mirror of
https://github.com/tahoe-lafs/tahoe-lafs.git
synced 2025-01-20 03:36:25 +00:00
5399395c27
By writing something like "25 75 100" into a file named 'encoding_parameters' in the central Introducer's base directory, all clients which use that introducer will be advised to use 25-out-of-100 encoding for files (i.e. 100 shares will be produced, 25 are required to reconstruct, and the upload process will be happy if it can find homes for at least 75 shares). The default values are "3 7 10". For small meshes, the defaults are probably good, but for larger ones it may be appropriate to increase the number of shares.
134 lines
4.6 KiB
Python
134 lines
4.6 KiB
Python
# -*- test-case-name: allmydata.test.test_encode_share -*-
|
|
|
|
from zope.interface import implements
|
|
from twisted.internet import defer
|
|
from allmydata.util import mathutil
|
|
from allmydata.util.assertutil import precondition
|
|
from allmydata.interfaces import ICodecEncoder, ICodecDecoder
|
|
import zfec
|
|
|
|
|
|
class ReplicatingEncoder(object):
|
|
implements(ICodecEncoder)
|
|
ENCODER_TYPE = "rep"
|
|
|
|
def set_params(self, data_size, required_shares, max_shares):
|
|
assert data_size % required_shares == 0
|
|
assert required_shares <= max_shares
|
|
self.data_size = data_size
|
|
self.required_shares = required_shares
|
|
self.max_shares = max_shares
|
|
|
|
def get_encoder_type(self):
|
|
return self.ENCODER_TYPE
|
|
|
|
def get_serialized_params(self):
|
|
return "%d" % self.required_shares
|
|
|
|
def get_block_size(self):
|
|
return self.data_size
|
|
|
|
def encode(self, inshares, desired_shareids=None):
|
|
assert isinstance(inshares, list)
|
|
for inshare in inshares:
|
|
assert isinstance(inshare, str)
|
|
assert self.required_shares * len(inshare) == self.data_size
|
|
data = "".join(inshares)
|
|
if desired_shareids is None:
|
|
desired_shareids = range(self.max_shares)
|
|
shares = [data for i in desired_shareids]
|
|
return defer.succeed((shares, desired_shareids))
|
|
|
|
class ReplicatingDecoder(object):
|
|
implements(ICodecDecoder)
|
|
|
|
def set_serialized_params(self, params):
|
|
self.required_shares = int(params)
|
|
|
|
def get_needed_shares(self):
|
|
return self.required_shares
|
|
|
|
def decode(self, some_shares, their_shareids):
|
|
assert len(some_shares) == self.required_shares
|
|
assert len(some_shares) == len(their_shareids)
|
|
data = some_shares[0]
|
|
|
|
chunksize = mathutil.div_ceil(len(data), self.required_shares)
|
|
numchunks = mathutil.div_ceil(len(data), chunksize)
|
|
l = [ data[i:i+chunksize] for i in range(0, len(data), chunksize) ]
|
|
|
|
return defer.succeed(l)
|
|
|
|
|
|
class CRSEncoder(object):
|
|
implements(ICodecEncoder)
|
|
ENCODER_TYPE = "crs"
|
|
|
|
def set_params(self, data_size, required_shares, max_shares):
|
|
assert required_shares <= max_shares
|
|
self.data_size = data_size
|
|
self.required_shares = required_shares
|
|
self.max_shares = max_shares
|
|
self.share_size = mathutil.div_ceil(data_size, required_shares)
|
|
self.last_share_padding = mathutil.pad_size(self.share_size, required_shares)
|
|
self.encoder = zfec.Encoder(required_shares, max_shares)
|
|
|
|
def get_encoder_type(self):
|
|
return self.ENCODER_TYPE
|
|
|
|
def get_serialized_params(self):
|
|
return "%d-%d-%d" % (self.data_size, self.required_shares,
|
|
self.max_shares)
|
|
|
|
def get_block_size(self):
|
|
return self.share_size
|
|
|
|
def encode(self, inshares, desired_share_ids=None):
|
|
precondition(desired_share_ids is None or len(desired_share_ids) <= self.max_shares, desired_share_ids, self.max_shares)
|
|
|
|
if desired_share_ids is None:
|
|
desired_share_ids = range(self.max_shares)
|
|
|
|
for inshare in inshares:
|
|
assert len(inshare) == self.share_size, (len(inshare), self.share_size, self.data_size, self.required_shares)
|
|
shares = self.encoder.encode(inshares, desired_share_ids)
|
|
|
|
return defer.succeed((shares, desired_share_ids))
|
|
|
|
class CRSDecoder(object):
|
|
implements(ICodecDecoder)
|
|
|
|
def set_serialized_params(self, params):
|
|
pieces = params.split("-")
|
|
self.data_size = int(pieces[0])
|
|
self.required_shares = int(pieces[1])
|
|
self.max_shares = int(pieces[2])
|
|
|
|
self.chunk_size = self.required_shares
|
|
self.num_chunks = mathutil.div_ceil(self.data_size, self.chunk_size)
|
|
self.share_size = self.num_chunks
|
|
self.decoder = zfec.Decoder(self.required_shares, self.max_shares)
|
|
|
|
def get_needed_shares(self):
|
|
return self.required_shares
|
|
|
|
def decode(self, some_shares, their_shareids):
|
|
precondition(len(some_shares) == len(their_shareids),
|
|
len(some_shares), len(their_shareids))
|
|
precondition(len(some_shares) == self.required_shares,
|
|
len(some_shares), self.required_shares)
|
|
data = self.decoder.decode(some_shares,
|
|
[int(s) for s in their_shareids])
|
|
return defer.succeed(data)
|
|
|
|
|
|
all_encoders = {
|
|
ReplicatingEncoder.ENCODER_TYPE: (ReplicatingEncoder, ReplicatingDecoder),
|
|
CRSEncoder.ENCODER_TYPE: (CRSEncoder, CRSDecoder),
|
|
}
|
|
|
|
def get_decoder_by_name(name):
|
|
decoder_class = all_encoders[name][1]
|
|
return decoder_class()
|
|
|