mirror of
https://github.com/tahoe-lafs/tahoe-lafs.git
synced 2025-01-19 03:06:33 +00:00
275 lines
11 KiB
Plaintext
275 lines
11 KiB
Plaintext
Welcome to the Allmydata-Tahoe project. This project implements a secure,
|
|
distributed, fault-tolerant storage grid. All of the source code is available
|
|
under a Free Software licence.
|
|
|
|
The basic idea is that the data in this storage grid is spread over all
|
|
participating nodes, using an algorithm that can recover the data even if a
|
|
majority of the nodes are no longer available.
|
|
|
|
The interface to the storage grid allows you to store and fetch files, either
|
|
by self-authenticating cryptographic identifier or by filename and path.
|
|
|
|
See the web site for all kinds of information, news, and community
|
|
contributions, and prebuilt packages for Debian-like systems:
|
|
|
|
http://allmydata.org
|
|
|
|
|
|
LICENCE:
|
|
|
|
Tahoe is offered under the GNU General Public License (v2 or later), with
|
|
the added permission that, if you become obligated to release a derived work
|
|
under this licence (as per section 2.b), you may delay the fulfillment of
|
|
this obligation for up to 12 months. If you are obligated to release code
|
|
under section 2.b of this licence, such code must be released under these
|
|
same terms including the 12-month grace period clause. See the COPYING file
|
|
for details.
|
|
|
|
|
|
GETTING PRECOMPILED BINARIES:
|
|
|
|
See http://allmydata.org . Currently pre-compiled binaries are available
|
|
only for Debian or Ubuntu. For any other platform you have to build it
|
|
yourself from source, which is what this text file is all about.
|
|
|
|
|
|
GETTING THE SOURCE CODE:
|
|
|
|
The code is available via darcs by running the following command:
|
|
|
|
darcs get http://allmydata.org/source/tahoe/trunk tahoe
|
|
|
|
This will create a directory named "tahoe" in the current working directory
|
|
and put a copy of the latest source code into it. Later, if you want to get
|
|
any new changes, then cd into that directory and run the command "darcs
|
|
pull".
|
|
|
|
Tarballs of sources are available at:
|
|
|
|
http://allmydata.org/source/tahoe/
|
|
|
|
|
|
DEPENDENCIES:
|
|
|
|
Note: All of the following dependencies can probably be installed through
|
|
your standard package management tool if you are running on a modern Unix
|
|
operating system.
|
|
|
|
For example, on an debian-like system, you can do "sudo apt-get install
|
|
gcc make python-dev python-twisted python-nevow python-pyopenssl".
|
|
|
|
+ a C compiler (language)
|
|
|
|
+ GNU make (build tool)
|
|
|
|
+ Python 2.4 or newer (tested against 2.4, and 2.5.1 -- on Windows-native
|
|
Python 2.5 or higher is required), including development headers (language)
|
|
|
|
http://python.org/
|
|
|
|
+ Python Twisted (tested against both 2.4 and 2.5) (network and operating
|
|
system integration library)
|
|
|
|
http://twistedmatrix.com/
|
|
|
|
You need the following subpackages, which are included in the default
|
|
Twisted distribution:
|
|
|
|
* core (the standard Twisted package)
|
|
* web, trial, conch
|
|
|
|
Twisted requires zope.interface, a copy of which is included in the
|
|
Twisted distribution.
|
|
|
|
+ Python Nevow (0.9.18 or later) (web presentation language)
|
|
|
|
http://divmod.org/trac/wiki/DivmodNevow
|
|
|
|
+ Python setuptools (build and distribution tool)
|
|
|
|
Note: The build process will automatically download and install setuptools
|
|
if it is not present. However, if an old, incompatible version of
|
|
setuptools is present (< v0.6c6 on Cygwin, or < v0.6a9 on other
|
|
platforms), then the build will fail.
|
|
|
|
So if the build fails due to setuptools not being compatible, you can
|
|
either upgrade or uninstall your version of setuptools and try again.
