tippecanoe/geometry.cc

1249 lines
32 KiB
C++
Raw Normal View History

#include <iostream>
#include <fstream>
#include <string>
#include <stack>
#include <vector>
#include <algorithm>
#include <stdio.h>
#include <unistd.h>
#include <math.h>
#include <sqlite3.h>
#include <limits.h>
#include "geometry.hh"
#include "clipper/clipper.hpp"
extern "C" {
#include "tile.h"
#include "clip.h"
#include "projection.h"
}
static int pnpoly(drawvec &vert, size_t start, size_t nvert, long long testx, long long testy);
drawvec decode_geometry(char **meta, int z, unsigned tx, unsigned ty, int detail, long long *bbox, unsigned initial_x, unsigned initial_y) {
drawvec out;
2016-03-21 23:13:47 +00:00
bbox[0] = LLONG_MAX;
bbox[1] = LLONG_MAX;
bbox[2] = LLONG_MIN;
bbox[3] = LLONG_MIN;
long long wx = initial_x, wy = initial_y;
while (1) {
draw d;
deserialize_byte(meta, &d.op);
if (d.op == VT_END) {
break;
}
if (d.op == VT_MOVETO || d.op == VT_LINETO) {
long long dx, dy;
deserialize_long_long(meta, &dx);
deserialize_long_long(meta, &dy);
wx += dx << geometry_scale;
wy += dy << geometry_scale;
long long wwx = wx;
long long wwy = wy;
if (z != 0) {
wwx -= tx << (32 - z);
wwy -= ty << (32 - z);
}
if (wwx < bbox[0]) {
bbox[0] = wwx;
}
if (wwy < bbox[1]) {
bbox[1] = wwy;
}
if (wwx > bbox[2]) {
bbox[2] = wwx;
}
if (wwy > bbox[3]) {
bbox[3] = wwy;
}
d.x = wwx;
d.y = wwy;
}
out.push_back(d);
}
return out;
}
void to_tile_scale(drawvec &geom, int z, int detail) {
for (size_t i = 0; i < geom.size(); i++) {
geom[i].x >>= (32 - detail - z);
geom[i].y >>= (32 - detail - z);
}
}
drawvec remove_noop(drawvec geom, int type, int shift) {
// first pass: remove empty linetos
long long x = 0, y = 0;
drawvec out;
for (size_t i = 0; i < geom.size(); i++) {
if (geom[i].op == VT_LINETO && (geom[i].x >> shift) == x && (geom[i].y >> shift) == y) {
continue;
}
if (geom[i].op == VT_CLOSEPATH) {
out.push_back(geom[i]);
} else { /* moveto or lineto */
out.push_back(geom[i]);
x = geom[i].x >> shift;
y = geom[i].y >> shift;
}
}
// second pass: remove unused movetos
if (type != VT_POINT) {
geom = out;
out.resize(0);
for (size_t i = 0; i < geom.size(); i++) {
if (geom[i].op == VT_MOVETO) {
if (i + 1 >= geom.size()) {
continue;
}
if (geom[i + 1].op == VT_MOVETO) {
continue;
}
if (geom[i + 1].op == VT_CLOSEPATH) {
fprintf(stderr, "Shouldn't happen\n");
i++; // also remove unused closepath
continue;
}
}
out.push_back(geom[i]);
}
}
// second pass: remove empty movetos
if (type == VT_LINE) {
geom = out;
out.resize(0);
for (size_t i = 0; i < geom.size(); i++) {
if (geom[i].op == VT_MOVETO) {
if (i > 0 && geom[i - 1].op == VT_LINETO && (geom[i - 1].x >> shift) == (geom[i].x >> shift) && (geom[i - 1].y >> shift) == (geom[i].y >> shift)) {
continue;
}
}
out.push_back(geom[i]);
}
}
return out;
}
/* XXX */
2014-10-24 22:21:20 +00:00
#if 0
drawvec shrink_lines(drawvec &geom, int z, int detail, int basezoom, long long *here, double droprate) {
long long res = 200LL << (32 - 8 - z);
long long portion = res / exp(log(sqrt(droprate)) * (basezoom - z));
drawvec out;
for (size_t i = 0; i < geom.size(); i++) {
if (i > 0 && (geom[i - 1].op == VT_MOVETO || geom[i - 1].op == VT_LINETO) && geom[i].op == VT_LINETO) {
double dx = (geom[i].x - geom[i - 1].x);
double dy = (geom[i].y - geom[i - 1].y);
long long d = sqrt(dx * dx + dy * dy);
long long n;
2016-03-21 23:13:47 +00:00
