import os, shutil, sha from zope.interface import Interface, implements from twisted.internet import defer from allmydata.util import bencode from allmydata.util.idlib import b2a from allmydata.Crypto.Cipher import AES from allmydata.filetree.nodemaker import NodeMaker from allmydata.filetree.interfaces import INode class IWorkQueue(Interface): """Each filetable root is associated a work queue, which is persisted on disk and contains idempotent actions that need to be performed. After each action is completed, it is removed from the queue. The queue is broken up into several sections. First are the 'upload' steps. After this are the 'add_subpath' commands. The last section has the 'unlink' steps. Somewhere in here are the 'retain' steps.. maybe interspersed with 'upload', maybe after 'add_subpath' and before 'unlink'. The general idea is that the processing of the work queue could be interrupted at any time, in the middle of a step, and the next time the application is started, the step can be re-started without problems. The placement of the 'retain' commands depends upon how long we might expect the app to be offline. tempfiles: the workqueue has a special directory where temporary files are stored. create_tempfile() generates these files, while steps like add_upload_chk() use them. The add_delete_tempfile() will delete the tempfile. All tempfiles are deleted when the workqueue becomes empty, since at that point none of them can still be referenced. boxes: there is another special directory where named slots (called 'boxes') hold serialized INode specifications (the strings which are returned by INode.serialize_node()). Boxes are created by calling create_boxname(). Boxes are filled either at the time of creation or by steps like add_upload_chk(). Boxes are used by steps like add_addpath() and add_retain_uri_from_box. Boxes are deleted by add_delete_box(), as well as when the workqueue becomes empty. """ def create_tempfile(suffix=""): """Return (f, filename), where 'f' is an open filehandle, and 'filename' is a string that can be passed to other workqueue steps to refer to that same file later. NOTE: 'filename' is not an absolute path, rather it will be interpreted relative to some directory known only by the workqueue.""" def create_boxname(contents=None): """Return a unique box name (as a string). If 'contents' are provided, it must be an instance that provides INode, and the serialized form of the node will be written into the box. Otherwise the boxname can be used by steps like add_upload_chk to hold the generated uri.""" def add_upload_chk(source_filename, stash_uri_in_boxname): """This step uploads a file to the mesh and obtains a content-based URI which can be used to later retrieve the same contents ('CHK' mode). This URI includes unlink rights. It does not mark the file for retention. When the upload is complete, the resulting URI is stashed in a 'box' with the specified name. This is basically a local variable. A later 'add_subpath' step will reference this boxname and retrieve the URI. """ def add_upload_ssk(write_capability, previous_version, source_filename): """This step uploads a file to the mesh in a way that replaces the previous version and does not require a change to the ID referenced by the parent. """ def add_queen_update_handle(handle, source_filename): """Arrange for a central queen to be notified that the given handle has been updated with the contents of the given tempfile. This will send a set_handle() message to the queen.""" def add_retain_ssk(read_capability): """Arrange for the given SSK to be kept alive.""" def add_unlink_ssk(write_capability): """Stop keeping the given SSK alive.""" def add_retain_uri_from_box(boxname): """When executed, this step retrieves the URI from the given box and marks it for retention: this adds it to a list of all URIs that this system cares about, which will initiate filechecking/repair for the file.""" def add_addpath(boxname, path): """When executed, this step will retrieve the serialized INode from the given box and call vdrive.add(path, node) . """ def add_unlink_uri(uri): """When executed, this step will unlink the data referenced by the given URI: the unlink rights are used