mirror of
https://github.com/tahoe-lafs/tahoe-lafs.git
synced 2025-01-21 12:05:03 +00:00
634 lines
20 KiB
C
634 lines
20 KiB
C
/* TODO:
|
|
* + prune all unused code
|
|
* + profile
|
|
*/
|
|
/*
|
|
* fec.c -- forward error correction based on Vandermonde matrices
|
|
* 980624
|
|
* (C) 1997-98 Luigi Rizzo (luigi@iet.unipi.it)
|
|
*
|
|
* Portions derived from code by Phil Karn (karn@ka9q.ampr.org),
|
|
* Robert Morelos-Zaragoza (robert@spectra.eng.hawaii.edu) and Hari
|
|
* Thirumoorthy (harit@spectra.eng.hawaii.edu), Aug 1995
|
|
*
|
|
* Modifications by Dan Rubenstein (see Modifications.txt for
|
|
* their description.
|
|
* Modifications (C) 1998 Dan Rubenstein (drubenst@cs.umass.edu)
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above
|
|
* copyright notice, this list of conditions and the following
|
|
* disclaimer in the documentation and/or other materials
|
|
* provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
|
|
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
|
|
* PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
|
|
* OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
|
|
* OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
|
|
* TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
|
|
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
|
|
* OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <assert.h>
|
|
|
|
#include "fec.h"
|
|
|
|
|
|
/*
|
|
* If you get a error returned (negative value) from a fec_* function,
|
|
* look in here for the error message.
|
|
*/
|
|
|
|
#define FEC_ERROR_SIZE 1025
|
|
char fec_error[FEC_ERROR_SIZE+1];
|
|
|
|
#define ERR(...) (snprintf(fec_error, FEC_ERROR_SIZE, __VA_ARGS__))
|
|
|
|
/*
|
|
* Primitive polynomials - see Lin & Costello, Appendix A,
|
|
* and Lee & Messerschmitt, p. 453.
|
|
*/
|
|
static const char*const Pp="101110001";
|
|
|
|
|
|
/*
|
|
* To speed up computations, we have tables for logarithm, exponent and
|
|
* inverse of a number. We use a table for multiplication as well (it takes
|
|
* 64K, no big deal even on a PDA, especially because it can be
|
|
* pre-initialized an put into a ROM!), otherwhise we use a table of
|
|
* logarithms. In any case the macro gf_mul(x,y) takes care of
|
|
* multiplications.
|
|
*/
|
|
|
|
static gf gf_exp[510]; /* index->poly form conversion table */
|
|
static int gf_log[256]; /* Poly->index form conversion table */
|
|
static gf inverse[256]; /* inverse of field elem. */
|
|
/* inv[\alpha**i]=\alpha**(GF_SIZE-i-1) */
|
|
|
|
/*
|
|
* modnn(x) computes x % GF_SIZE, where GF_SIZE is 2**GF_BITS - 1,
|
|
* without a slow divide.
|
|
*/
|
|
static inline gf
|
|
modnn(int x) {
|
|
while (x >= 255) {
|
|
x -= 255;
|
|
x = (x >> 8) + (x & 255);
|
|
}
|
|
return x;
|
|
}
|
|
|
|
#define SWAP(a,b,t) {t tmp; tmp=a; a=b; b=tmp;}
|
|
|
|
/*
|
|
* gf_mul(x,y) multiplies two numbers. It is much faster to use a
|
|
* multiplication table.
|
|
*
|
|
* USE_GF_MULC, GF_MULC0(c) and GF_ADDMULC(x) can be used when multiplying
|
|
* many numbers by the same constant. In this case the first call sets the
|
|
* constant, and others perform the multiplications. A value related to the
|
|
* multiplication is held in a local variable declared with USE_GF_MULC . See
|
|
* usage in addmul1().
