this adds an interface, IStatsProducer, defining the get_stats() method
which the stats provider calls upon and registered producer, and made the
register_producer() method check that interface is implemented.
also refine the startup logic, so that the stats provider doesn't try and
connect out to the stats gatherer until after the node declares the tub
'ready'. this is to address an issue whereby providers would attach to
the gatherer without providing a valid furl, and hence the gatherer would
be unable to determine the tubid of the connected client, leading to lost
samples.
The filesystem which gets my vote for most undeservedly popular is ext3, and it has a hard limit of 32,000 entries in a directory. Many other filesystems (even ones that I like more than I like ext3) have either hard limits or bad performance consequences or weird edge cases when you get too many entries in a single directory.
This patch makes it so that there is a layer of intermediate directories between the "shares" directory and the actual storage-index directory (the one whose name contains the entire storage index (z-base-32 encoded) and which contains one or more share files named by their share number).
The intermediate directories are named by the first 14 bits of the storage index, which means there are at most 16384 of them. (This also means that the intermediate directory names are not a leading prefix of the storage-index directory names -- to do that would have required us to have intermediate directories limited to either 1024 (2-char), which is too few, or 32768 (3-chars of a full 5 bits each), which would overrun ext3's funny hard limit of 32,000.))
This closes#150, and please see the "convertshares.py" script attached to #150 to convert your old tahoe-0.7.0 storage/shares directory into a new tahoe-0.8.0 storage/shares directory.
We have a desire to collect runtime statistics from multiple nodes primarily
for server monitoring purposes. This implements a simple implementation of
such a system, as a skeleton to build more sophistication upon.
Each client now looks for a 'stats_gatherer.furl' config file. If it has
been configured to use a stats gatherer, then it instantiates internally
a StatsProvider. This is a central place for code which wishes to offer
stats up for monitoring to report them to, either by calling
stats_provider.count('stat.name', value) to increment a counter, or by
registering a class as a stats producer with sp.register_producer(obj).
The StatsProvider connects to the StatsGatherer server and provides its
provider upon startup. The StatsGatherer is then responsible for polling
the attached providers periodically to retrieve the data provided.
The provider queries each registered producer when the gatherer queries
the provider. Both the internal 'counters' and the queried 'stats' are
then reported to the gatherer.
This provides a simple gatherer app, (c.f. make stats-gatherer-run)
which prints its furl and listens for incoming connections. Once a
minute, the gatherer polls all connected providers, and writes the
retrieved data into a pickle file.
Also included is a munin plugin which knows how to read the gatherer's
stats.pickle and output data munin can interpret. this plugin,
tahoe-stats.py can be symlinked as multiple different names within
munin's 'plugins' directory, and inspects argv to determine which
data to display, doing a lookup in a table within that file.
It looks in the environment for 'statsfile' to determine the path to
the gatherer's stats.pickle. An example plugins-conf.d file is
provided.
fix the make-confwiz-match-installer-size changes, to eliminate some weird
layout/rendering bugs. also tweaked the layout slightly to add space between
the warning label and the newsletter subscribe checkbox.
this will write an arbitrary number of config files, instead of being restricted
to just the introducer.furl, based on the response of the php backend.
the get_config is passed username/password
Previously, once the node itself was launched, the UI event loop was no longer
running. This meant that the app would sit around seemingly 'wedged' and being
reported as 'Not Responding' by the os.
This chnages that by actually implementing a wxPython gui which is left running
while the reactor, and the node within it, is launched in another thread.
Beyond 'quit' -> reactor.stop, there are no interactions between the threads.
The ui provides 'open web root' and 'open account page' actions, both in the
file menu, and in the (right click) dock icon menu.
Something weird in the handling of wxpython's per-frame menubar stuff seems to
mean that the menu bar only displays the file menu and about etc (i.e. the items
from the wx menubar) if the focus changes from and back to the app while the
frame the menubar belongs to is displayed. Hence a splash frame comes up at
startup to provide an opportunity.
It also seems that, in the case that the file menu is not available, that one
can induce it to reappear by choosing 'about' from the dock menu, and then
closing the about window.
this moves some of the code common to both windows and mac builds into the
allmydata module hierarchy, and cleans up the windows and mac build directories
to import the code from there.
using sibpath to find web template files relative to source code is functional
when running from source environments, but not especially flexible when running
from bundled built environments. the more 'orthodox' mechanism, pkg_resources,
in theory at least, knows how to find resource files in various environments.
this makes the 'web' directory in allmydata into an actual allmydata.web module
(since pkg_resources looks for files relative to a named module, and that module
must be importable) and uses pkg_resources.resource_filename to find the files
therein.
Using pkg_resources.require() like this also apparently allows people to install multiple different versions of packages on their system and tahoe (if pkg_resources is available to it) will import the version of the package that it requires. I haven't tested this feature.
in a discussion the other day, brian had asked me to try removing this fix, since
it leads to double-closing the reader. since on my windows box, the test failures
I'd experienced were related to the ConnectionLost exception problem, and this
close didn't see to make a difference to test results, I agreed.
turns out that the buildbot's environment does fail without this fix, even with
the exception fix, as I'd kind of expected.
it makes sense, because the reader (specifically the file handle) must be closed
before it can be unlinked. at any rate, I'm reinstating this, in order to fix the
windows build
unlinking a file before closing it is not portable. it works on unix, but fails
since an open file holds a lock on windows.
this closes the reader before trying to unlink the encoding file within the
CHKUploadHelper.
in trying to test my fix for the failure of the offloaded unit test on windows
(by closing the reader before unlinking the encoding file - which, perhaps
disturbingly doesn't actually make a difference in my windows environment)
I was unable too because the unit test failed every time with a connection lost
error.
after much more time than I'd like to admit it took, I eventually managed to
track that down to a part of the unit test which is supposed to be be dropping
a connection. it looks like the exceptions that get thrown on unix, or at
least all the specific environments brian tested in, for that dropped
connection are different from what is thrown on my box (which is running py2.4
and twisted 2.4.0, for reference) adding ConnectionLost to the list of
expected exceptions makes the test pass.
though curiously still my test logs a NotEnoughWritersError error, and I'm not
currently able to fathom why that exception isn't leading to any overall
failure of the unit test itself.
for general interest, a large part of the time spent trying to track this down
was lost to the state of logging. I added a whole bunch of logging to try
and track down where the tests were failing, but then spent a bunch of time
searching in vain for that log output. as far as I can tell at this point
the unit tests are themselves logging to foolscap's log module, but that isn't
being directed anywhere, so all the test's logging is being black holed.