tahoe-lafs/src/allmydata/test/test_crypto.py

450 lines
15 KiB
Python

import six
import unittest
from base64 import b64decode
from binascii import a2b_hex, b2a_hex
from os import path
from allmydata.crypto import (
aes,
ed25519,
rsa,
remove_prefix,
BadPrefixError
)
RESOURCE_DIR = path.join(path.dirname(__file__), 'data')
class TestRegression(unittest.TestCase):
'''
These tests are regression tests to ensure that the upgrade from `pycryptopp` to `cryptography`
doesn't break anything. They check that data encrypted with old keys can be decrypted with new
keys.
'''
AES_KEY = b'My\x9c\xc0f\xd3\x03\x9a1\x8f\xbd\x17W_\x1f2'
IV = b'\x96\x1c\xa0\xbcUj\x89\xc1\x85J\x1f\xeb=\x17\x04\xca'
with open(path.join(RESOURCE_DIR, 'pycryptopp-rsa-2048-priv.txt')) as f:
# Created using `pycryptopp`:
#
# from base64 import b64encode
# from pycryptopp.publickey import rsa
# priv = rsa.generate(2048)
# priv_str = b64encode(priv.serialize())
# pub_str = b64encode(priv.get_verifying_key().serialize())
RSA_2048_PRIV_KEY = six.b(b64decode(f.read().strip()))
with open(path.join(RESOURCE_DIR, 'pycryptopp-rsa-2048-sig.txt')) as f:
# Signature created using `RSA_2048_PRIV_KEY` via:
#
# sig = priv.sign(b'test')
RSA_2048_SIG = six.b(b64decode(f.read().strip()))
with open(path.join(RESOURCE_DIR, 'pycryptopp-rsa-2048-pub.txt')) as f:
# The public key corresponding to `RSA_2048_PRIV_KEY`.
RSA_2048_PUB_KEY = six.b(b64decode(f.read().strip()))
def test_old_start_up_test(self):
"""
This was the old startup test run at import time in `pycryptopp.cipher.aes`.
"""
enc0 = b"dc95c078a2408989ad48a21492842087530f8afbc74536b9a963b4f1c4cb738b"
cryptor = aes.create_encryptor(key=b"\x00" * 32)
ct = aes.decrypt_data(cryptor, b"\x00" * 32)
self.assertEqual(enc0, b2a_hex(ct))
cryptor = aes.create_encryptor(key=b"\x00" * 32)
ct1 = aes.decrypt_data(cryptor, b"\x00" * 15)
ct2 = aes.decrypt_data(cryptor, b"\x00" * 17)
self.assertEqual(enc0, b2a_hex(ct1+ct2))
enc0 = b"66e94bd4ef8a2c3b884cfa59ca342b2e"
cryptor = aes.create_encryptor(key=b"\x00" * 16)
ct = aes.decrypt_data(cryptor, b"\x00" * 16)
self.assertEqual(enc0, b2a_hex(ct))
cryptor = aes.create_encryptor(key=b"\x00" * 16)
ct1 = aes.decrypt_data(cryptor, b"\x00" * 8)
ct2 = aes.decrypt_data(cryptor, b"\x00" * 8)
self.assertEqual(enc0, b2a_hex(ct1+ct2))
def _test_from_Niels_AES(keysize, result):
def fake_ecb_using_ctr(k, p):
encryptor = aes.create_encryptor(key=k, iv=p)
return aes.encrypt_data(encryptor, b'\x00' * 16)
E = fake_ecb_using_ctr
b = 16
k = keysize
S = '\x00' * (k + b)
for i in range(1000):
K = S[-k:]
P = S[-k-b:-k]
S += E(K, E(K, P))
self.assertEqual(S[-b:], a2b_hex(result))
_test_from_Niels_AES(16, b'bd883f01035e58f42f9d812f2dacbcd8')
_test_from_Niels_AES(32, b'c84b0f3a2c76dd9871900b07f09bdd3e')
def test_aes_no_iv_process_short_input(self):
'''
The old code used the following patterns with AES ciphers.
import os
from pycryptopp.cipher.aes import AES
key = = os.urandom(16)
ciphertext = AES(key).process(plaintext)
This test verifies that using the new AES wrapper generates the same output.