|
|
*/
|
|
static gf gf_mul_table[256][256];
|
|
|
|
#define gf_mul(x,y) gf_mul_table[x][y]
|
|
|
|
#define USE_GF_MULC register gf * __gf_mulc_
|
|
#define GF_MULC0(c) __gf_mulc_ = gf_mul_table[c]
|
|
#define GF_ADDMULC(dst, x) dst ^= __gf_mulc_[x]
|
|
|
|
/*
|
|
* Generate GF(2**m) from the irreducible polynomial p(X) in p[0]..p[m]
|
|
* Lookup tables:
|
|
* index->polynomial form gf_exp[] contains j= \alpha^i;
|
|
* polynomial form -> index form gf_log[ j = \alpha^i ] = i
|
|
* \alpha=x is the primitive element of GF(2^m)
|
|
*
|
|
* For efficiency, gf_exp[] has size 2*GF_SIZE, so that a simple
|
|
* multiplication of two numbers can be resolved without calling modnn
|
|
*/
|
|
static void
|
|
init_mul_table () {
|
|
int i, j;
|
|
for (i = 0; i < 256; i++)
|
|
for (j = 0; j < 256; j++)
|
|
gf_mul_table[i][j] = gf_exp[modnn (gf_log[i] + gf_log[j])];
|
|
|
|
for (j = 0; j < 256; j++)
|
|
gf_mul_table[0][j] = gf_mul_table[j][0] = 0;
|
|
}
|
|
|
|
/*
|
|
* i use malloc so many times, it is easier to put checks all in
|
|
* one place.
|
|
*/
|
|
static void *
|
|
my_malloc (int sz, char *err_string) {
|
|
void *p = malloc (sz);
|
|
if (p == NULL) {
|
|
ERR("Malloc failure allocating %s\n", err_string);
|
|
exit (1);
|
|
}
|
|
return p;
|
|
}
|
|
|
|
#define NEW_GF_MATRIX(rows, cols) \
|
|
(gf *)my_malloc(rows * cols * sizeof(gf), " ## __LINE__ ## " )
|
|
|
|
/*
|
|
* initialize the data structures used for computations in GF.
|
|
*/
|
|
static void
|
|
generate_gf (void) {
|
|
int i;
|
|
gf mask;
|
|
|
|
mask = 1; /* x ** 0 = 1 */
|
|
gf_exp[8] = 0; /* will be updated at the end of the 1st loop */
|
|
/*
|
|
* first, generate the (polynomial representation of) powers of \alpha,
|
|
* which are stored in gf_exp[i] = \alpha ** i .
|
|
* At the same time build gf_log[gf_exp[i]] = i .
|
|
* The first 8 powers are simply bits shifted to the left.
|
|
*/
|
|
for (i = 0; i < 8; i++, mask <<= 1) {
|
|
gf_exp[i] = mask;
|
|
gf_log[gf_exp[i]] = i;
|
|
/*
|
|
* If Pp[i] == 1 then \alpha ** i occurs in poly-repr
|
|
* gf_exp[8] = \alpha ** 8
|
|
*/
|
|
if (Pp[i] == '1')
|
|
gf_exp[8] ^= mask;
|
|
}
|
|
/*
|
|
* now gf_exp[8] = \alpha ** 8 is complete, so can also
|
|
* compute its inverse.
|
|
*/
|
|
gf_log[gf_exp[8]] = 8;
|
|
/*
|
|
* Poly-repr of \alpha ** (i+1) is given by poly-repr of
|
|
* \alpha ** i shifted left one-bit and accounting for any
|
|
* \alpha ** 8 term that may occur when poly-repr of
|
|
* \alpha ** i is shifted.
|
|
*/
|
|
mask = 1 << 7;
|
|
for (i = 9; i < 255; i++) {
|
|
if (gf_exp[i - 1] >= mask)
|
|
gf_exp[i] = gf_exp[8] ^ ((gf_exp[i - 1] ^ mask) << 1);
|
|
else
|
|
gf_exp[i] = gf_exp[i - 1] << 1;
|
|
gf_log[gf_exp[i]] = i;
|
|
}
|
|
/*
|
|
* log(0) is not defined, so use a special value
|
|
*/
|
|
gf_log[0] = 255;
|
|
/* set the extended gf_exp values for fast multiply */
|
|
for (i = 0; i < 255; i++)
|
|
gf_exp[i + 255] = gf_exp[i];
|
|
|
|
/*
|
|
* again special cases. 0 has no inverse. This used to
|
|
* be initialized to 255, but it should make no difference
|
|
* since noone is supposed to read from here.
|
|
*/
|
|
inverse[0] = 0;
|
|
inverse[1] = 1;
|
|
for (i = 2; i <= 255; i++)
|
|
inverse[i] = gf_exp[255 - gf_log[i]];
|
|
}
|
|
|
|
/*
|
|
* Various linear algebra operations that i use often.
