#!/usr/bin/env python # pyfec -- fast forward error correction library with Python interface # # Copyright (C) 2007 Allmydata, Inc. # Author: Zooko Wilcox-O'Hearn # mailto:zooko@zooko.com # # This file is part of pyfec. # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. import random import sys import fec def _h(k, m, ss): # sys.stdout.write("k: %s, m: %s, len(ss): %r, len(ss[0]): %r" % (k, m, len(ss), len(ss[0]),)) ; sys.stdout.flush() encer = fec.Encoder(k, m) # sys.stdout.write("constructed.\n") ; sys.stdout.flush() nums_and_shares = list(enumerate(encer.encode(ss))) # sys.stdout.write("encoded.\n") ; sys.stdout.flush() assert isinstance(nums_and_shares, list), nums_and_shares assert len(nums_and_shares) == m, (len(nums_and_shares), m,) nums_and_shares = random.sample(nums_and_shares, k) shares = [ x[1] for x in nums_and_shares ] nums = [ x[0] for x in nums_and_shares ] # sys.stdout.write("about to construct Decoder.\n") ; sys.stdout.flush() decer = fec.Decoder(k, m) # sys.stdout.write("about to decode from %s.\n"%nums) ; sys.stdout.flush() decoded = decer.decode(shares, nums) # sys.stdout.write("decoded.\n") ; sys.stdout.flush() assert len(decoded) == len(ss), (len(decoded), len(ss),) assert tuple([str(s) for s in decoded]) == tuple([str(s) for s in ss]), (tuple([str(s) for s in decoded]), tuple([str(s) for s in ss]),) def randstr(n): return ''.join(map(chr, map(random.randrange, [0]*n, [256]*n))) def div_ceil(n, d): """ The smallest integer k such that k*d >= n. """ return (n/d) + (n%d != 0) def next_multiple(n, k): """ The smallest multiple of k which is >= n. """ return div_ceil(n, k) * k def pad_size(n, k): """ The smallest number that has to be added to n so that n is a multiple of k. """ if n%k: return k - n%k else: return 0 def _test_random(): m = random.randrange(1, 255) k = random.randrange(1, m+1) l = random.randrange(0, 2**16) ss = [ randstr(l/k) + '\x00' * pad_size(l/k, k) for x in range(k) ] _h(k, m, ss) def test_random(): for i in range(2**5): # sys.stdout.write(",") _test_random() # sys.stdout.write(".") print "%d randomized tests pass." % (i+1) test_random()