'''
plaintext = b'test'
expected_ciphertext = b'\x7fEK\\'
k = aes.create_encryptor(self.AES_KEY)
ciphertext = aes.decrypt_data(k, plaintext)
self.assertEqual(ciphertext, expected_ciphertext)
def test_aes_no_iv_process_long_input(self):
'''
The old code used the following patterns with AES ciphers.
import os
from pycryptopp.cipher.aes import AES
key = = os.urandom(16)
ciphertext = AES(key).process(plaintext)
This test verifies that using the new AES wrapper generates the same output.
'''
plaintext = b'hi' * 32
expected_ciphertext = (
b'cIPAY%o:\xce\xfex\x8e@^.\x90\xb1\x80a\xff\xd8^\xac\x8d\xa7/\x1d\xe6\x92\xa1\x04\x92'
b'\x1f\xa1|\xd2$E\xb5\xe7\x9d\xae\xd1\x1f)\xe4\xc7\x83\xb8\xd5|dHhU\xc8\x9a\xb1\x10\xed'
b'\xd1\xe7|\xd1')
k = aes.create_encryptor(self.AES_KEY)
ciphertext = aes.decrypt_data(k, plaintext)
self.assertEqual(ciphertext, expected_ciphertext)
def test_aes_with_iv_process_short_input(self):
'''
The old code used the following patterns with AES ciphers.
import os
from pycryptopp.cipher.aes import AES
key = = os.urandom(16)
ciphertext = AES(key).process(plaintext)
This test verifies that using the new AES wrapper generates the same output.
'''
plaintext = b'test'
expected_ciphertext = b'\x82\x0e\rt'
k = aes.create_encryptor(self.AES_KEY, iv=self.IV)
ciphertext = aes.decrypt_data(k, plaintext)
self.assertEqual(ciphertext, expected_ciphertext)
def test_aes_with_iv_process_long_input(self):
'''
The old code used the following patterns with AES ciphers.
import os
from pycryptopp.cipher.aes import AES
key = = os.urandom(16)
ciphertext = AES(key).process(plaintext)
This test verifies that using the new AES wrapper generates the same output.
'''
plaintext = b'hi' * 32
expected_ciphertext = (
b'\x9e\x02\x16i}WL\xbf\x83\xac\xb4K\xf7\xa0\xdf\xa3\xba!3\x15\xd3(L\xb7\xb3\x91\xbcb'
b'\x97a\xdc\x100?\xf5L\x9f\xd9\xeeO\x98\xda\xf5g\x93\xa7q\xe1\xb1~\xf8\x1b\xe8[\\s'
b'\x144$\x86\xeaC^f')
k = aes.create_encryptor(self.AES_KEY, iv=self.IV)
ciphertext = aes.decrypt_data(k, plaintext)
self.assertEqual(ciphertext, expected_ciphertext)
def test_decode_ed15519_keypair(self):
'''
Created using the old code:
from allmydata.util.keyutil import make_keypair, parse_privkey, parse_pubkey
test_data = b'test'
priv_str, pub_str = make_keypair()
priv, _ = parse_privkey(priv_str)
pub = parse_pubkey(pub_str)
sig = priv.sign(test_data)
pub.verify(sig, test_data)
This simply checks that keys and signatures generated using the old code are still valid
using the new code.