long long next = LLONG_MAX;
for (n = *here; n < *here + d; n = next) {
int within;
if (n % res < portion) {
next = (n / res) * res + portion;
within = 1;
} else {
next = (n / res + 1) * res;
within = 0;
}
if (next > *here + d) {
next = *here + d;
}
//printf("drawing from %lld to %lld in %lld\n", n - *here, next - *here, d);
double f1 = (n - *here) / (double) d;
double f2 = (next - *here) / (double) d;
if (within) {
out.push_back(draw(VT_MOVETO, geom[i - 1].x + f1 * (geom[i].x - geom[i - 1].x), geom[i - 1].y + f1 * (geom[i].y - geom[i - 1].y)));
out.push_back(draw(VT_LINETO, geom[i - 1].x + f2 * (geom[i].x - geom[i - 1].x), geom[i - 1].y + f2 * (geom[i].y - geom[i - 1].y)));
} else {
out.push_back(draw(VT_MOVETO, geom[i - 1].x + f2 * (geom[i].x - geom[i - 1].x), geom[i - 1].y + f2 * (geom[i].y - geom[i - 1].y)));
}
}
*here += d;
} else {
out.push_back(geom[i]);
}
}
return out;
}
2014-10-24 22:21:20 +00:00
#endif
double get_area(drawvec &geom, int i, int j) {
double area = 0;
for (unsigned k = i; k < j; k++) {
area += (long double) geom[k].x * (long double) geom[i + ((k - i + 1) % (j - i))].y;
area -= (long double) geom[k].y * (long double) geom[i + ((k - i + 1) % (j - i))].x;
}
area /= 2;
return area;
}
void reverse_ring(drawvec &geom, int start, int end) {
drawvec tmp;
for (unsigned i = start; i < end; i++) {
tmp.push_back(geom[i]);
}
for (unsigned i = start; i < end; i++) {
geom[i] = tmp[end - 1 - i];
if (i == start) {
geom[i].op = VT_MOVETO;
} else if (i == end - 1) {
geom[i].op = VT_LINETO;
}
}
}
struct ring {
drawvec data;
long double area;
long long parent;
std::vector<size_t> children;
ring(drawvec &_data) {
data = _data;
area = get_area(_data, 0, _data.size());
parent = -1;
}
bool operator<(const ring &o) const {
if (fabs(this->area) < fabs(o.area)) {
return true;
} else {
return false;
}
}
};
static void decode_rings(ClipperLib::PolyNode *t, std::vector<ring> &out) {
// Supposedly outer ring
ClipperLib::Path p = t->Contour;
drawvec dv;
for (size_t i = 0; i < p.size(); i++) {
dv.push_back(draw((i == 0) ? VT_MOVETO : VT_LINETO, p[i].X, p[i].Y));
}
if (p.size() > 0) {
dv.push_back(draw(VT_LINETO, p[0].X, p[0].Y));
}
out.push_back(dv);
// Supposedly inner rings
for (int n = 0; n < t->ChildCount(); n++) {
ClipperLib::Path p = t->Childs[n]->Contour;
drawvec dv;
for (size_t i = 0; i < p.size(); i++) {
dv.push_back(draw((i == 0) ? VT_MOVETO : VT_LINETO, p[i].X, p[i].Y));
}
if (p.size() > 0) {
dv.push_back(draw(VT_LINETO, p[0].X, p[0].Y));
}
out.push_back(dv);
}
// Recurse to supposedly outer rings (children of the children)
for (int n = 0; n < t->ChildCount(); n++) {
for (int m = 0; m < t->Childs[n]->ChildCount(); m++) {
decode_rings(t->Childs[n]->Childs[m], out);
}
}
}
static void decode_clipped(ClipperLib::PolyNode *t, drawvec &out) {
// The output of Clipper supposedly produces the outer rings
// as top level objects, with links to any inner-ring children
// they may have, each of which then has links to any outer rings
// that it has, and so on. This doesn't actually work.
// So instead, we pull out all the rings, sort them by absolute area,
// and go through them, looking for the
// smallest parent that contains a point from it, since we are
// guaranteed that at least one point in the polygon is strictly
// inside its parent (not on one of its boundary lines).