|
|
|
|
http://peak.telecommunity.com/DevCenter/EasyInstall#installation-instructions
|
|
|
|
+ Python PyOpenSSL (0.6 or later) (secure transport layer)
|
|
|
|
http://pyopenssl.sourceforge.net
|
|
|
|
To install PyOpenSSL on Windows-native, download this:
|
|
http://allmydata.org/source/pyOpenSSL-0.6.win32-py2.5.exe
|
|
|
|
To install PyOpenSSL on Windows-cygwin, install the OpenSSL development
|
|
libraries with the cygwin package management tool, then get the pyOpenSSL
|
|
source code, cd into it, and run "python ./setup.py install".
|
|
|
|
+ the pywin32 package: only required on Windows
|
|
|
|
http://sourceforge.net/projects/pywin32/
|
|
|
|
(Tested with build 210, and known to not work with build 204.
|
|
Feedback with details of other builds is greatly appreciated)
|
|
|
|
|
|
Tahoe uses a few additional libraries which are included in this source
|
|
distribution for convenience. These will be automatically built when you type
|
|
'make', but if you have separate installations of them you may wish to modify
|
|
the makefile to use those in preference to the included versions. They
|
|
include Foolscap (a secure remote-object-invocation library), zfec (erasure
|
|
coding), and a modified version of PyCrypto (enhanced to provide a faster
|
|
CTR-mode API).
|
|
|
|
|
|
BUILDING:
|
|
|
|
Just type 'make' in the top-level tahoe directory. This works on Windows
|
|
too, provided that you have the dependencies mentioned above. (Either a
|
|
normal cygwin build or a mingw-style native build will be done by the
|
|
makefile, depending on whether the version of python that you have installed
|
|
is the Windows-native python or the cygwin python.)
|
|
|
|
If the desired version of 'python' is not already on your PATH, then type
|
|
'make PYTHON=/path/to/your/preferred/python'.
|
|
|
|
'make test-all' runs the unit test suites. (This can take a long time on
|
|
slow computers. There are a lot of tests and some of them do a lot of
|
|
public-key cryptography.)
|
|
|
|
|
|
INSTALLING:
|
|
|
|
There are three ways to do it: The Debian Way, The Python Way, and The
|
|
Running-In-Place Way. Choose one:
|
|
|
|
The Debian Way:
|
|
|
|
The Debian Way is to build .deb files which you can then install with
|
|
"dpkg".
|
|
|
|
This requires the debian packages build-essential, fakeroot, devscripts,
|
|
and the packages listed as "Build-Depends" in the DIST/debian/control in
|
|
the top-level tahoe directory, replacing the word DIST with etch, dapper,
|
|
edgy, or feisty as appropriate:
|
|
|
|
If you're running on a debian system, run 'make deb-dapper', 'make
|
|
deb-sid', 'make deb-edgy', or 'make deb-feisty' from within the tahoe
|
|
top-level directory to construct two debian packages named
|
|
'allmydata-tahoe' and 'python-foolscap' which you can then install with
|
|
dpkg.
|
|
|
|
The Python Way:
|
|
|
|
Just run make install. (This works on cygwin and Windows, too.)
|
|
|
|
In case you want to configure the location or other install options you can
|
|
learn how it is done here:
|
|
|
|
The Python Way is to execute "setup.py install" for each Python package.
|
|
|
|
You'll need to run "setup.py install" five separate times, one for each of
|
|
the five subpackages (allmydata, allmydata.Crypto, foolscap, simplejson,
|
|
and zfec).
|
|
|
|
for PACKAGE in zfec Crypto foolscap simplejson; do
|
|
cd src/${PACKAGE} && python setup.py install && cd ../..
|
|
done
|
|
|
|
# the tahoe subpackage's setup.py script is in the root directory
|
|
PACKAGE=tahoe
|
|
python setup.py install
|
|
|
|
The Running-In-Place Way:
|
|
|
|
The Running-In-Place Way is to add a directory to your PYTHONPATH.
|
|
|
|
To run from a source tree (without installing first) just build it
|
|
(i.e. type 'make'), which will put all the necessary libraries into a local
|
|
directory named "./instdir/lib", which you can then add to your
|
|
PYTHONPATH . It will put executables into "./instdir/bin".
|
|
|
|
|
|
TESTING THAT IT IS PROPERLY INSTALLED
|
|
|
|
To test that all the modules got installed properly, cd to the root
|
|
directory of the tahoe source distribution (the directory which contains
|
|
this README file), start a python interpreter and import modules as follows.