|
|
*/
|
|
|
|
/*
|
|
* addmul() computes dst[] = dst[] + c * src[]
|
|
* This is used often, so better optimize it! Currently the loop is
|
|
* unrolled 16 times, a good value for 486 and pentium-class machines.
|
|
* The case c=0 is also optimized, whereas c=1 is not. These
|
|
* calls are unfrequent in my typical apps so I did not bother.
|
|
*/
|
|
#define addmul(dst, src, c, sz) \
|
|
if (c != 0) addmul1(dst, src, c, sz)
|
|
|
|
#define UNROLL 16 /* 1, 4, 8, 16 */
|
|
static void
|
|
addmul1 (gf * dst1, const gf * src1, gf c, int sz) {
|
|
USE_GF_MULC;
|
|
register gf *dst = dst1;
|
|
register const gf *src = src1;
|
|
gf *lim = &dst[sz - UNROLL + 1];
|
|
|
|
GF_MULC0 (c);
|
|
|
|
#if (UNROLL > 1) /* unrolling by 8/16 is quite effective on the pentium */
|
|
for (; dst < lim; dst += UNROLL, src += UNROLL) {
|
|
GF_ADDMULC (dst[0], src[0]);
|
|
GF_ADDMULC (dst[1], src[1]);
|
|
GF_ADDMULC (dst[2], src[2]);
|
|
GF_ADDMULC (dst[3], src[3]);
|
|
#if (UNROLL > 4)
|
|
GF_ADDMULC (dst[4], src[4]);
|
|
GF_ADDMULC (dst[5], src[5]);
|
|
GF_ADDMULC (dst[6], src[6]);
|
|
GF_ADDMULC (dst[7], src[7]);
|
|
#endif
|
|
#if (UNROLL > 8)
|
|
GF_ADDMULC (dst[8], src[8]);
|
|
GF_ADDMULC (dst[9], src[9]);
|
|
GF_ADDMULC (dst[10], src[10]);
|
|
GF_ADDMULC (dst[11], src[11]);
|
|
GF_ADDMULC (dst[12], src[12]);
|
|
GF_ADDMULC (dst[13], src[13]);
|
|
GF_ADDMULC (dst[14], src[14]);
|
|
GF_ADDMULC (dst[15], src[15]);
|
|
#endif
|
|
}
|
|
#endif
|
|
lim += UNROLL - 1;
|
|
for (; dst < lim; dst++, src++) /* final components */
|
|
GF_ADDMULC (*dst, *src);
|
|
}
|
|
|
|
/*
|
|
* computes C = AB where A is n*k, B is k*m, C is n*m
|
|
*/
|
|
static void
|
|
matmul (gf * a, gf * b, gf * c, int n, int k, int m) {
|
|
int row, col, i;
|
|
|
|
for (row = 0; row < n; row++) {
|
|
for (col = 0; col < m; col++) {
|
|
gf *pa = &a[row * k];
|
|
gf *pb = &b[col];
|
|
gf acc = 0;
|
|
for (i = 0; i < k; i++, pa++, pb += m)
|
|
acc ^= gf_mul (*pa, *pb);
|
|
c[row * m + col] = acc;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* invert_mat() takes a matrix and produces its inverse
|
|
* k is the size of the matrix.
|
|
* (Gauss-Jordan, adapted from Numerical Recipes in C)
|
|
* Return non-zero if singular.
|
|
*/
|
|
static int
|
|
invert_mat (gf * src, int k) {
|
|
gf c, *p;
|
|
int irow, icol, row, col, i, ix;
|
|
|
|
int error = -1;
|
|
int *indxc = (int *) my_malloc (k * sizeof (int), "indxc");
|
|
int *indxr = (int *) my_malloc (k * sizeof (int), "indxr");
|
|
int *ipiv = (int *) my_malloc (k * sizeof (int), "ipiv");
|
|
gf *id_row = NEW_GF_MATRIX (1, k);
|
|
gf *temp_row = NEW_GF_MATRIX (1, k);
|
|
|
|
memset (id_row, '\0', k * sizeof (gf));
|
|
/*
|
|
* ipiv marks elements already used as pivots.
|
|
*/
|
|
for (i = 0; i < k; i++)
|
|
ipiv[i] = 0;
|
|
|
|
for (col = 0; col < k; col++) {
|
|
gf *pivot_row;
|
|
/*
|
|
* Zeroing column 'col', look for a non-zero element.
|
|
* First try on the diagonal, if it fails, look elsewhere.