// Once we have that, we can run through the outer rings that have
// an even number of parents,
std::vector<ring> rings;
decode_rings(t, rings);
std::sort(rings.begin(), rings.end());
for (size_t i = 0; i < rings.size(); i++) {
for (size_t j = i + 1; j < rings.size(); j++) {
for (size_t k = 0; k < rings[i].data.size(); k++) {
if (pnpoly(rings[j].data, 0, rings[j].data.size(), rings[i].data[k].x, rings[i].data[k].y)) {
rings[i].parent = j;
rings[j].children.push_back(i);
goto nextring;
}
}
}
nextring:
;
}
for (size_t ii = rings.size(); ii > 0; ii--) {
size_t i = ii - 1;
if (rings[i].parent < 0) {
if (rings[i].area < 0) {
rings[i].area = -rings[i].area;
reverse_ring(rings[i].data, 0, rings[i].data.size());
}
} else {
if ((rings[i].area > 0) == (rings[rings[i].parent].area > 0)) {
rings[i].area = -rings[i].area;
reverse_ring(rings[i].data, 0, rings[i].data.size());
}
}
}
for (size_t ii = rings.size(); ii > 0; ii--) {
size_t i = ii - 1;
if (rings[i].area > 0) {
#if 0
fprintf(stderr, "ring area %Lf at %lld\n", rings[i].area, (long long) out.size());
#endif
for (size_t j = 0; j < rings[i].data.size(); j++) {
out.push_back(rings[i].data[j]);
}
for (size_t j = 0; j < rings[i].children.size(); j++) {
#if 0
fprintf(stderr, "ring area %Lf at %lld\n", rings[rings[i].children[j]].area, (long long) out.size());
#endif
for (size_t k = 0; k < rings[rings[i].children[j]].data.size(); k++) {
out.push_back(rings[rings[i].children[j]].data[k]);
}
rings[rings[i].children[j]].parent = -2;
}
} else if (rings[i].parent != -2) {
fprintf(stderr, "Found ring with child area but no parent %lld\n", (long long) i);
}
}
}
drawvec clean_or_clip_poly(drawvec &geom, int z, int detail, int buffer, bool clip) {
ClipperLib::Clipper clipper(ClipperLib::ioStrictlySimple);
bool has_area = false;
for (size_t i = 0; i < geom.size(); i++) {
if (geom[i].op == VT_MOVETO) {
size_t j;
for (j = i + 1; j < geom.size(); j++) {
if (geom[j].op != VT_LINETO) {
break;
}
}
double area = get_area(geom, i, j);
if (area != 0) {
has_area = true;
}
ClipperLib::Path path;
drawvec tmp;
for (size_t k = i; k < j; k++) {
path.push_back(ClipperLib::IntPoint(geom[k].x, geom[k].y));
}
if (!clipper.AddPath(path, ClipperLib::ptSubject, true)) {
#if 0
fprintf(stderr, "Couldn't add polygon for clipping:");
for (size_t k = i; k < j; k++) {
fprintf(stderr, " %lld,%lld", geom[k].x, geom[k].y);
}
fprintf(stderr, "\n");
#endif
}
i = j - 1;
} else {
fprintf(stderr, "Unexpected operation in polygon %d\n", (int) geom[i].op);
exit(EXIT_FAILURE);
}
}
if (clip) {
long long area = 0xFFFFFFFF;
if (z != 0) {
area = 1LL << (32 - z);
}
long long clip_buffer = buffer * area / 256;
ClipperLib::Path edge;
edge.push_back(ClipperLib::IntPoint(-clip_buffer, -clip_buffer));
edge.push_back(ClipperLib::IntPoint(area + clip_buffer, -clip_buffer));
edge.push_back(ClipperLib::IntPoint(area + clip_buffer, area + clip_buffer));
edge.push_back(ClipperLib::IntPoint(-clip_buffer, area + clip_buffer));
edge.push_back(ClipperLib::IntPoint(-clip_buffer, -clip_buffer));
clipper.AddPath(edge, ClipperLib::ptClip, true);
}
ClipperLib::PolyTree clipped;
if (clip) {
if (!clipper.Execute(ClipperLib::ctIntersection, clipped)) {
fprintf(stderr, "Polygon clip failed\n");
}
} else {
if (!has_area) {
drawvec out;
return out;
}
if (!clipper.Execute(ClipperLib::ctUnion, clipped)) {
fprintf(stderr, "Polygon clean failed\n");
}
}
drawvec out;
for (int i = 0; i < clipped.ChildCount(); i++) {
decode_clipped(clipped.Childs[i], out);
}
return out;
}
/* pnpoly:
Copyright (c) 1970-2003, Wm. Randolph Franklin
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimers.
Redistributions in binary form must reproduce the above copyright notice in the documentation and/or other materials provided with the distribution.
