; } else if (sourcelist[i]->layer != NULL) { src = sourcelist[i]->layer; } else { src = sourcelist[i]->file; } char *trunc = layernames[i] = malloc(strlen(src) + 1); if (trunc == NULL) { perror("Out of memory"); exit(EXIT_FAILURE); } const char *ocp, *use = src; for (ocp = src; *ocp; ocp++) { if (*ocp == '/' && ocp[1] != '\0') { use = ocp + 1; } } strcpy(trunc, use); char *cp = strstr(trunc, ".json"); if (cp != NULL) { *cp = '\0'; } cp = strstr(trunc, ".mbtiles"); if (cp != NULL) { *cp = '\0'; } char *out = trunc; for (cp = trunc; *cp; cp++) { if (isalpha(*cp) || isdigit(*cp) || *cp == '_') { *out++ = *cp; } } *out = '\0'; if (!quiet) { fprintf(stderr, "For layer %d, using name \"%s\"\n", i, trunc); } } } // Create a combined string pool and a combined metadata file // but keep track of the offsets into it since we still need // segment+offset to find the data. long long pool_off[CPUS]; long long meta_off[CPUS]; char poolname[strlen(tmpdir) + strlen("/pool.XXXXXXXX") + 1]; sprintf(poolname, "%s%s", tmpdir, "/pool.XXXXXXXX"); int poolfd = mkstemp(poolname); if (poolfd < 0) { perror(poolname); exit(EXIT_FAILURE); } FILE *poolfile = fopen(poolname, "wb"); if (poolfile == NULL) { perror(poolname); exit(EXIT_FAILURE); } unlink(poolname); char metaname[strlen(tmpdir) + strlen("/meta.XXXXXXXX") + 1]; sprintf(metaname, "%s%s", tmpdir, "/meta.XXXXXXXX"); int metafd = mkstemp(metaname); if (metafd < 0) { perror(metaname); exit(EXIT_FAILURE); } FILE *metafile = fopen(metaname, "wb"); if (metafile == NULL) { perror(metaname); exit(EXIT_FAILURE); } unlink(metaname); long long metapos = 0; long long poolpos = 0; for (i = 0; i < CPUS; i++) { if (reader[i].metapos > 0) { void *map = mmap(NULL, reader[i].metapos, PROT_READ, MAP_PRIVATE, reader[i].metafd, 0); if (map == MAP_FAILED) { perror("mmap unmerged meta"); exit(EXIT_FAILURE); } if (fwrite(map, reader[i].metapos, 1, metafile) != 1) { perror("Reunify meta"); exit(EXIT_FAILURE); } if (munmap(map, reader[i].metapos) != 0) { perror("unmap unmerged meta"); } } meta_off[i] = metapos; metapos += reader[i].metapos; if (close(reader[i].metafd) != 0) { perror("close unmerged meta"); } if (reader[i].poolfile->off > 0) { if (fwrite(reader[i].poolfile->map, reader[i].poolfile->off, 1, poolfile) != 1) { perror("Reunify string pool"); exit(EXIT_FAILURE); } } pool_off[i] = poolpos; poolpos += reader[i].poolfile->off; memfile_close(reader[i].poolfile); } fclose(poolfile); fclose(metafile); char *meta = (char *) mmap(NULL, metapos, PROT_READ, MAP_PRIVATE, metafd, 0); if (meta == MAP_FAILED) { perror("mmap meta"); exit(EXIT_FAILURE); } char *stringpool = NULL; if (poolpos > 0) { // Will be 0 if -X was specified stringpool = (char *) mmap(NULL, poolpos, PROT_READ, MAP_PRIVATE, poolfd, 0); if (stringpool == MAP_FAILED) { perror("mmap string pool"); exit(EXIT_FAILURE); } } /* Join the sub-indices together */ char indexname[strlen(tmpdir) + strlen("/index.XXXXXXXX") + 1]; sprintf(indexname, "%s%s", tmpdir, "/index.XXXXXXXX"); int indexfd = mkstemp(indexname); if (indexfd < 0) { perror(indexname); exit(EXIT_FAILURE); } FILE *indexfile = fopen(indexname, "wb"); if (indexfile == NULL) { perror(indexname); exit(EXIT_FAILURE); } unlink(indexname); char geomname[strlen(tmpdir) + strlen("/geom.XXXXXXXX") + 1]; sprintf(geomname, "%s%s", tmpdir, "/geom.XXXXXXXX"); int geomfd = mkstemp(geomname); if (geomfd < 0) { perror(geomname); exit(EXIT_FAILURE); } FILE *geomfile = fopen(geomname, "wb"); if (geomfile == NULL) { perror(geomname); exit(EXIT_FAILURE); } unlink(geomname); long long geompos = 0; /* initial tile is 0/0/0 */ serialize_int(geomfile, 0, &geompos, fname); serialize_uint(geomfile, 0, &geompos, fname); serialize_uint(geomfile, 0, &geompos, fname); radix(reader, CPUS, geomfile, geomfd, indexfile, indexfd, tmpdir, &geompos); /* end of tile */ serialize_byte(geomfile, -2, &geompos, fname); fclose(geomfile); fclose(indexfile); struct stat indexst; if (fstat(indexfd, &indexst) < 0) { perror("stat index"); exit(EXIT_FAILURE); } long long indexpos = indexst.st_size; progress_seq = indexpos / sizeof(struct index); if (!quiet) { fprintf(stderr, "%lld features, %lld bytes of geometry, %lld bytes of metadata, %lld bytes of string pool\n", progress_seq, geompos, metapos, poolpos); } if (basezoom < 0 || droprate < 0) { struct index *map = mmap(NULL, indexpos, PROT_READ, MAP_PRIVATE, indexfd, 0); if (map == MAP_FAILED) { perror("mmap index for basezoom"); exit(EXIT_FAILURE); } struct tile { unsigned x; unsigned y; long long count; long long fullcount; double gap; unsigned long long previndex; } tile[MAX_ZOOM + 1], max[MAX_ZOOM + 1]; { int i; for (i = 0; i <= MAX_ZOOM; i++) { tile[i].x = tile[i].y = tile[i].count = tile[i].fullcount = tile[i].gap = tile[i].previndex = 0; max[i].x = max[i].y = max[i].count = max[i].fullcount = 0; } } long long progress = -1; long long indices = indexpos / sizeof(struct index); long long i; for (i = 0; i < indices; i++) { unsigned xx, yy; decode(map[i].index, &xx, &yy); long long nprogress = 100 * i / indices; if (nprogress != progress) { progress = nprogress; if (!quiet) { fprintf(stderr, "Base zoom/drop rate: %lld%% \r", progress); } } int z; for (z = 0; z <= MAX_ZOOM; z++) { unsigned xxx = 0, yyy = 0; if (z != 0) { xxx = xx >> (32 - z); yyy = yy >> (32 - z); } double scale = (double) (1LL << (64 - 2 * (z + 8))); if (tile[z].x != xxx || tile[z].y != yyy) { if (tile[z].count > max[z].count) { max[z] = tile[z]; } tile[z].x = xxx; tile[z].y = yyy; tile[z].count = 0; tile[z].fullcount = 0; tile[z].gap = 0; tile[z].previndex = 0; } tile[z].fullcount++; if (manage_gap(map[i].index, &tile[z].previndex, scale, gamma, &tile[z].gap)) { continue; } tile[z].count++; } } int z; for (z = MAX_ZOOM; z >= 0; z--) { if (tile[z].count > max[z].count) { max[z] = tile[z]; } } int max_features = 50000 / (basezoom_marker_width * basezoom_marker_width); int obasezoom = basezoom; if (basezoom < 0) { basezoom = MAX_ZOOM; for (z = MAX_ZOOM; z >= 0; z--) { if (max[z].count < max_features) { basezoom = z; } // printf("%d/%u/%u %lld\n", z, max[z].x, max[z].y, max[z].count); } fprintf(stderr, "Choosing a base zoom of -B%d to keep %lld features in tile %d/%u/%u.\n", basezoom, max[basezoom].count, basezoom, max[basezoom].x, max[basezoom].y); } if (obasezoom < 0 && basezoom > maxzoom) { fprintf(stderr, "Couldn't find a suitable base zoom. Working from the other direction.