|
|
*/
|
|
irow = icol = -1;
|
|
if (ipiv[col] != 1 && src[col * k + col] != 0) {
|
|
irow = col;
|
|
icol = col;
|
|
goto found_piv;
|
|
}
|
|
for (row = 0; row < k; row++) {
|
|
if (ipiv[row] != 1) {
|
|
for (ix = 0; ix < k; ix++) {
|
|
if (ipiv[ix] == 0) {
|
|
if (src[row * k + ix] != 0) {
|
|
irow = row;
|
|
icol = ix;
|
|
goto found_piv;
|
|
}
|
|
} else if (ipiv[ix] > 1) {
|
|
ERR("singular matrix");
|
|
goto fail;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (icol == -1) {
|
|
ERR("Pivot not found!");
|
|
goto fail;
|
|
}
|
|
found_piv:
|
|
++(ipiv[icol]);
|
|
/*
|
|
* swap rows irow and icol, so afterwards the diagonal
|
|
* element will be correct. Rarely done, not worth
|
|
* optimizing.
|
|
*/
|
|
if (irow != icol)
|
|
for (ix = 0; ix < k; ix++)
|
|
SWAP (src[irow * k + ix], src[icol * k + ix], gf);
|
|
indxr[col] = irow;
|
|
indxc[col] = icol;
|
|
pivot_row = &src[icol * k];
|
|
c = pivot_row[icol];
|
|
if (c == 0) {
|
|
ERR("singular matrix 2");
|
|
goto fail;
|
|
}
|
|
if (c != 1) { /* otherwhise this is a NOP */
|
|
/*
|
|
* this is done often , but optimizing is not so
|
|
* fruitful, at least in the obvious ways (unrolling)
|
|
*/
|
|
c = inverse[c];
|
|
pivot_row[icol] = 1;
|
|
for (ix = 0; ix < k; ix++)
|
|
pivot_row[ix] = gf_mul (c, pivot_row[ix]);
|
|
}
|
|
/*
|
|
* from all rows, remove multiples of the selected row
|
|
* to zero the relevant entry (in fact, the entry is not zero
|
|
* because we know it must be zero).
|
|
* (Here, if we know that the pivot_row is the identity,
|
|
* we can optimize the addmul).
|
|
*/
|
|
id_row[icol] = 1;
|
|
if (memcmp (pivot_row, id_row, k * sizeof (gf)) != 0) {
|
|
for (p = src, ix = 0; ix < k; ix++, p += k) {
|
|
if (ix != icol) {
|
|
c = p[icol];
|
|
p[icol] = 0;
|
|
addmul (p, pivot_row, c, k);
|
|
}
|
|
}
|
|
}
|
|
id_row[icol] = 0;
|
|
} /* done all columns */
|
|
for (col = k - 1; col >= 0; col--) {
|
|
if (indxr[col] < 0 || indxr[col] >= k) {
|
|
ERR("AARGH, indxr[col] %d\n", indxr[col]);
|
|
goto fail;
|
|
} else if (indxc[col] < 0 || indxc[col] >= k) {
|
|
ERR("AARGH, indxc[col] %d\n", indxc[col]);
|
|
goto fail;
|
|
} else if (indxr[col] != indxc[col]) {
|
|
for (row = 0; row < k; row++)
|
|
SWAP (src[row * k + indxr[col]], src[row * k + indxc[col]], gf);
|
|
}
|
|
}
|
|
error = 0;
|
|
fail:
|
|
free (indxc);
|
|
free (indxr);
|
|
free (ipiv);
|
|
free (id_row);
|
|
free (temp_row);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* fast code for inverting a vandermonde matrix.
|
|
*
|
|
* NOTE: It assumes that the matrix is not singular and _IS_ a vandermonde
|
|
* matrix. Only uses the second column of the matrix, containing the p_i's.
|
|
*
|
|
* Algorithm borrowed from "Numerical recipes in C" -- sec.2.8, but largely
|
|
* revised for my purposes.