to tell any shareholders to unlink the file (possibly deleting it), and the URI is removed from the list that this system cares about, cancelling filechecking/repair for the file. All 'unlink' steps are pushed to the end of the queue. """ def add_delete_tempfile(filename): """This step will delete a tempfile created by create_tempfile.""" def add_delete_box(boxname): """When executed, this step deletes the given box.""" # methods for use in unit tests def flush(): """Execute all steps in the WorkQueue right away. Return a Deferred that fires (with self) when the queue is empty. """ class NotCapableError(Exception): """You have tried to write to a read-only node.""" class Step(object): def setup(self, stepname, basedir): self.basedir = basedir self.stepname = stepname self.stepbase = os.path.join(self.basedir, self.stepname) def remove(self, _ignored=None): trashdir = os.path.join(self.basedir, "trash", self.stepname) os.rename(self.stepbase, trashdir) shutil.rmtree(trashdir) class UploadSSKStep(Step): def start(self): f = open(os.path.join(self.stepbase, "source_filename"), "r") source_filename = f.read() f.close() f = open(os.path.join(self.stepbase, "write_capability"), "r") write_cap = bencode.bdecode(f.read()) f.close() f = open(os.path.join(self.stepbase, "previous_version"), "r") previous_version = bencode.bdecode(f.read()) f.close() n = MutableSSKTracker() n.set_version(previous_version) n.set_write_capability(write_cap) f = open(source_filename, "rb") data = f.read() f.close() published_data = n.write_new_version(data) d = self.push_ssk(n.ssk_index, n.vresion, published_data) d.addCallback(self.remove) return d class WorkQueue(object): implements(IWorkQueue) def __init__(self, basedir): assert basedir.endswith("workqueue") self.basedir = basedir self._node_maker = NodeMaker() self.seqnum = 0 self.tmpdir = os.path.join(basedir, "tmp") #self.trashdir = os.path.join(basedir, "trash") self.filesdir = os.path.join(basedir, "files") self.boxesdir = os.path.join(basedir, "boxes") if os.path.exists(self.tmpdir): shutil.rmtree(self.tmpdir) os.makedirs(self.tmpdir) #if os.path.exists(self.trashdir): # shutil.rmtree(self.trashdir) #os.makedirs(self.trashdir) if not os.path.exists(self.filesdir): # filesdir is *not* cleared os.makedirs(self.filesdir) if not os.path.exists(self.boxesdir): # likewise, boxesdir is not cleared os.makedirs(self.boxesdir) # all Steps are recorded in separate files in our basedir. All such # files are named with the pattern 'step-END-NNN', where END is # either 'first' or 'last'. These steps are to be executed in # alphabetical order, with all 'step-first-NNN' steps running before # any 'step-last-NNN'. for n in os.listdir(self.basedir): if n.startswith("step-first-"): sn = int(n[len("step-first-"):]) self.seqnum = max(self.seqnum, sn) elif n.startswith("step-last-"): sn = int(n[len("step-last-"):]) self.seqnum = max(self.seqnum, sn) # each of these files contains one string per line, and the first # line specifies what kind of step it is assert self.seqnum < 1000 # TODO: don't let this grow unboundedly def set_vdrive(self, vdrive): self.vdrive = vdrive def create_tempfile(self, suffix=""): randomname = b2a(os.urandom(10)) filename = randomname + suffix f = open(os.path.join(self.filesdir, filename), "wb") return (f, filename) def create_boxname(self, contents=None): boxname = b2a(os.urandom(10)) if contents is not None: assert INode(contents) self.write_to_box(boxname, contents.serialize_node()) return boxname def write_to_box(self, boxname, data): f = open(os.path.join(self.boxesdir, boxname), "w") f.write(data) f.flush() os.fsync(f) f.close() def read_from_box(self, boxname): f = open(os.path.join(self.boxesdir, boxname), "r") data = f.read() f.close() return data def _create_step(self, end, lines): assert end in ("first", "last") filename = "step-%s-%d" % (end, self.seqnum) self.seqnum += 1 f = open(os.path.join(self.tmpdir, filename), "w") for line in lines: assert "\n" not in line, line f.write(line) f.write("\n") f.flush() os.fsync(f) f.close() fromfile = os.path.join(self.tmpdir, filename) tofile = os.path.join(self.basedir, filename) os.rename(fromfile, tofile) def _create_step_first(self, lines): self._create_step("first", lines) def _create_step_last(self, lines): self._create_step("last", lines) # methods to add entries to the queue def add_upload_chk(self, source_filename, stash_uri_in_boxname): # source_filename is absolute, and can point to things outside our # workqueue. lines = ["upload_chk", source_filename, stash_uri_in_boxname] self._create_step_first(lines) def add_upload_ssk(self, source_filename, write_capability, previous_version): lines = ["upload_ssk", source_filename, b2a(write_capability.index), b2a(write_capability.key), str(previous_version)] self._create_step_first(lines) def add_retain_ssk(self, read_capability): lines = ["retain_ssk", b2a(read_capability.index), b2a(read_capability.key)] self._create_step_first(lines) def add_unlink_ssk(self, write_capability): lines = ["unlink_ssk", b2a(write_capability.index), b2a(write_capability.key)] self._create_step_last(lines) def add_retain_uri_from_box(self, boxname): lines = ["retain_uri_from_box", boxname] self._create_step_first(lines) def add_addpath(self, boxname, path): assert isinstance(path, (list, tuple)) lines = ["addpath", boxname] lines.extend(path) self._create_step_first(lines) def add_unlink_uri(self, uri): lines = ["unlink_uri", uri] self._create_step_last(lines) def add_delete_tempfile(self, filename): lines = ["delete_tempfile", filename] self._create_step_first(lines) def add_delete_box(self, boxname): lines = ["delete_box", boxname] self._create_step_first(lines) # methods to perform work def run_next_step(self): """Run the next pending step. Returns None if there is no next step to run, or a Deferred that will fire when the step completes. The step will be removed from the queue when it completes.""" next_step = self.get_next_step() if next_step: stepname, steptype, lines = self.get_next_step() d = self.dispatch_step(steptype, lines) d.addCallback(self._delete_step, stepname) return d # no steps pending, it is safe to clean out leftover files self._clean_leftover_files() return None def _clean_leftover_files(self): # there are no steps pending, therefore any leftover files in our # filesdir are orphaned and can be deleted. This catches things like # a tempfile being created but the application gets interrupted # before the upload step which references it gets created, or if an # upload step gets written but the remaining sequence (addpath, # delete_box) does not. for n in os.listdir(self.filesdir): os.unlink(os.path.join(self.filesdir, n)) for n in os.listdir(self.boxesdir): os.unlink(os.path.join(self.boxesdir, n)) def get_next_step(self): stepnames = [n for n in os.listdir(self.basedir) if n.startswith("step-")] stepnames.sort() if not stepnames: return None stepname = stepnames[0] return self._get_step(stepname) def _get_step(self, stepname): f = open(os.path.join(self.basedir, stepname), "r") lines = f.read().split("\n") f.close() assert lines[-1] == "" # files should end with a newline lines.pop(-1) # remove the newline steptype = lines.pop(0) return stepname, steptype, lines def dispatch_step(self, steptype, lines): handlername = "step_" + steptype if not hasattr(self, handlername): raise RuntimeError("unknown workqueue step type '%s'" % steptype) handler = getattr(self, handlername) d = defer.maybeDeferred(handler, *lines) return d def _delete_step(self, res, stepname): os.unlink(os.path.join(self.basedir, stepname)) return res # debug/test methods def count_pending_steps(self): return len([n for n in os.listdir(self.basedir) if n.startswith("step-")]) def get_all_steps(self): # returns a list of (steptype, lines) for all steps stepnames = [] for stepname in os.listdir(self.basedir): if stepname.startswith("step-"): stepnames.append(stepname) stepnames.sort() steps = [] for stepname in stepnames: steps.append(self._get_step(stepname)[1:]) return steps def run_all_steps(self, ignored=None): d = self.run_next_step() if d: d.addCallback(self.run_all_steps) return d return defer.succeed(None) def flush(self): return self.run_all_steps() def open_tempfile(self, filename): f = open(os.path.join(self.filesdir, filename), "rb") return f # work is dispatched to these methods. To add a new step type, add a # dispatch method here and an add_ method above. def