The name of W. Randolph Franklin may not be used to endorse or promote products derived from this Software without specific prior written permission.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
static int pnpoly(drawvec &vert, size_t start, size_t nvert, long long testx, long long testy) {
int i, j, c = 0;
for (i = 0, j = nvert - 1; i < nvert; j = i++) {
if (((vert[i + start].y > testy) != (vert[j + start].y > testy)) &&
(testx < (vert[j + start].x - vert[i + start].x) * (testy - vert[i + start].y) / (vert[j + start].y - vert[i + start].y) + vert[i + start].x))
c = !c;
}
return c;
}
void check_polygon(drawvec &geom) {
for (size_t i = 0; i + 1 < geom.size(); i++) {
for (size_t j = i + 1; j + 1 < geom.size(); j++) {
if (geom[i + 1].op == VT_LINETO && geom[j + 1].op == VT_LINETO) {
double s1_x = geom[i + 1].x - geom[i + 0].x;
double s1_y = geom[i + 1].y - geom[i + 0].y;
double s2_x = geom[j + 1].x - geom[j + 0].x;
double s2_y = geom[j + 1].y - geom[j + 0].y;
double s, t;
s = (-s1_y * (geom[i + 0].x - geom[j + 0].x) + s1_x * (geom[i + 0].y - geom[j + 0].y)) / (-s2_x * s1_y + s1_x * s2_y);
t = (s2_x * (geom[i + 0].y - geom[j + 0].y) - s2_y * (geom[i + 0].x - geom[j + 0].x)) / (-s2_x * s1_y + s1_x * s2_y);
if (t > 0 && t < 1 && s > 0 && s < 1) {
fprintf(stderr, "Internal error: self-intersecting polygon. %lld,%lld to %lld,%lld intersects %lld,%lld to %lld,%lld\n",
geom[i + 0].x, geom[i + 0].y,
geom[i + 1].x, geom[i + 1].y,
geom[j + 0].x, geom[j + 0].y,
geom[j + 1].x, geom[j + 1].y);
exit(EXIT_FAILURE);
}
}
}
}
size_t outer_start = -1;
size_t outer_len = 0;
for (size_t i = 0; i < geom.size(); i++) {
if (geom[i].op == VT_MOVETO) {
size_t j;
for (j = i + 1; j < geom.size(); j++) {
if (geom[j].op != VT_LINETO) {
break;
}
}
double area = get_area(geom, i, j);
#if 0
fprintf(stderr, "looking at %lld to %lld, area %f\n", (long long) i, (long long) j, area);
#endif
if (area > 0) {
outer_start = i;
outer_len = j - i;
} else {
for (size_t k = i; k < j; k++) {
if (!pnpoly(geom, outer_start, outer_len, geom[k].x, geom[k].y)) {
bool on_edge = false;
for (size_t l = outer_start; l < outer_start + outer_len; l++) {
if (geom[k].x == geom[l].x || geom[k].y == geom[l].y) {
on_edge = true;
break;
}
}
if (!on_edge) {
fprintf(stderr, "%lld,%lld at %lld not in outer ring (%lld to %lld)", geom[k].x, geom[k].y, (long long) k, (long long) outer_start, (long long) (outer_start + outer_len));
#if 0
for (size_t l = outer_start; l < outer_start + outer_len; l++) {
fprintf(stderr, " %lld,%lld", geom[l].x, geom[l].y);
}
#endif
fprintf(stderr, "\n");
}
}
}
}
}
}
}
drawvec close_poly(drawvec &geom) {
drawvec out;
for (size_t i = 0; i < geom.size(); i++) {
if (geom[i].op == VT_MOVETO) {
size_t j;
for (j = i + 1; j < geom.size(); j++) {
if (geom[j].op != VT_LINETO) {
break;
}
}
if (j - 1 > i) {
if (geom[j - 1].x != geom[i].x || geom[j - 1].y != geom[i].y) {
fprintf(stderr, "Internal error: polygon not closed\n");
}
}
for (size_t n = i; n < j - 1; n++) {
out.push_back(geom[n]);
}
out.push_back(draw(VT_CLOSEPATH, 0, 0));
i = j - 1;
}
}
return out;
}
static bool inside(draw d, int edge, long long minx, long long miny, long long maxx, long long maxy) {
switch (edge) {
case 0: // top
return d.y > miny;
case 1: // right
return d.x < maxx;
case 2: // bottom
return d.y < maxy;
case 3: // left
return d.x > minx;
}
fprintf(stderr, "internal error inside\n");
exit(EXIT_FAILURE);
}
// http://stackoverflow.com/questions/563198/how-do-you-detect-where-two-line-segments-intersect
static draw get_line_intersection(draw p0, draw p1, draw p2, draw p3) {
double s1_x = p1.x - p0.x;
double s1_y = p1.y - p0.y;
double s2_x = p3.x - p2.x;
double s2_y = p3.y - p2.y;
double t;
// s = (-s1_y * (p0.x - p2.x) + s1_x * (p0.y - p2.y)) / (-s2_x * s1_y + s1_x * s2_y);
t = (s2_x * (p0.y - p2.y) - s2_y * (p0.x - p2.x)) / (-s2_x * s1_y + s1_x * s2_y);