\n"); if (gamma == 0) { fprintf(stderr, "You might want to try -g1 to limit near-duplicates.\n"); } if (droprate < 0) { if (maxzoom == 0) { droprate = 2.5; } else { droprate = exp(log((long double) max[0].count / max[maxzoom].count) / (maxzoom)); fprintf(stderr, "Choosing a drop rate of -r%f to get from %lld to %lld in %d zooms\n", droprate, max[maxzoom].count, max[0].count, maxzoom); } } basezoom = 0; for (z = 0; z <= maxzoom; z++) { double zoomdiff = log((long double) max[z].count / max_features) / log(droprate); if (zoomdiff + z > basezoom) { basezoom = ceil(zoomdiff + z); } } fprintf(stderr, "Choosing a base zoom of -B%d to keep %f features in tile %d/%u/%u.\n", basezoom, max[maxzoom].count * exp(log(droprate) * (maxzoom - basezoom)), maxzoom, max[maxzoom].x, max[maxzoom].y); } else if (droprate < 0) { droprate = 1; for (z = basezoom - 1; z >= 0; z--) { double interval = exp(log(droprate) * (basezoom - z)); if (max[z].count / interval >= max_features) { interval = (long double) max[z].count / max_features; droprate = exp(log(interval) / (basezoom - z)); interval = exp(log(droprate) * (basezoom - z)); fprintf(stderr, "Choosing a drop rate of -r%f to keep %f features in tile %d/%u/%u.\n", droprate, max[z].count / interval, z, max[z].x, max[z].y); } } } if (gamma > 0) { int effective = 0; for (z = 0; z < maxzoom; z++) { if (max[z].count < max[z].fullcount) { effective = z + 1; } } if (effective == 0) { fprintf(stderr, "With gamma, effective base zoom is 0, so no effective drop rate\n"); } else { double interval_0 = exp(log(droprate) * (basezoom - 0)); double interval_eff = exp(log(droprate) * (basezoom - effective)); if (effective > basezoom) { interval_eff = 1; } double scaled_0 = max[0].count / interval_0; double scaled_eff = max[effective].count / interval_eff; double rate_at_0 = scaled_0 / max[0].fullcount; double rate_at_eff = scaled_eff / max[effective].fullcount; double eff_drop = exp(log(rate_at_eff / rate_at_0) / (effective - 0)); fprintf(stderr, "With gamma, effective base zoom of %d, effective drop rate of %f\n", effective, eff_drop); } } munmap(map, indexpos); } if (indexpos == 0) { fprintf(stderr, "Did not read any valid geometries\n"); exit(EXIT_FAILURE); } if (close(indexfd) != 0) { perror("close sorted index"); } /* Traverse and split the geometries for each zoom level */ struct stat geomst; if (fstat(geomfd, &geomst) != 0) { perror("stat sorted geom\n"); exit(EXIT_FAILURE); } int fd[TEMP_FILES]; off_t size[TEMP_FILES]; fd[0] = geomfd; size[0] = geomst.st_size; int j; for (j = 1; j < TEMP_FILES; j++) { fd[j] = -1; size[j] = 0; } unsigned midx = 0, midy = 0; int written = traverse_zooms(fd, size, meta, stringpool, file_keys, &midx, &midy, layernames, maxzoom, minzoom, basezoom, outdb, droprate, buffer, fname, tmpdir, gamma, nlayers, prevent, additional, full_detail, low_detail, min_detail, meta_off, pool_off, initial_x, initial_y); if (maxzoom != written) { fprintf(stderr, "\n\n\n*** NOTE TILES ONLY COMPLETE THROUGH ZOOM %d ***\n\n\n", written); maxzoom = written; ret = EXIT_FAILURE; } if (munmap(meta, metapos) != 0) { perror("munmap meta"); } if (close(metafd) < 