This makes Uploader take an EncryptedUploadable object instead of an Uploadable object. I also changed it to return a verify cap instead of a tuple of the bits of data that one finds in a verify cap.
This will facilitate hooking together an Uploader and a Downloader to make a Repairer.
Also move offloaded.py into src/allmydata/immutable/.
New checker and verifier use the new download class. They are robust against various sorts of failures or corruption. They return detailed results explaining what they learned about your immutable files. Some grotesque sorts of corruption are not properly handled yet, and those ones are marked as TODO or commented-out in the unit tests.
There is also a repairer module in this patch with the beginnings of a repairer in it. That repairer is mostly just the interface to the outside world -- the core operation of actually reconstructing the missing data blocks and uploading them is not in there yet.
This patch also refactors the unit tests in test_immutable so that the handling of each kind of corruption is reported as passing or failing separately, can be separately TODO'ified, etc. The unit tests are also improved in various ways to require more of the code under test or to stop requiring unreasonable things of it. :-)
Refactor into a class the logic of asking each server in turn until one of them gives an answer
that validates. It is called ValidatedThingObtainer.
Refactor the downloading and verification of the URI Extension Block into a class named
ValidatedExtendedURIProxy.
The new logic of validating UEBs is minimalist: it doesn't require the UEB to contain any
unncessary information, but of course it still accepts such information for backwards
compatibility (so that this new download code is able to download files uploaded with old, and
for that matter with current, upload code).
The new logic of validating UEBs follows the practice of doing all validation up front. This
practice advises one to isolate the validation of incoming data into one place, so that all of
the rest of the code can assume only valid data.
If any redundant information is present in the UEB+URI, the new code cross-checks and asserts
that it is all fully consistent. This closes some issues where the uploader could have
uploaded inconsistent redundant data, which would probably have caused the old downloader to
simply reject that download after getting a Python exception, but perhaps could have caused
greater harm to the old downloader.
I removed the notion of selecting an erasure codec from codec.py based on the string that was
passed in the UEB. Currently "crs" is the only such string that works, so
"_assert(codec_name == 'crs')" is simpler and more explicit. This is also in keeping with the
"validate up front" strategy -- now if someone sets a different string than "crs" in their UEB,
the downloader will reject the download in the "validate this UEB" function instead of in a
separate "select the codec instance" function.
I removed the code to check plaintext hashes and plaintext Merkle Trees. Uploaders do not
produce this information any more (since it potentially exposes confidential information about
the file), and the unit tests for it were disabled. The downloader before this patch would
check that plaintext hash or plaintext merkle tree if they were present, but not complain if
they were absent. The new downloader in this patch complains if they are present and doesn't
check them. (We might in the future re-introduce such hashes over the plaintext, but encrypt
the hashes which are stored in the UEB to preserve confidentiality. This would be a double-
check on the correctness of our own source code -- the current Merkle Tree over the ciphertext
is already sufficient to guarantee the integrity of the download unless there is a bug in our
Merkle Tree or AES implementation.)
This patch increases the lines-of-code count by 8 (from 17,770 to 17,778), and reduces the
uncovered-by-tests lines-of-code count by 24 (from 1408 to 1384). Those numbers would be more
meaningful if we omitted src/allmydata/util/ from the test-coverage statistics.
to make the internal ones use binary strings (nodeid, storage index) and
the web/JSON ones use base32-encoded strings. The immutable verifier is
still incomplete (it returns imaginary healty results).
It would still pass the test if it noticed a corrupted share. (It won't
notice, of course.) But it is required to do its work without causing storage
servers to read blocks from the filesystem.
Removed the Checker service, removed checker results storage (both in-memory
and the tiny stub of sqlite-based storage). Added ICheckable, all
check/verify is now done by calling the check() method on filenodes and
dirnodes (immutable files, literal files, mutable files, and directory
instances).
Checker results are returned in a Results instance, with an html() method for
display. Checker results have been temporarily removed from the wui directory
listing until we make some other fixes.