return draw(VT_LINETO, p0.x + (t * s1_x), p0.y + (t * s1_y));
}
static draw intersect(draw a, draw b, int edge, long long minx, long long miny, long long maxx, long long maxy) {
switch (edge) {
case 0: // top
return get_line_intersection(a, b, draw(VT_MOVETO, minx, miny), draw(VT_MOVETO, maxx, miny));
break;
case 1: // right
return get_line_intersection(a, b, draw(VT_MOVETO, maxx, miny), draw(VT_MOVETO, maxx, maxy));
break;
case 2: // bottom
return get_line_intersection(a, b, draw(VT_MOVETO, maxx, maxy), draw(VT_MOVETO, minx, maxy));
break;
case 3: // left
return get_line_intersection(a, b, draw(VT_MOVETO, minx, maxy), draw(VT_MOVETO, minx, miny));
break;
}
fprintf(stderr, "internal error intersecting\n");
exit(EXIT_FAILURE);
}
// http://en.wikipedia.org/wiki/Sutherland%E2%80%93Hodgman_algorithm
static drawvec clip_poly1(drawvec &geom, long long minx, long long miny, long long maxx, long long maxy) {
drawvec out = geom;
for (int edge = 0; edge < 4; edge++) {
if (out.size() > 0) {
drawvec in = out;
out.resize(0);
draw S = in[in.size() - 1];
for (size_t e = 0; e < in.size(); e++) {
draw E = in[e];
if (inside(E, edge, minx, miny, maxx, maxy)) {
if (!inside(S, edge, minx, miny, maxx, maxy)) {
out.push_back(intersect(S, E, edge, minx, miny, maxx, maxy));
}
out.push_back(E);
} else if (inside(S, edge, minx, miny, maxx, maxy)) {
out.push_back(intersect(S, E, edge, minx, miny, maxx, maxy));
}
S = E;
}
}
}
if (out.size() > 0) {
// If the polygon begins and ends outside the edge,
// the starting and ending points will be left as the
// places where it intersects the edge. Need to add
// another point to close the loop.
if (out[0].x != out[out.size() - 1].x || out[0].y != out[out.size() - 1].y) {
out.push_back(out[0]);
}
if (out.size() < 3) {
// fprintf(stderr, "Polygon degenerated to a line segment\n");
out.clear();
return out;
}
out[0].op = VT_MOVETO;
for (size_t i = 1; i < out.size(); i++) {
out[i].op = VT_LINETO;
}
}
return out;
}
drawvec simple_clip_poly(drawvec &geom, long long minx, long long miny, long long maxx, long long maxy) {
drawvec out;
for (size_t i = 0; i < geom.size(); i++) {
if (geom[i].op == VT_MOVETO) {
size_t j;
for (j = i + 1; j < geom.size(); j++) {
if (geom[j].op != VT_LINETO) {
break;
}
}
drawvec tmp;
for (size_t k = i; k < j; k++) {
tmp.push_back(geom[k]);
}
tmp = clip_poly1(tmp, minx, miny, maxx, maxy);
if (tmp.size() > 0) {
if (tmp[0].x != tmp[tmp.size() - 1].x || tmp[0].y != tmp[tmp.size() - 1].y) {
fprintf(stderr, "Internal error: Polygon ring not closed\n");
exit(EXIT_FAILURE);
}
}
for (size_t k = 0; k < tmp.size(); k++) {
out.push_back(tmp[k]);
}
i = j - 1;
} else {
fprintf(stderr, "Unexpected operation in polygon %d\n", (int) geom[i].op);
exit(EXIT_FAILURE);
}
}
return out;
}
drawvec simple_clip_poly(drawvec &geom, int z, int detail, int buffer) {
long long area = 0xFFFFFFFF;
if (z != 0) {
area = 1LL << (32 - z);
}
long long clip_buffer = buffer * area / 256;
return simple_clip_poly(geom, -clip_buffer, -clip_buffer, area + clip_buffer, area + clip_buffer);
}
drawvec reduce_tiny_poly(drawvec &geom, int z, int detail, bool *reduced, double *accum_area) {
drawvec out;
long long pixel = (1 << (32 - detail - z)) * 2;
*reduced = true;
bool included_last_outer = false;
for (size_t i = 0; i < geom.size(); i++) {
if (geom[i].op == VT_MOVETO) {
size_t j;
for (j = i + 1; j < geom.size(); j++) {
if (geom[j].op != VT_LINETO) {
break;
}
}
double area = get_area(geom, i, j);
// XXX There is an ambiguity here: If the area of a ring is 0 and it is followed by holes,
// we don't know whether the area-0 ring was a hole too or whether it was the outer ring
// that these subsequent holes are somehow being subtracted from. I hope that if a polygon
// was simplified down to nothing, its holes also became nothing.
if (area != 0) {
// These are pixel coordinates, so area > 0 for the outer ring.