|
|
If each one imports successfully instead of raising ImportError then it is
|
|
correctly installed.
|
|
|
|
% python
|
|
Python 2.4.4 (#2, Jan 13 2007, 17:50:26)
|
|
[GCC 4.1.2 20061115 (prerelease) (Debian 4.1.1-21)] on linux2
|
|
Type "help", "copyright", "credits" or "license" for more information.
|
|
>>> import zfec
|
|
>>> import allmydata.Crypto
|
|
>>> import foolscap
|
|
>>> import allmydata.interfaces
|
|
|
|
|
|
RUNNING:
|
|
|
|
If you installed one of the debian packages constructed by "make deb-*", or
|
|
installed "The Python Way", then it creates an 'allmydata-tahoe' executable,
|
|
usually in /usr/bin . Else, you can find allmydata-tahoe in ./instdir/bin/ .
|
|
This tool is used to create, start, and stop nodes. Each node lives in a
|
|
separate base directory, inside of which you can add files to configure and
|
|
control the node. Nodes also read and write files within that directory.
|
|
|
|
A grid consists of a single central 'introducer and vdrive' node and one or
|
|
more 'client' nodes. If you are joining an existing grid, the
|
|
introducer-and-vdrive node will already be running, and you'll just need to
|
|
create a client node. If you're creating a brand new grid, you'll need to
|
|
create both an introducer-and-vdrive and a client (and then invite other
|
|
people to create their own client nodes and join your grid).
|
|
|
|
The introducer (-and-vdrive) node is constructed by running 'allmydata-tahoe
|
|
create-introducer --basedir $HERE'. Once constructed, you can start the
|
|
introducer by running 'allmydata-tahoe start --basedir $HERE' (or, if you
|
|
are already in the introducer's base directory, just type 'allmydata-tahoe
|
|
start'). Inside that base directory, there will be a pair of files
|
|
'introducer.furl' and 'vdrive.furl'. Make a copy of these, as they'll be
|
|
needed on the client nodes.
|
|
|
|
To construct a client node, pick a new working directory for it, then run
|
|
'allmydata-tahoe create-client --basedir $HERE'. Copy the two .furl files
|
|
from the introducer into this new directory, then run 'allmydata-tahoe start
|
|
--basedir $HERE'. After that, the client node should be off and running.
|
|
The first thing it will do is connect to the introducer and introduce itself
|
|
to all other nodes on the grid. You can follow its progress by looking at
|
|
the $HERE/logs/twistd.log file.
|
|
|
|
To actually use the client, enable the web interface by writing a port
|
|
number (like "8080") into a file named $HERE/webport and then restarting the
|
|
node with 'allmydata-tahoe restart --basedir $HERE'. This will prompt the
|
|
client node to run a webserver on the desired port, through which you can
|
|
view, upload, download, and delete files. This 'webport' file is actually a
|
|
"strports specification", defined in
|
|
http://twistedmatrix.com/documents/current/api/twisted.application.strports.html
|
|
, so you can have it only listen on a local interface by writing
|
|
"tcp:8080:interface=127.0.0.1" to this file, or make it use SSL by writing
|
|
"ssl:8443:privateKey=mykey.pem:certKey=cert.pem" instead.
|
|
|
|
A client node directory can also be created without installing the code
|
|
first. Just use 'make create-client', and a new directory named 'CLIENTDIR'
|
|
will be created inside the top of the source tree. Copy the relevant .furl
|
|
files in, set the webport, then start the node by using 'make start-client'.
|
|
To stop it again, use 'make stop-client'. Similar makefile targets exist
|
|
for making and running an introducer node.
|
|
|
|
If you are behind a firewall and you can configure your firewall to forward
|
|
TCP connections on a port to the computer running your Tahoe node, then you
|
|
can configure the Tahoe node to announce itself as being available on that
|
|
IP address and port. The way to do this is to create a file named
|
|
$HERE/advertised_ip_addresses, in which you can put IP addresses and port numbers in
|
|
"dotted-quad:port" form, e.g. "209.97.232.113:1345". You can put multiple
|
|
IP-address-and-port-number entries into this file, on separate lines.
|
|
|
|
There is a public grid available for testing. Look at the wiki page
|
|
(http://allmydata.org) for the necessary .furl data.
|
|
|