Also fixed client.create_node_from_uri() to create LiteralFileNodes properly,
since they have different checking behavior. Previously we were creating full
FileNodes with LIT uris inside, which were downloadable but not checkable.
this cleans up KeyGenerator to be a service (a subservice of the
KeyGeneratorService as instantiated by the key-generator.tac app)
this means that the timer which replenishes the keypool will be
shutdown cleanly when the service is stopped.
adds checks on the key_generator service and client into the system
test 'test_mutable' such that one of the nodes (clients[3]) uses
the key_generator service, and checks that mutable file creation
in that node, via a variety of means, are all consuming keys from
the key_generator.
This removes the guess-partial-information attack vector, and reduces
the amount of overhead that we consume with each file. It also introduces
a forwards-compability break: older versions of the code (before the
previous download-time "make hashes optional" patch) will be unable
to read files uploaded by this version, as they will complain about the
missing hashes. This patch is experimental, and is being pushed into
trunk to obtain test coverage. We may undo it before releasing 1.0.
Now upload or encode methods take a required argument named "convergence" which can be either None, indicating no convergent encryption at all, or a string, which is the "added secret" to be mixed in to the content hash key. If you want traditional convergent encryption behavior, set the added secret to be the empty string.
This patch also renames "content hash key" to "convergent encryption" in a argument names and variable names. (A different and larger renaming is needed in order to clarify that Tahoe supports immutable files which are not encrypted content-hash-key a.k.a. convergent encryption.)
This patch also changes a few unit tests to use non-convergent encryption, because it doesn't matter for what they are testing and non-convergent encryption is slightly faster.
This removes the guess-partial-information attack vector, and reduces
the amount of overhead that we consume with each file. It also introduces
a forwards-compability break: older versions of the code (before the
previous download-time "make hashes optional" patch) will be unable
to read files uploaded by this version, as they will complain about the
missing hashes. This patch is experimental, and is being pushed into
trunk to obtain test coverage. We may undo it before releasing 1.0.
base62 encoding fits more information into alphanumeric chars while avoiding the troublesome non-alphanumeric chars of base64 encoding. In particular, this allows us to work around the ext3 "32,000 entries in a directory" limit while retaining the convenient property that the intermediate directory names are leading prefixes of the storage index file names.
The filesystem which gets my vote for most undeservedly popular is ext3, and it has a hard limit of 32,000 entries in a directory. Many other filesystems (even ones that I like more than I like ext3) have either hard limits or bad performance consequences or weird edge cases when you get too many entries in a single directory.
This patch makes it so that there is a layer of intermediate directories between the "shares" directory and the actual storage-index directory (the one whose name contains the entire storage index (z-base-32 encoded) and which contains one or more share files named by their share number).
The intermediate directories are named by the first 14 bits of the storage index, which means there are at most 16384 of them. (This also means that the intermediate directory names are not a leading prefix of the storage-index directory names -- to do that would have required us to have intermediate directories limited to either 1024 (2-char), which is too few, or 32768 (3-chars of a full 5 bits each), which would overrun ext3's funny hard limit of 32,000.))
This closes#150, and please see the "convertshares.py" script attached to #150 to convert your old tahoe-0.7.0 storage/shares directory into a new tahoe-0.8.0 storage/shares directory.
in trying to test my fix for the failure of the offloaded unit test on windows
(by closing the reader before unlinking the encoding file - which, perhaps
disturbingly doesn't actually make a difference in my windows environment)
I was unable too because the unit test failed every time with a connection lost
error.
after much more time than I'd like to admit it took, I eventually managed to
track that down to a part of the unit test which is supposed to be be dropping
a connection. it looks like the exceptions that get thrown on unix, or at
least all the specific environments brian tested in, for that dropped
connection are different from what is thrown on my box (which is running py2.4
and twisted 2.4.0, for reference) adding ConnectionLost to the list of
expected exceptions makes the test pass.
though curiously still my test logs a NotEnoughWritersError error, and I'm not
currently able to fathom why that exception isn't leading to any overall
failure of the unit test itself.
for general interest, a large part of the time spent trying to track this down
was lost to the state of logging. I added a whole bunch of logging to try
and track down where the tests were failing, but then spent a bunch of time
searching in vain for that log output. as far as I can tell at this point
the unit tests are themselves logging to foolscap's log module, but that isn't
being directed anywhere, so all the test's logging is being black holed.