# -*- test-case-name: allmydata.test.test_encode_share -*- from zope.interface import implements from twisted.internet import defer import sha from allmydata.util import idlib, mathutil from allmydata.interfaces import ICodecEncoder, ICodecDecoder from allmydata.py_ecc import rs_code def netstring(s): return "%d:%s," % (len(s), s) class ReplicatingEncoder(object): implements(ICodecEncoder) ENCODER_TYPE = "rep" def set_params(self, data_size, required_shares, max_shares): self.data_size = data_size self.required_shares = required_shares self.max_shares = max_shares def get_encoder_type(self): return self.ENCODER_TYPE def get_serialized_params(self): return "%d" % self.required_shares def get_share_size(self): return self.data_size def encode(self, data, num_shares=None): if num_shares is None: num_shares = self.max_shares assert num_shares <= self.max_shares shares = [(i,data) for i in range(num_shares)] return defer.succeed(shares) class ReplicatingDecoder(object): implements(ICodecDecoder) def set_serialized_params(self, params): self.required_shares = int(params) def get_required_shares(self): return self.required_shares def decode(self, some_shares): assert len(some_shares) >= self.required_shares data = some_shares[0][1] return defer.succeed(data) class Encoder(object): def __init__(self, infile, m): self.infile = infile self.k = 2 self.m = m def do_upload(self, landlords): dl = [] data = self.infile.read() for (peerid, bucket_num, remotebucket) in landlords: dl.append(remotebucket.callRemote('write', data)) dl.append(remotebucket.callRemote('close')) return defer.DeferredList(dl) class Decoder(object): def __init__(self, outfile, k, m, verifierid): self.outfile = outfile self.k = 2 self.m = m self._verifierid = verifierid def start(self, buckets): assert len(buckets) >= self.k dl = [] for bucketnum, bucket in buckets[:self.k]: d = bucket.callRemote("read") dl.append(d) d2 = defer.DeferredList(dl) d2.addCallback(self._got_all_data) return d2 def _got_all_data(self, resultslist): shares = [results for success,results in resultslist if success] assert len(shares) >= self.k # here's where the Reed-Solomon magic takes place self.outfile.write(shares[0]) hasher = sha.new(netstring("allmydata_v1_verifierid")) hasher.update(shares[0]) vid = hasher.digest() if self._verifierid: assert self._verifierid == vid, "%s != %s" % (idlib.b2a(self._verifierid), idlib.b2a(vid)) class PyRSEncoder(object): implements(ICodecEncoder) ENCODER_TYPE = "pyrs" # we will break the data into vectors in which each element is a single # byte (i.e. a single number from 0 to 255), and the length of the vector # is equal to the number of required_shares. We use padding to make the # last chunk of data long enough to match, and we record the data_size in # the serialized parameters to strip this padding out on the receiving # end. # TODO: this will write a 733kB file called 'ffield.lut.8' in the current # directory the first time it is run, to cache the lookup table for later # use. It appears to take about 15 seconds to create this the first time, # and about 0.5s to load it in each time afterwards. Make sure this file # winds up somewhere reasonable. # TODO: the encoder/decoder RSCode object depends upon the number of # required/total shares, but not upon the data. We could probably save a # lot of initialization time by caching a single instance and using it # any time we use the same required/total share numbers (which will # probably be always). # on my workstation (fluxx, a 3.5GHz Athlon), this encodes data at a rate # of 6.7kBps. Zooko's mom's 1.8GHz G5 got 2.2kBps . slave3 took 40s to # construct the LUT and encodes at 1.5kBps, and for some reason took more # than 20 minutes to run the test_encode_share tests, so I disabled most # of them. (uh, hello, it's running figleaf) def set_params(self, data_size, required_shares, max_shares): assert required_shares <= max_shares self.data_size = data_size self.required_shares = required_shares self.max_shares = max_shares self.chunk_size = required_shares self.num_chunks = mathutil.div_ceil(data_size, self.chunk_size) self.last_chunk_padding = mathutil.pad_size(data_size, required_shares) self.share_size = self.num_chunks self.encoder = rs_code.RSCode(max_shares, required_shares, 8) def get_encoder_type(self): return self.ENCODER_TYPE def get_serialized_params(self): return "%d-%d-%d" % (self.data_size, self.required_shares, self.max_shares) def get_share_size(self): return self.share_size def encode(self, data, num_shares=None): if num_shares is None: num_shares = self.max_shares assert num_shares <= self.max_shares # we create self.max_shares shares, then throw out any extra ones # so that we always return exactly num_shares shares. share_data = [ [] for i in range(self.max_shares)] for i in range(self.num_chunks): # we take self.chunk_size bytes from the input string, and # turn it into self.max_shares bytes. offset = i*self.chunk_size # Note string slices aren't an efficient way to use memory, so # when we upgrade from the unusably slow py_ecc prototype to a # fast ECC we should also fix up this memory usage (by using the # array module). chunk = data[offset:offset+self.chunk_size] if i == self.num_chunks-1: chunk = chunk + "\x00"*self.last_chunk_padding assert len(chunk) == self.chunk_size input_vector = [ord(x) for x in chunk] assert len(input_vector) == self.required_shares output_vector = self.encoder.Encode(input_vector) assert len(output_vector) == self.max_shares for i2,out in enumerate(output_vector): share_data[i2].append(chr(out)) shares = [ (i, "".join(share_data[i])) for i in range(num_shares) ] return defer.succeed(shares) class PyRSDecoder(object): implements(ICodecDecoder) def set_serialized_params(self, params): pieces = params.split("-") self.data_size = int(pieces[0]) self.required_shares = int(pieces[1]) self.max_shares = int(pieces[2]) self.chunk_size = self.required_shares self.num_chunks = mathutil.div_ceil(self.data_size, self.chunk_size) self.last_chunk_padding = mathutil.pad_size(self.data_size, self.required_shares) self.share_size = self.num_chunks self.encoder = rs_code.RSCode(self.max_shares, self.required_shares, 8) if False: print "chunk_size: %d" % self.chunk_size print "num_chunks: %d" % self.num_chunks print "last_chunk_padding: %d" % self.last_chunk_padding print "share_size: %d" % self.share_size print "max_shares: %d" % self.max_shares print "required_shares: %d" % self.required_shares def get_required_shares(self): return self.required_shares def decode(self, some_shares): chunk_size = self.chunk_size assert len(some_shares) >= self.required_shares chunks = [] have_shares = {} for share_num, share_data in some_shares: have_shares[share_num] = share_data for i in range(self.share_size): # this takes one byte from each share, and turns the combination # into a single chunk received_vector = [] for j in range(self.max_shares): share = have_shares.get(j) if share is not None: received_vector.append(ord(share[i])) else: received_vector.append(None) decoded_vector = self.encoder.DecodeImmediate(received_vector) assert len(decoded_vector) == self.chunk_size chunk = "".join([chr(x) for x in decoded_vector]) chunks.append(chunk) data = "".join(chunks) if self.last_chunk_padding: data = data[:-self.last_chunk_padding] assert len(data) == self.data_size return defer.succeed(data) all_encoders = { ReplicatingEncoder.ENCODER_TYPE: (ReplicatingEncoder, ReplicatingDecoder), PyRSEncoder.ENCODER_TYPE: (PyRSEncoder, PyRSDecoder), } def get_decoder_by_name(name): decoder_class = all_encoders[name][1] return decoder_class()