0) { perror("close meta"); } if (poolpos > 0) { if (munmap(stringpool, poolpos) != 0) { perror("munmap stringpool"); } } if (close(poolfd) < 0) { perror("close pool"); } double minlat = 0, minlon = 0, maxlat = 0, maxlon = 0, midlat = 0, midlon = 0; tile2latlon(midx, midy, maxzoom, &maxlat, &minlon); tile2latlon(midx + 1, midy + 1, maxzoom, &minlat, &maxlon); midlat = (maxlat + minlat) / 2; midlon = (maxlon + minlon) / 2; long long file_bbox[4] = {UINT_MAX, UINT_MAX, 0, 0}; for (i = 0; i < CPUS; i++) { if (reader[i].file_bbox[0] < file_bbox[0]) { file_bbox[0] = reader[i].file_bbox[0]; } if (reader[i].file_bbox[1] < file_bbox[1]) { file_bbox[1] = reader[i].file_bbox[1]; } if (reader[i].file_bbox[2] > file_bbox[2]) { file_bbox[2] = reader[i].file_bbox[2]; } if (reader[i].file_bbox[3] > file_bbox[3]) { file_bbox[3] = reader[i].file_bbox[3]; } } // If the bounding box extends off the plane on either side, // a feature wrapped across the date line, so the width of the // bounding box is the whole world. if (file_bbox[0] < 0) { file_bbox[0] = 0; file_bbox[2] = (1LL << 32) - 1; } if (file_bbox[2] > (1LL << 32) - 1) { file_bbox[0] = 0; file_bbox[2] = (1LL << 32) - 1; } if (file_bbox[1] < 0) { file_bbox[1] = 0; } if (file_bbox[3] > (1LL << 32) - 1) { file_bbox[3] = (1LL << 32) - 1; } tile2latlon(file_bbox[0], file_bbox[1], 32, &maxlat, &minlon); tile2latlon(file_bbox[2], file_bbox[3], 32, &minlat, &maxlon); if (midlat < minlat) { midlat = minlat; } if (midlat > maxlat) { midlat = maxlat; } if (midlon < minlon) { midlon = minlon; } if (midlon > maxlon) { midlon = maxlon; } mbtiles_write_metadata(outdb, fname, layernames, minzoom, maxzoom, minlat, minlon, maxlat, maxlon, midlat, midlon, file_keys, nlayers, forcetable); for (i = 0; i < nlayers; i++) { pool_free_strings(&file_keys1[i]); free(layernames[i]); } return ret; } int int_in(int v, int *a, int len) { int i; for (i = 0; i < len; i++) { if (a[i] == v) { return 1; } } return 0; } int main(int argc, char **argv) { #ifdef MTRACE mtrace(); #endif init_cpus(); extern int optind; extern char *optarg; int i; char *name = NULL; char *layer = NULL; char *outdir = NULL; int maxzoom = 14; int minzoom = 0; int basezoom = -1; double basezoom_marker_width = 1; int force = 0; int forcetable = 0; double droprate = 2.5; double gamma = 0; int buffer = 5; const char *tmpdir = "/tmp"; int nsources = 0; struct source *sources = NULL; struct pool exclude, include; pool_init(&exclude, 0); pool_init(&include, 0); int exclude_all = 0; int read_parallel = 0; for (i = 0; i < 256; i++) { prevent[i] = 0; additional[i] = 0; } static struct option long_options[] = { {"name", required_argument, 0, 'n'}, {"layer", required_argument, 0, 'l'}, {"named-layer", required_argument, 0, 'L'}, {"maximum-zoom", required_argument, 0, 'z'}, {"minimum-zoom", required_argument, 0, 'Z'}, {"base-zoom", required_argument, 0, 'B'}, {"full-detail", required_argument, 0, 'd'}, {"low-detail", required_argument, 0, 'D'}, {"minimum-detail", required_argument, 0, 'm'}, {"output", required_argument, 0, 'o'}, {"exclude", required_argument, 0, 'x'}, {"include", required_argument, 0, 'y'}, {"drop-rate", required_argument, 0, 'r'}, {"buffer", required_argument, 