// If the outer ring of a polygon was reduced to a pixel, its
// inner rings must just have their area de-accumulated rather
// than being drawn since we don't really know where they are.
if (fabs(area) <= pixel * pixel || (area < 0 && !included_last_outer)) {
// printf("area is only %f vs %lld so using square\n", area, pixel * pixel);
*accum_area += area;
if (area > 0 && *accum_area > pixel * pixel) {
// XXX use centroid;
out.push_back(draw(VT_MOVETO, geom[i].x - pixel / 2, geom[i].y - pixel / 2));
out.push_back(draw(VT_LINETO, geom[i].x + pixel / 2, geom[i].y - pixel / 2));
out.push_back(draw(VT_LINETO, geom[i].x + pixel / 2, geom[i].y + pixel / 2));
out.push_back(draw(VT_LINETO, geom[i].x - pixel / 2, geom[i].y + pixel / 2));
out.push_back(draw(VT_LINETO, geom[i].x - pixel / 2, geom[i].y - pixel / 2));
*accum_area -= pixel * pixel;
}
if (area > 0) {
included_last_outer = false;
}
} else {
// printf("area is %f so keeping instead of %lld\n", area, pixel * pixel);
for (size_t k = i; k <= j && k < geom.size(); k++) {
out.push_back(geom[k]);
}
*reduced = false;
if (area > 0) {
included_last_outer = true;
}
}
}
i = j - 1;
} else {
fprintf(stderr, "how did we get here with %d in %d?\n", geom[i].op, (int) geom.size());
for (size_t n = 0; n < geom.size(); n++) {
fprintf(stderr, "%d/%lld/%lld ", geom[n].op, geom[n].x, geom[n].y);
}
fprintf(stderr, "\n");
out.push_back(geom[i]);
}
}
return out;
}
drawvec clip_point(drawvec &geom, int z, int detail, long long buffer) {
drawvec out;
long long min = 0;
long long area = 0xFFFFFFFF;
if (z != 0) {
area = 1LL << (32 - z);
min -= buffer * area / 256;
area += buffer * area / 256;
}
for (size_t i = 0; i < geom.size(); i++) {
if (geom[i].x >= min && geom[i].y >= min && geom[i].x <= area && geom[i].y <= area) {
out.push_back(geom[i]);
}
}
return out;
}
int quick_check(long long *bbox, int z, int detail, long long buffer) {
long long min = 0;
long long area = 0xFFFFFFFF;
if (z != 0) {
area = 1LL << (32 - z);
min -= buffer * area / 256;
area += buffer * area / 256;
}
// bbox entirely outside the tile
if (bbox[0] > area || bbox[1] > area) {
return 0;
}
if (bbox[2] < min || bbox[3] < min) {
return 0;
}
// bbox entirely within the tile
if (bbox[0] > min && bbox[1] > min && bbox[2] < area && bbox[3] < area) {
return 1;
}
// some overlap of edge
return 2;
}
drawvec clip_lines(drawvec &geom, int z, int detail, long long buffer) {
drawvec out;
long long min = 0;
long long area = 0xFFFFFFFF;
if (z != 0) {
area = 1LL << (32 - z);
min -= buffer * area / 256;
area += buffer * area / 256;
}
for (size_t i = 0; i < geom.size(); i++) {
if (i > 0 && (geom[i - 1].op == VT_MOVETO || geom[i - 1].op == VT_LINETO) && geom[i].op == VT_LINETO) {
double x1 = geom[i - 1].x;
double y1 = geom[i - 1].y;
double x2 = geom[i - 0].x;
double y2 = geom[i - 0].y;
int c = clip(&x1, &y1, &x2, &y2, min, min, area, area);
if (c > 1) { // clipped
out.push_back(draw(VT_MOVETO, x1, y1));
out.push_back(draw(VT_LINETO, x2, y2));
out.push_back(draw(VT_MOVETO, geom[i].x, geom[i].y));
} else if (c == 1) { // unchanged
out.push_back(geom[i]);
} else { // clipped away entirely
out.push_back(draw(VT_MOVETO, geom[i].x, geom[i].y));
}
} else {
out.push_back(geom[i]);
}
}
return out;
}
static double square_distance_from_line(long long point_x, long long point_y, long long segA_x, long long segA_y, long long segB_x, long long segB_y) {
double p2x = segB_x - segA_x;
double p2y = segB_y - segA_y;
double something = p2x * p2x + p2y * p2y;
double u = 0 == something ? 0 : ((point_x - segA_x) * p2x + (point_y - segA_y) * p2y) / something;
if (u > 1) {
u = 1;
} else if (u < 0) {
u = 0;
}
double x = segA_x + u * p2x;
double y = segA_y + u * p2y;
double dx = x - point_x;
double dy = y - point_y;
return dx * dx + dy * dy;
}
// https://github.com/Project-OSRM/osrm-backend/blob/733d1384a40f/Algorithms/DouglasePeucker.cpp
static void douglas_peucker(drawvec &geom, int start, int n, double e) {
e = e * e;
std::stack<int> recursion_stack;
{
int left_border = 0;
int right_border = 1;