'''
priv_str = 'priv-v0-lqcj746bqa4npkb6zpyc6esd74x3bl6mbcjgqend7cvtgmcpawhq'
pub_str = 'pub-v0-yzpqin3of3ep363lwzxwpvgai3ps43dao46k2jds5kw5ohhpcwhq'
test_data = b'test'
sig = (b'\xde\x0e\xd6\xe2\xf5\x03]8\xfe\xa71\xad\xb4g\x03\x11\x81\x8b\x08\xffz\xf4K\xa0'
b'\x86 ier!\xe8\xe5#*\x9d\x8c\x0bI\x02\xd90\x0e7\xbeW\xbf\xa3\xfe\xc1\x1c\xf5+\xe9)'
b'\xa3\xde\xc9\xc6s\xc9\x90\xf7x\x08')
private_key, derived_public_key = ed25519.signing_keypair_from_string(priv_str)
public_key = ed25519.verifying_key_from_string(pub_str)
self.assertEqual(
ed25519.bytes_from_verifying_key(public_key),
ed25519.bytes_from_verifying_key(derived_public_key),
)
new_sig = ed25519.sign_data(private_key, test_data)
self.assertEqual(new_sig, sig)
ed25519.verify_signature(public_key, new_sig, test_data)
ed25519.verify_signature(derived_public_key, new_sig, test_data)
ed25519.verify_signature(public_key, sig, test_data)
ed25519.verify_signature(derived_public_key, sig, test_data)
def test_decode_rsa_keypair(self):
'''
This simply checks that keys and signatures generated using the old code are still valid
using the new code.
'''
priv_key, pub_key = rsa.create_signing_keypair_from_string(self.RSA_2048_PRIV_KEY)
rsa.verify_signature(pub_key, self.RSA_2048_SIG, b'test')
def test_encrypt_data_not_bytes(self):
'''
only bytes can be encrypted
'''
key = '\x00' * 16
encryptor = aes.create_encryptor(key)
with self.assertRaises(ValueError) as ctx:
aes.encrypt_data(encryptor, six.text_type("not bytes"))
self.assertIn(
"was not bytes",
str(ctx.exception)
)
def test_key_incorrect_size(self):
'''
only bytes can be encrypted
'''
key = '\x00' * 12
with self.assertRaises(ValueError) as ctx:
encryptor = aes.create_encryptor(key)
self.assertIn(
"16 or 32 bytes long",
str(ctx.exception)
)
def test_iv_not_bytes(self):
'''
iv must be bytes
'''
key = '\x00' * 16
with self.assertRaises(TypeError) as ctx:
encryptor = aes.create_encryptor(key, iv=six.text_type("1234567890abcdef"))
self.assertIn(
"was not bytes",
str(ctx.exception)
)
def test_incorrect_iv_size(self):
'''
iv must be 16 bytes
'''
key = '\x00' * 16
with self.assertRaises(ValueError) as ctx:
encryptor = aes.create_encryptor(key, iv='\x00' * 3)
self.assertIn(
"16 bytes long",
str(ctx.exception)
)
class TestEd25519(unittest.TestCase):
def test_keys(self):
private_key, public_key = ed25519.create_signing_keypair()
private_key_str = ed25519.string_from_signing_key(private_key)
self.assertIsInstance(private_key_str, six.string_types)
private_key2, public_key2 = ed25519.signing_keypair_from_string(private_key_str)
self.assertEqual(
ed25519.bytes_from_signing_key(private_key),
ed25519.bytes_from_signing_key(private_key2),
)
self.assertEqual(
ed25519.bytes_from_verifying_key(public_key),
ed25519.bytes_from_verifying_key(public_key2),
)
public_key_str = ed25519.string_from_verifying_key(public_key)
public_key_bytes = ed25519.bytes_from_verifying_key(public_key)
self.assertIsInstance(public_key_str, six.string_types)
self.assertIsInstance(public_key_bytes, six.binary_type)
public_key2 = ed25519.verifying_key_from_string(public_key_str)
self.assertEqual(
ed25519.bytes_from_verifying_key(public_key),
ed25519.bytes_from_verifying_key(public_key2),
)
def test_deserialize_private_not_bytes(self):
'''
serialized key must be bytes
'''
with self.assertRaises(ValueError) as ctx:
ed25519.signing_keypair_from_bytes(six.text_type("not bytes"))
self.assertIn(
"must be bytes",
str(ctx.exception)
)
def test_deserialize_public_not_bytes(self):
'''
serialized key must be bytes
'''
with self.assertRaises(ValueError) as ctx:
ed25519.verifying_key_from_bytes(six.text_type("not bytes"))
self.assertIn(
"must be bytes",
str(ctx.exception)
)
def test_signed_data_not_bytes(self):
'''
data to sign must be bytes
'''
priv, pub = ed25519.create_signing_keypair()
with self.assertRaises(ValueError) as ctx:
ed25519.sign_data(priv, six.text_type("not bytes"))
self.assertIn(
"must be bytes",
str(ctx.exception)
)
def test_signature_not_bytes(self):
'''
signature must be bytes
'''
priv, pub = ed25519.create_signing_keypair()
with self.assertRaises(ValueError) as ctx:
ed25519.verify_signature(pub, six.text_type("not bytes"), b"data")
self.assertIn(
"must be bytes",
str(ctx.exception)
)
def test_signature_data_not_bytes(self):
'''
signature must be bytes
'''
priv, pub = ed25519.create_signing_keypair()
with self.assertRaises(ValueError) as ctx:
ed25519.verify_signature(pub, b"signature", six.text_type("not bytes"))
self.assertIn(
"must be bytes",
str(ctx.exception)
)
def test_sign_invalid_pubkey(self):
'''
pubkey must be correct
'''
priv, pub = ed25519.create_signing_keypair()
with self.assertRaises(ValueError) as ctx:
ed25519.sign_data(object(), b"data")
self.assertIn(
"must be an Ed25519PrivateKey",
str(ctx.exception)
)
def test_verify_invalid_pubkey(self):
'''
pubkey must be correct
'''
priv, pub = ed25519.create_signing_keypair()
with self.assertRaises(ValueError) as ctx:
ed25519.verify_signature(object(), b"signature", b"data")
self.assertIn(
"must be an Ed25519PublicKey",
str(ctx.exception)
)
class TestRsa(unittest.TestCase):
def test_keys(self):
priv_key, pub_key = rsa.create_signing_keypair(2048)
priv_key_str = rsa.der_string_from_signing_key(priv_key)
self.assertIsInstance(priv_key_str, six.string_types)
priv_key2, pub_key2 = rsa.create_signing_keypair_from_string(priv_key_str)
# instead of asking "are these two keys equal", we can instead
# test their function: can the second key verify a signature
# produced by the first (and FAIL a signature with different
# data)
data_to_sign = b"test data"
sig0 = rsa.sign_data(priv_key, data_to_sign)
rsa.verify_signature(pub_key2, sig0, data_to_sign)
# ..and the other way
sig1 = rsa.sign_data(priv_key2, data_to_sign)
rsa.verify_signature(pub_key, sig1, data_to_sign)
# ..and a failed way
with self.assertRaises(rsa.BadSignature):
rsa.verify_signature(pub_key, sig1, data_to_sign + b"more")
def test_sign_invalid_pubkey(self):
'''
pubkey must be correct
'''
priv, pub = rsa.create_signing_keypair(1024)
with self.assertRaises(ValueError) as ctx:
rsa.sign_data(object(), b"data")
self.assertIn(
"must be an RSAPrivateKey",
str(ctx.exception)
)
def test_verify_invalid_pubkey(self):
'''
pubkey must be correct
'''
priv, pub = rsa.create_signing_keypair(1024)
with self.assertRaises(ValueError) as ctx:
rsa.verify_signature(object(), b"signature", b"data")
self.assertIn(
"must be an RSAPublicKey",
str(ctx.exception)
)
class TestUtil(unittest.TestCase):
def test_remove_prefix_good(self):
self.assertEquals(
remove_prefix(b"foobar", b"foo"),
b"bar"
)
def test_remove_prefix_bad(self):
with self.assertRaises(BadPrefixError):
remove_prefix(b"foobar", b"bar")