in the recent reconciliation of webopen patches, I wound up adjusting
webopen to 'pass through' the state of the trailing slash on the given
argument to the resultant url passed to the browser. this change
removes the requirement that arguments must be directories, and allows
webopen to be used with files. it also broke the tests that assumed
that webopen would always normalise the url to have a trailing slash.
in fixing the tests, I realised that, IMHO, there's something deeply
awry with the way tahoe handles paths; specifically in the combination
of '/' being the name of the root path within an alias, but a leading
slash on paths, e.g. 'alias:/path', is catagorically incorrect. i.e.
'tahoe:' == 'tahoe:/' == '/'
but 'tahoe:/foo' is an invalid path, and must be 'tahoe:foo'
I wound up making the internals of webopen simply spot a 'path' of
'/' and smash it to '', which 'fixes' webopen to match the behaviour
of tahoe's path handling elsewhere, but that special case sort of
points to the weirdness.
(fwiw, I personally found the fact that the leading / in a path was
disallowed to be weird - I'm just used to seeing paths qualified by
the leading / I guess - so in a debate about normalising path handling
I'd vote to include the /)
I think this is largely attributable to a cleanup patch I'd made
which never got committed upstream somehow, but at any rate various
conflicting changes to webopen had been made. This cleans up the
conflicts therein, and hopefully brings 'tahoe webopen' in line with
other cli commands.
moved the body of webopen out of cli.py into tahoe_webopen.py
made its invocation consistent with the other cli commands, most
notably replacing its 'vdrive path' with the same alias parsing,
allowing usage such as 'tahoe webopen private:Pictures/xti'
this adds a new service to pre-generate RSA key pairs. This allows
the expensive (i.e. slow) key generation to be placed into a process
outside the node, so that the node's reactor will not block when it
needs a key pair, but instead can retrieve them from a pool of already
generated key pairs in the key-generator service.
it adds a tahoe create-key-generator command which initialises an
empty dir with a tahoe-key-generator.tac file which can then be run
via twistd. it stashes its .pem and portnum for furl stability and
writes the furl of the key gen service to key_generator.furl, also
printing it to stdout.
by placing a key_generator.furl file into the nodes config directory
(e.g. ~/.tahoe) a node will attempt to connect to such a service, and
will use that when creating mutable files (i.e. directories) whenever
possible. if the keygen service is unavailable, it will perform the
key generation locally instead, as before.
runner provides the main point of entry for the 'tahoe' command, and
provides various subcommands by default. this provides a hook whereby
additional subcommands can be added in in other contexts, providing a
simple way to extend the (sub)commands space available through 'tahoe'
base62 encoding fits more information into alphanumeric chars while avoiding the troublesome non-alphanumeric chars of base64 encoding. In particular, this allows us to work around the ext3 "32,000 entries in a directory" limit while retaining the convenient property that the intermediate directory names are leading prefixes of the storage index file names.
adds a 'run' commands to bin/tahoe / tahoe.exe
it loads a client node into the tahoe process itself,
running in the base dir specified by --basedir/-C and
defaulting to the current working dir.
it runs synchronously, and the tahoe process blocks until
the reactor is stopped.
this is probably not of very high utility in the unix case of bin/tahoe
but is useful when working with native builds, e.g. py2exe's tahoe.exe,
to examine and debug the runtime environment, linking problems etc.
taking the same arguments as tahoe ls, it does a webbrowser.open to the page
specified by those args. hence "tahoe webopen" will open a browser to the
root dir specified in private/root_dir.cap by default.
this might be a good alternative to the start.html page.
* rename my_private_dir.cap to root_dir.cap
* move it into the private subdir
* change the cmdline argument "--root-uri=[private]" to "--dir-uri=[root]"
* use new decentralized directories everywhere instead of old centralized directories
* provide UI to them through the web server
* provide UI to them through the CLI
* update unit tests to simulate decentralized mutable directories in order to test other components that rely on them
* remove the notion of a "vdrive server" and a client thereof
* remove the notion of a "public vdrive", which was a directory that was centrally published/subscribed automatically by the tahoe node (you can accomplish this manually by making a directory and posting the URL to it on your web site, for example)
* add a notion of "wait_for_numpeers" when you need to publish data to peers, which is how many peers should be attached before you start. The default is 1.
* add __repr__ for filesystem nodes (note: these reprs contain a few bits of the secret key!)
* fix a few bugs where we used to equate "mutable" with "not read-only". Nowadays all directories are mutable, but some might be read-only (to you).
* fix a few bugs where code wasn't aware of the new general-purpose metadata dict the comes with each filesystem edge
* sundry fixes to unit tests to adjust to the new directories, e.g. don't assume that every share on disk belongs to a chk file.
It isn't currently used, and I don't remember what part of its behavior was so much better than tahoe_put.py, and Brian has subsequently improved tahoe_put.py.