|
|
* p = coefficients of the matrix (p_i)
|
|
* q = values of the polynomial (known)
|
|
*/
|
|
int
|
|
invert_vdm (gf * src, int k) {
|
|
int i, j, row, col;
|
|
gf *b, *c, *p;
|
|
gf t, xx;
|
|
|
|
if (k == 1) /* degenerate case, matrix must be p^0 = 1 */
|
|
return 0;
|
|
/*
|
|
* c holds the coefficient of P(x) = Prod (x - p_i), i=0..k-1
|
|
* b holds the coefficient for the matrix inversion
|
|
*/
|
|
c = NEW_GF_MATRIX (1, k);
|
|
b = NEW_GF_MATRIX (1, k);
|
|
|
|
p = NEW_GF_MATRIX (1, k);
|
|
|
|
for (j = 1, i = 0; i < k; i++, j += k) {
|
|
c[i] = 0;
|
|
p[i] = src[j]; /* p[i] */
|
|
}
|
|
/*
|
|
* construct coeffs. recursively. We know c[k] = 1 (implicit)
|
|
* and start P_0 = x - p_0, then at each stage multiply by
|
|
* x - p_i generating P_i = x P_{i-1} - p_i P_{i-1}
|
|
* After k steps we are done.
|
|
*/
|
|
c[k - 1] = p[0]; /* really -p(0), but x = -x in GF(2^m) */
|
|
for (i = 1; i < k; i++) {
|
|
gf p_i = p[i]; /* see above comment */
|
|
for (j = k - 1 - (i - 1); j < k - 1; j++)
|
|
c[j] ^= gf_mul (p_i, c[j + 1]);
|
|
c[k - 1] ^= p_i;
|
|
}
|
|
|
|
for (row = 0; row < k; row++) {
|
|
/*
|
|
* synthetic division etc.
|
|
*/
|
|
xx = p[row];
|
|
t = 1;
|
|
b[k - 1] = 1; /* this is in fact c[k] */
|
|
for (i = k - 2; i >= 0; i--) {
|
|
b[i] = c[i + 1] ^ gf_mul (xx, b[i + 1]);
|
|
t = gf_mul (xx, t) ^ b[i];
|
|
}
|
|
for (col = 0; col < k; col++)
|
|
src[col * k + row] = gf_mul (inverse[t], b[col]);
|
|
}
|
|
free (c);
|
|
free (b);
|
|
free (p);
|
|
return 0;
|
|
}
|
|
|
|
static int fec_initialized = 0;
|
|
static void
|
|
init_fec (void) {
|
|
generate_gf ();
|
|
init_mul_table ();
|
|
fec_initialized = 1;
|
|
}
|
|
|
|
/*
|
|
* This section contains the proper FEC encoding/decoding routines.
|
|
* The encoding matrix is computed starting with a Vandermonde matrix,
|
|
* and then transforming it into a systematic matrix.
|
|
*/
|
|
|
|
#define FEC_MAGIC 0xFECC0DEC
|
|
|
|
void
|
|
fec_free (fec_t *p) {
|
|
if (p == NULL ||
|
|
p->magic != (((FEC_MAGIC ^ p->k) ^ p->n) ^ (unsigned long) (p->enc_matrix))) {
|
|
ERR("bad parameters to fec_free");
|
|
return;
|
|
}
|
|
free (p->enc_matrix);
|
|
free (p);
|
|
}
|
|
|
|
/*
|
|
* create a new encoder, returning a descriptor. This contains k,n and
|
|
* the encoding matrix.
|
|
*/
|
|
fec_t *
|
|
fec_new (unsigned char k, unsigned char n) {
|
|
unsigned char row, col;
|
|
gf *p, *tmp_m;
|
|
|
|
fec_t *retval;
|
|
|
|
fec_error[FEC_ERROR_SIZE] = '\0';
|
|
|
|
if (fec_initialized == 0)
|
|
init_fec ();
|
|
|
|
retval = (fec_t *) my_malloc (sizeof (fec_t), "new_code");
|
|
retval->k = k;
|
|
retval->n = n;
|
|
retval->enc_matrix = NEW_GF_MATRIX (n, k);
|
|
retval->magic = ((FEC_MAGIC ^ k) ^ n) ^ (unsigned long) (retval->enc_matrix);
|
|
tmp_m = NEW_GF_MATRIX (n, k);
|
|
/*
|
|
* fill the matrix with powers of field elements, starting from 0.
|
|
* The first row is special, cannot be computed with exp. table.