0, 'b'}, {"temporary-directory", required_argument, 0, 't'}, {"gamma", required_argument, 0, 'g'}, {"prevent", required_argument, 0, 'p'}, {"additional", required_argument, 0, 'a'}, {"exclude-all", no_argument, 0, 'X'}, {"force", no_argument, 0, 'f'}, {"allow-existing", no_argument, 0, 'F'}, {"quiet", no_argument, 0, 'q'}, {"version", no_argument, 0, 'v'}, {"read-parallel", no_argument, 0, 'P'}, {"coalesce", no_argument, &additional[A_COALESCE], 1}, {"reverse", no_argument, &additional[A_REVERSE], 1}, {"reorder", no_argument, &additional[A_REORDER], 1}, {"drop-lines", no_argument, &additional[A_LINE_DROP], 1}, {"no-line-simplification", no_argument, &prevent[P_SIMPLIFY], 1}, {"simplify-only-low-zooms", no_argument, &prevent[P_SIMPLIFY_LOW], 1}, {"no-feature-limit", no_argument, &prevent[P_FEATURE_LIMIT], 1}, {"no-tile-size-limit", no_argument, &prevent[P_KILOBYTE_LIMIT], 1}, {"force-feature-limit", no_argument, &prevent[P_DYNAMIC_DROP], 1}, {"preseve-input-order", no_argument, &prevent[P_INPUT_ORDER], 1}, {"no-polygon-splitting", no_argument, &prevent[P_POLYGON_SPLIT], 1}, {0, 0, 0, 0}, }; while ((i = getopt_long(argc, argv, "n:l:z:Z:B:d:D:m:o:x:y:r:b:t:g:p:a:XfFqvPL:", long_options, NULL)) != -1) { switch (i) { case 0: break; case 'n': name = optarg; break; case 'l': layer = optarg; break; case 'L': { char *cp = strchr(optarg, ':'); if (cp == NULL || cp == optarg) { fprintf(stderr, "%s: -L requires layername:file\n", argv[0]); exit(EXIT_FAILURE); } struct source *src = malloc(sizeof(struct source)); if (src == NULL) { perror("Out of memory"); exit(EXIT_FAILURE); } src->layer = strdup(optarg); src->file = strdup(cp + 1); if (src->layer == NULL || src->file == NULL) { perror("Out of memory"); exit(EXIT_FAILURE); } src->layer[cp - optarg] = '\0'; src->next = sources; sources = src; nsources++; } break; case 'z': maxzoom = atoi(optarg); break; case 'Z': minzoom = atoi(optarg); break; case 'B': if (strcmp(optarg, "g") == 0) { basezoom = -2; } else if (optarg[0] == 'g' || optarg[0] == 'f') { basezoom = -2; if (optarg[0] == 'g') { basezoom_marker_width = atof(optarg + 1); } else { basezoom_marker_width = sqrt(50000 / atof(optarg + 1)); } if (basezoom_marker_width == 0 || atof(optarg + 1) == 0) { fprintf(stderr, "%s: Must specify value >0 with -B%c\n", argv[0], optarg[0]); exit(EXIT_FAILURE); } } else { basezoom = atoi(optarg); if (basezoom == 0 && strcmp(optarg, "0") != 0) { fprintf(stderr, "%s: Couldn't understand -B%s\n", argv[0], optarg); exit(EXIT_FAILURE); } } break; case 'd': full_detail = atoi(optarg); break; case 'D': low_detail = atoi(optarg); break; case 'm': min_detail = atoi(optarg); break; case 'o': outdir = optarg; break; case 'x': pool(&exclude, optarg, VT_STRING); break; case 'y': exclude_all = 1; pool(&include, optarg, VT_STRING); break; case 'X': exclude_all = 1; break; case 'r': if (strcmp(optarg, "g") == 0) { droprate = -2; } else if (optarg[0] == 'g' || optarg[0] == 'f') { droprate = -2; if (optarg[0] == 'g') { basezoom_marker_width = atof(optarg + 1); } else { basezoom_marker_width = sqrt(50000 / atof(optarg + 1)); } if (basezoom_marker_width == 0 || atof(optarg + 1) == 0) { fprintf(stderr, "%s: Must specify value >0 with -r%c\n", argv[0], optarg[0]); exit(EXIT_FAILURE); } } else { droprate = atof(optarg); } break; case 'b': buffer = atoi(optarg); break; case 'f': force = 1; break; case 'F': forcetable = 1; break; case 't': tmpdir = optarg; break; case 'g': gamma = atof(optarg); break; case 'q': quiet = 1; break; case 'p': { char *cp; for (cp = optarg; *cp != '\0'; cp++) { if (int_in(*cp, prevent_options, sizeof(prevent_options) / sizeof(prevent_options[0]))) { prevent[*cp & 0xFF] = 1; } else { fprintf(stderr, "%s: Unknown option -p%c\n", argv[0], *cp); exit(EXIT_FAILURE); } } } break; case 'a': { char *cp; for (cp = optarg; *cp != '\0'; cp++) { if (int_in(*cp, additional_options, sizeof(additional_options) / sizeof(additional_options[0]))) { additional[*cp & 0xFF] = 1; } else { fprintf(stderr, "%s: Unknown option -a%c\n", argv[0], *cp); exit(EXIT_FAILURE); } } } break; case 'v': fprintf(stderr, VERSION); exit(EXIT_FAILURE); case 'P': read_parallel = 1; break; default: fprintf(stderr, "Usage: %s -o out.mbtiles [-n name] [-l source] [-z maxzoom] [-Z minzoom] [-B basezoom] [-d detail] [-D lower-detail] [-m min-detail] [-x excluded-field ...] [-y included-field ...] [-X] [-r droprate] [-b buffer] [-t tmpdir] [-a rco] [-p sfkld] [-q] [-P] [file.json ...]\n", argv[0]); exit(EXIT_FAILURE); } } if (maxzoom > MAX_ZOOM) { maxzoom = MAX_ZOOM; fprintf(stderr, "Highest supported zoom is %d\n", maxzoom); } if (minzoom > maxzoom) { fprintf(stderr, "minimum zoom -Z cannot be greater than maxzoom -z\n"); exit(EXIT_FAILURE); } if (basezoom == -1) { basezoom = maxzoom; } if (full_detail <= 0) { full_detail = 12; } if (full_detail < min_detail || low_detail < min_detail) { fprintf(stderr, "%s: Full detail and low detail must be at least minimum detail\n", argv[0]); exit(EXIT_FAILURE); } geometry_scale = 32 - (full_detail + maxzoom); if (geometry_scale < 0) { geometry_scale = 0; fprintf(stderr, "Full detail + maxzoom > 32, so you are asking for more detail than is available.\n"); } if ((basezoom < 0 || droprate < 0) && (gamma < 0)) { // Can't use randomized (as opposed to evenly distributed) dot dropping // if rate and base aren't known during feature reading. gamma = 0; fprintf(stderr, "Forcing -g0 since -B or -r is not known\n"); } if (outdir == NULL) { fprintf(stderr, "%s: must specify -o out.mbtiles\n", argv[0]); exit(EXIT_FAILURE); } if (force) { unlink(outdir); } sqlite3 *outdb = mbtiles_open(outdir, argv, forcetable); int ret = EXIT_SUCCESS; for (i = optind; i < argc; i++) { struct source *src = malloc(sizeof(struct source)); if (src == NULL) { perror("Out of memory"); exit(EXIT_FAILURE); } src->layer = NULL; src->file = argv[i]; src->next = sources; sources = src; nsources++; } struct source *sourcelist[nsources]; i = nsources - 1; for (; sources != NULL; sources = sources->next) { sourcelist[i--] = sources; } ret = read_json(nsources, sourcelist, name ? name : outdir, layer, maxzoom, minzoom, basezoom, basezoom_marker_width, outdb, &exclude, &include, exclude_all, droprate, buffer, tmpdir, gamma, prevent, additional, read_parallel, forcetable); mbtiles_close(outdb, argv); #ifdef MTRACE muntrace(); #endif return ret; }