// Sweep linerarily over array and identify those ranges that need to be checked
do {
if (geom[start + right_border].necessary) {
recursion_stack.push(left_border);
recursion_stack.push(right_border);
left_border = right_border;
}
++right_border;
} while (right_border < n);
}
while (!recursion_stack.empty()) {
// pop next element
int second = recursion_stack.top();
recursion_stack.pop();
int first = recursion_stack.top();
recursion_stack.pop();
double max_distance = -1;
int farthest_element_index = second;
// find index idx of element with max_distance
int i;
for (i = first + 1; i < second; i++) {
double temp_dist = square_distance_from_line(geom[start + i].x, geom[start + i].y, geom[start + first].x, geom[start + first].y, geom[start + second].x, geom[start + second].y);
double distance = fabs(temp_dist);
if (distance > e && distance > max_distance) {
farthest_element_index = i;
max_distance = distance;
}
}
if (max_distance > e) {
// mark idx as necessary
geom[start + farthest_element_index].necessary = 1;
if (1 < farthest_element_index - first) {
recursion_stack.push(first);
recursion_stack.push(farthest_element_index);
}
if (1 < second - farthest_element_index) {
recursion_stack.push(farthest_element_index);
recursion_stack.push(second);
}
}
}
}
// If any line segment crosses a tile boundary, add a node there
// that cannot be simplified away, to prevent the edge of any
// feature from jumping abruptly at the tile boundary.
drawvec impose_tile_boundaries(drawvec &geom, long long extent) {
drawvec out;
for (size_t i = 0; i < geom.size(); i++) {
if (i > 0 && geom[i].op == VT_LINETO && (geom[i - 1].op == VT_MOVETO || geom[i - 1].op == VT_LINETO)) {
double x1 = geom[i - 1].x;
double y1 = geom[i - 1].y;
double x2 = geom[i - 0].x;
double y2 = geom[i - 0].y;
int c = clip(&x1, &y1, &x2, &y2, 0, 0, extent, extent);
if (c > 1) { // clipped
if (x1 != geom[i - 1].x || y1 != geom[i - 1].y) {
out.push_back(draw(VT_LINETO, x1, y1));
out[out.size() - 1].necessary = 1;
}
if (x2 != geom[i - 0].x || y2 != geom[i - 0].y) {
out.push_back(draw(VT_LINETO, x2, y2));
out[out.size() - 1].necessary = 1;
}
}
}
out.push_back(geom[i]);
}
return out;
}
drawvec simplify_lines(drawvec &geom, int z, int detail) {
int res = 1 << (32 - detail - z);
long long area = 0xFFFFFFFF;
if (z != 0) {
area = 1LL << (32 - z);
}
for (size_t i = 0; i < geom.size(); i++) {
if (geom[i].op == VT_MOVETO) {
geom[i].necessary = 1;
} else if (geom[i].op == VT_LINETO) {
geom[i].necessary = 0;
} else {
geom[i].necessary = 1;
}
}
geom = impose_tile_boundaries(geom, area);
for (size_t i = 0; i < geom.size(); i++) {
if (geom[i].op == VT_MOVETO) {
size_t j;
for (j = i + 1; j < geom.size(); j++) {
if (geom[j].op != VT_LINETO) {
break;
}
}
geom[i].necessary = 1;
geom[j - 1].necessary = 1;
douglas_peucker(geom, i, j - i, res);
i = j - 1;
}
}
drawvec out;
for (size_t i = 0; i < geom.size(); i++) {
if (geom[i].necessary) {
out.push_back(geom[i]);
}
}
return out;
}
drawvec reorder_lines(drawvec &geom) {
// Only reorder simple linestrings with a single moveto
if (geom.size() == 0) {
return geom;
}
for (size_t i = 0; i < geom.size(); i++) {
if (geom[i].op == VT_MOVETO) {
if (i != 0) {
return geom;
}
} else if (geom[i].op == VT_LINETO) {
if (i == 0) {
return geom;
}
} else {
return geom;
}
}
// Reorder anything that goes up and to the left
// instead of down and to the right
// so that it will coalesce better
unsigned long long l1 = encode(geom[0].x, geom[0].y);
unsigned long long l2 = encode(geom[geom.size() - 1].x, geom[geom.size() - 1].y);
if (l1 > l2) {
drawvec out;
for (size_t i = 0; i < geom.size(); i++) {
out.push_back(geom[geom.size() - 1 - i]);
}
out[0].op = VT_MOVETO;
out[out.size() - 1].op = VT_LINETO;
return out;
}
return geom;
}
drawvec fix_polygon(drawvec &geom) {
int outer = 1;
drawvec out;
for (size_t i = 0; i < geom.size(); i++) {
if (geom[i].op == VT_CLOSEPATH) {
outer = 1;
} else if (geom[i].op == VT_MOVETO) {
// Find the end of the ring
size_t j;
for (j = i + 1; j < geom.size(); j++) {
if (geom[j].op != VT_LINETO) {
break;
}
}
// Make a temporary copy of the ring.