|
|
*/
|
|
tmp_m[0] = 1;
|
|
for (col = 1; col < k; col++)
|
|
tmp_m[col] = 0;
|
|
for (p = tmp_m + k, row = 0; row < n - 1; row++, p += k) {
|
|
for (col = 0; col < k; col++)
|
|
p[col] = gf_exp[modnn (row * col)];
|
|
}
|
|
|
|
/*
|
|
* quick code to build systematic matrix: invert the top
|
|
* k*k vandermonde matrix, multiply right the bottom n-k rows
|
|
* by the inverse, and construct the identity matrix at the top.
|
|
*/
|
|
invert_vdm (tmp_m, k); /* much faster than invert_mat */
|
|
matmul (tmp_m + k * k, tmp_m, retval->enc_matrix + k * k, n - k, k, k);
|
|
/*
|
|
* the upper matrix is I so do not bother with a slow multiply
|
|
*/
|
|
memset (retval->enc_matrix, '\0', k * k * sizeof (gf));
|
|
for (p = retval->enc_matrix, col = 0; col < k; col++, p += k + 1)
|
|
*p = 1;
|
|
free (tmp_m);
|
|
|
|
return retval;
|
|
}
|
|
|
|
void
|
|
fec_encode_all(const fec_t* code, const gf*restrict const*restrict const src, gf*restrict const*restrict const fecs, const unsigned char*restrict const share_ids, unsigned char num_share_ids, size_t sz) {
|
|
unsigned i, j;
|
|
unsigned char fecnum;
|
|
gf* p;
|
|
unsigned fecs_ix = 0; /* index into the fecs array */
|
|
|
|
for (i=0; i<num_share_ids; i++) {
|
|
fecnum=share_ids[i];
|
|
if (fecnum >= code->k) {
|
|
memset(fecs[fecs_ix], 0, sz);
|
|
p = &(code->enc_matrix[fecnum * code->k]);
|
|
for (j = 0; j < code->k; j++)
|
|
addmul (fecs[fecs_ix], src[j], p[j], sz);
|
|
fecs_ix++;
|
|
}
|
|
}
|
|
}
|
|
|
|
#if 0
|
|
/* By turning the nested loop inside out, we might incur different cache usage and therefore go slower or faster. However in practice I'm not able to detect a difference, since >90% of the time is spent in my Python test script anyway. :-) */
|
|
void
|
|
fec_encode_all(const fec_t* code, const gf*restrict const*restrict const src, gf*restrict const*restrict const fecs, const unsigned char*restrict const share_ids, unsigned char num_share_ids, size_t sz) {
|
|
for (unsigned j=0; j < code->k; j++) {
|
|
unsigned fecs_ix = 0; /* index into the fecs array */
|
|
for (unsigned i=0; i<num_share_ids; i++) {
|
|
unsigned char fecnum=share_ids[i];
|
|
if (fecnum >= code->k) {
|
|
if (j == 0)
|
|
memset(fecs[fecs_ix], 0, sz);
|
|
gf* p = &(code->enc_matrix[fecnum * code->k]);
|
|
addmul (fecs[fecs_ix], src[j], p[j], sz);
|
|
fecs_ix++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* Build decode matrix into some memory space.
|
|
*
|
|
* @param matrix a space allocated for a k by k matrix
|
|
*/
|
|
void
|
|
build_decode_matrix_into_space(const fec_t*restrict const code, const unsigned char*const restrict index, const unsigned char k, gf*restrict const matrix) {
|
|
unsigned i;
|
|
gf* p;
|
|
for (i=0, p=matrix; i < k; i++, p += k) {
|
|
if (index[i] < k) {
|
|
memset(p, 0, k);
|
|
p[i] = 1;
|
|
} else {
|
|
memcpy(p, &(code->enc_matrix[index[i] * code->k]), k);
|
|
}
|
|
}
|
|
invert_mat (matrix, k);
|
|
}
|
|
|
|
void
|
|
fec_decode_all(const fec_t* code, const gf*restrict const*restrict const inpkts, gf*restrict const*restrict const outpkts, const unsigned char*restrict const index, size_t sz) {
|
|
gf m_dec[code->k * code->k];
|
|
build_decode_matrix_into_space(code, index, code->k, m_dec);
|
|
|
|
unsigned outix=0;
|
|
for (unsigned row=0; row<code->k; row++) {
|
|
if (index[row] >= code->k) {
|
|
memset(outpkts[outix], 0, sz);
|
|
for (unsigned col=0; col < code->k; col++)
|
|
addmul(outpkts[outix], inpkts[col], m_dec[row * code->k + col], sz);
|
|
outix++;
|
|
}
|
|
}
|
|
}
|