step_upload_chk(self, source_filename, index_a, write_key_a): pass def step_upload_ssk(self, source_filename, index_a, write_key_a, prev_ver): pass def step_addpath(self, boxname, *path): path = list(path) data = self.read_from_box(boxname) child_node = self._node_maker.make_node_from_serialized(data) return self.vdrive.add(path, child_node) def step_retain_ssk(self, index_a, read_key_a): pass def step_unlink_ssk(self, index_a, write_key_a): pass def step_retain_uri_from_box(self, boxname): pass def step_unlink_uri(self, uri): pass def step_delete_tempfile(self, filename): os.unlink(os.path.join(self.filesdir, filename)) def step_delete_box(self, boxname): os.unlink(os.path.join(self.boxesdir, boxname)) AES_KEY_LENGTH = 16 def make_aes_key(): return os.urandom(16) def make_rsa_key(): raise NotImplementedError def hash_sha(data): return sha.new(data).digest() def hash_sha_to_key(data): return sha.new(data).digest()[:AES_KEY_LENGTH] def aes_encrypt(key, plaintext): assert isinstance(key, str) assert len(key) == AES_KEY_LENGTH cryptor = AES.new(key=key, mode=AES.MODE_CTR, counterstart="\x00"*16) crypttext = cryptor.encrypt(plaintext) return crypttext def aes_decrypt(key, crypttext): assert isinstance(key, str) assert len(key) == AES_KEY_LENGTH cryptor = AES.new(key=key, mode=AES.MODE_CTR, counterstart="\x00"*16) plaintext = cryptor.decrypt(crypttext) return plaintext def serialize(objects): return bencode.bencode(objects) def unserialize(data): return bencode.bdecode(data) class MutableSSKTracker(object): """I represent a mutable file, indexed by an SSK. """ def create(self): # if you create the node this way, you will have both read and write # capabilities self.priv_key, self.pub_key = make_rsa_key() self.ssk_index = hash_sha(self.pub_key.serialized()) self.write_key = make_aes_key() self.read_key = hash_sha_to_key(self.write_key) self.version = 0 def set_version(self, version): self.version = version def set_read_capability(self, read_cap): (self.ssk_index, self.read_key) = read_cap def set_write_capability(self, write_cap): # TODO: add some assertions here, if someone calls both # set_read_capability and set_write_capability, make sure the keys # match (self.ssk_index, self.write_key) = write_cap self.read_key = hash_sha_to_key(self.write_key) def extract_readwrite_from_published(self, published_data, write_key): self.write_key = write_key self.read_key = hash_sha_to_key(self.write_key) self._extract(published_data) self.priv_key = aes_decrypt(write_key, self.encrypted_privkey) assert self.priv_key.is_this_your_pub_key(self.pub_key) def extract_readonly_from_published(self, published_data, read_key): self.write_key = None self.read_key = read_key self._extract(published_data) self.priv_key = None def _extract(self, published_data): (signed_data, serialized_pub_key, sig) = unserialize(published_data) self.pub_key = unserialize(serialized_pub_key) self.pub_key.check_signature(sig, signed_data) (encrypted_privkey, encrypted_data, version) = unserialize(signed_data) self.data = aes_decrypt(self.read_key, encrypted_data) self.encrypted_privkey = encrypted_privkey def get_read_capability(self): return (self.ssk_index, self.read_key) def get_write_capability(self): if not self.write_key: raise NotCapableError("This MutableSSKTracker is read-only") return (self.ssk_index, self.write_key) def write_new_version(self, data): if not self.write_key: raise NotCapableError("This MutableSSKTracker is read-only") encrypted_privkey = aes_encrypt(self.write_key, self.priv_key.serialized()) encrypted_data = aes_encrypt(self.read_key, data) self.version += 1 signed_data = serialize((encrypted_privkey, encrypted_data, self.version)) sig = self.priv_key.sign(signed_data) serialized_pub_key = self.pub_key.serialized() published_data = serialize((signed_data, serialized_pub_key, sig)) return published_data def make_new_SSK_node(): n = MutableSSKTracker() n.create() return n def extract_readwrite_SSK_node(published_data, write_key): n = MutableSSKTracker() n.extract_readwrite_SSK_node(published_data, write_key) return n def extract_readonly_SSK_node(published_data, read_key): n = MutableSSKTracker() n.extract_readonly_from_published(published_data, read_key) return n