// Close it if it isn't closed.
drawvec ring;
for (size_t a = i; a < j; a++) {
ring.push_back(geom[a]);
}
if (j - i != 0 && (ring[0].x != ring[j - i - 1].x || ring[0].y != ring[j - i - 1].y)) {
ring.push_back(ring[0]);
}
// Reverse ring if winding order doesn't match
// inner/outer expectation
double area = get_area(ring, 0, ring.size());
if ((area > 0) != outer) {
drawvec tmp;
for (int a = ring.size() - 1; a >= 0; a--) {
tmp.push_back(ring[a]);
}
ring = tmp;
}
// Copy ring into output, fixing the moveto/lineto ops if necessary because of
// reversal or closing
for (size_t a = 0; a < ring.size(); a++) {
if (a == 0) {
out.push_back(draw(VT_MOVETO, ring[a].x, ring[a].y));
} else {
out.push_back(draw(VT_LINETO, ring[a].x, ring[a].y));
}
}
// Next ring or polygon begins on the non-lineto that ended this one
// and is not an outer ring unless there is a terminator first
i = j - 1;
outer = 0;
} else {
fprintf(stderr, "Internal error: polygon ring begins with %d, not moveto\n", geom[i].op);
exit(EXIT_FAILURE);
}
}
return out;
}
std::vector<drawvec> chop_polygon(std::vector<drawvec> &geoms) {
while (1) {
bool again = false;
std::vector<drawvec> out;
for (size_t i = 0; i < geoms.size(); i++) {
if (geoms[i].size() > 700) {
static bool warned = false;
if (!warned) {
fprintf(stderr, "Warning: splitting up polygon with more than 700 sides\n");
warned = true;
}
long long midx = 0, midy = 0, count = 0;
2016-03-21 23:13:47 +00:00
long long maxx = LLONG_MIN, maxy = LLONG_MIN, minx = LLONG_MAX, miny = LLONG_MAX;
for (size_t j = 0; j < geoms[i].size(); j++) {
if (geoms[i][j].op == VT_MOVETO || geoms[i][j].op == VT_LINETO) {
midx += geoms[i][j].x;
midy += geoms[i][j].y;
count++;
if (geoms[i][j].x > maxx) {
maxx = geoms[i][j].x;
}
if (geoms[i][j].y > maxy) {
maxy = geoms[i][j].y;
}
if (geoms[i][j].x < minx) {
minx = geoms[i][j].x;
}
if (geoms[i][j].y < miny) {
miny = geoms[i][j].y;
}
}
}
midx /= count;
midy /= count;
drawvec c1, c2;
if (maxy - miny > maxx - minx) {
// printf("clipping y to %lld %lld %lld %lld\n", minx, miny, maxx, midy);
c1 = simple_clip_poly(geoms[i], minx, miny, maxx, midy);
// printf(" and %lld %lld %lld %lld\n", minx, midy, maxx, maxy);
c2 = simple_clip_poly(geoms[i], minx, midy, maxx, maxy);
} else {
// printf("clipping x to %lld %lld %lld %lld\n", minx, miny, midx, maxy);
c1 = simple_clip_poly(geoms[i], minx, miny, midx, maxy);
// printf(" and %lld %lld %lld %lld\n", midx, midy, maxx, maxy);
c2 = simple_clip_poly(geoms[i], midx, miny, maxx, maxy);
}
if (c1.size() >= geoms[i].size()) {
fprintf(stderr, "Subdividing complex polygon failed\n");
} else {
out.push_back(c1);
}
if (c2.size() >= geoms[i].size()) {
fprintf(stderr, "Subdividing complex polygon failed\n");
} else {
out.push_back(c2);
}
again = true;
} else {
out.push_back(geoms[i]);
}
}
if (!again) {
return out;
}
geoms = out;
}
}