from nevow import rend, tags as T reliability = None # might not be usable try: from allmydata import reliability # requires NumPy except ImportError: pass from allmydata.web.common import getxmlfile, get_arg DAY=24*60*60 MONTH=31*DAY YEAR=365*DAY def is_available(): if reliability: return True return False def yandm(seconds): return "%dy.%dm" % (int(seconds/YEAR), int( (seconds%YEAR)/MONTH)) class ReliabilityTool(rend.Page): addSlash = True docFactory = getxmlfile("reliability.xhtml") DEFAULT_PARAMETERS = [ ("drive_lifetime", "8Y", "time", "Average drive lifetime"), ("k", 3, "int", "Minimum number of shares needed to recover the file"), ("R", 7, "int", "Repair threshold: repair will not occur until fewer than R shares " "are left"), ("N", 10, "int", "Total number of shares of the file generated"), ("delta", "1M", "time", "Amount of time between each simulation step"), ("check_period", "1M", "time", "How often to run the checker and repair if fewer than R shares"), ("report_period", "3M", "time", "Amount of time between result rows in this report"), ("report_span", "5Y", "time", "Total amount of time covered by this report"), ] def parse_time(self, s): if s.endswith("M"): return int(s[:-1]) * MONTH if s.endswith("Y"): return int(s[:-1]) * YEAR return int(s) def format_time(self, s): if s%YEAR == 0: return "%dY" % (s/YEAR) if s%MONTH == 0: return "%dM" % (s/MONTH) return "%d" % s def get_parameters(self, ctx): parameters = {} for (name,default,argtype,description) in self.DEFAULT_PARAMETERS: v = get_arg(ctx, name, default) if argtype == "time": value = self.parse_time(v) else: value = int(v) parameters[name] = value return parameters def renderHTTP(self, ctx): self.parameters = self.get_parameters(ctx) self.results = reliability.ReliabilityModel.run(**self.parameters) return rend.Page.renderHTTP(self, ctx) def make_input(self, name, old_value): return T.input(name=name, type="text", size="5", value=self.format_time(old_value)) def render_forms(self, ctx, data): f = T.form(action=".", method="get") table = [] for (name,default_value,argtype,description) in self.DEFAULT_PARAMETERS: old_value = self.parameters[name] i = self.make_input(name, old_value) table.append(T.tr[T.td[name+":"], T.td[i], T.td[description]]) go = T.input(type="submit", value="Recompute") return [T.h2["Simulation Parameters:"], f[T.table[table], go], ] def data_simulation_table(self, ctx, data): for row in self.results.samples: yield row def render_simulation_row(self, ctx, row): (when, unmaintained_shareprobs, maintained_shareprobs, P_repaired_last_check_period, cumulative_number_of_repairs, cumulative_number_of_new_shares, P_dead_unmaintained, P_dead_maintained) = row ctx.fillSlots("t", yandm(when)) ctx.fillSlots("P_repair", "%.6f" % P_repaired_last_check_period) ctx.fillSlots("P_dead_unmaintained", "%.6g" % P_dead_unmaintained) ctx.fillSlots("P_dead_maintained", "%.6g" % P_dead_maintained) return ctx.tag def render_report_span(self, ctx, row): (when, unmaintained_shareprobs, maintained_shareprobs, P_repaired_last_check_period, cumulative_number_of_repairs, cumulative_number_of_new_shares, P_dead_unmaintained, P_dead_maintained) = self.results.samples[-1] return ctx.tag[yandm(when)] def render_P_loss_unmaintained(self, ctx, row): (when, unmaintained_shareprobs, maintained_shareprobs, P_repaired_last_check_period, cumulative_number_of_repairs, cumulative_number_of_new_shares, P_dead_unmaintained, P_dead_maintained) = self.results.samples[-1] return ctx.tag["%.6g (%1.8f%%)" % (P_dead_unmaintained, 100*P_dead_unmaintained)] def render_P_loss_maintained(self, ctx, row): (when, unmaintained_shareprobs, maintained_shareprobs, P_repaired_last_check_period, cumulative_number_of_repairs, cumulative_number_of_new_shares, P_dead_unmaintained, P_dead_maintained) = self.results.samples[-1] return ctx.tag["%.6g (%1.8f%%)" % (P_dead_maintained, 100*P_dead_maintained)] def render_P_repair_rate(self, ctx, row): (when, unmaintained_shareprobs, maintained_shareprobs, P_repaired_last_check_period, cumulative_number_of_repairs, cumulative_number_of_new_shares, P_dead_unmaintained, P_dead_maintained) = self.results.samples[-1] freq = when / cumulative_number_of_repairs return ctx.tag["%.6g" % freq] def render_P_repair_shares(self, ctx, row): (when, unmaintained_shareprobs, maintained_shareprobs, P_repaired_last_check_period, cumulative_number_of_repairs, cumulative_number_of_new_shares, P_dead_unmaintained, P_dead_maintained) = self.results.samples[-1] generated_shares = cumulative_number_of_new_shares / cumulative_number_of_repairs return ctx.tag["%1.2f" % generated_shares]