This adds Node._create_tub(), which knows how to make a Tub with all the
right options and connection handlers that were specified in
tahoe.cfg (the connection handlers are disabled for now, but they'll get
implemented soon).
The new Node.create_main_tub() calls it. This main Tub is used:
* to connect to the Introducer
* to host the Helper (if enabled)
* to host the Storage Server (if enabled)
Node._create_tub() is also passed into the StorageFarmBroker, which
passes it into each NativeStorageServer, to create the (separate) Tub
for each server connection. _create_tub knows about the options, and
NativeStorageServer can override the connection handlers. This way we
don't need to pass tub options or default handlers into Client,
StorageFarmBroker, or NativeStorageServer.
A number of tests create NativeStorageServer objects: these were updated
to match the new arguments. test_storage_client was simplified because
we no longer need to mock out the Tub() constructor.
This stores IDisplayableServer-providing instances (StubServers or
NativeStorageServers) in the .servermap and .sharemap dictionaries. But
get_servermap()/get_sharemap() still return data structures with
serverids, not IServers, by translating their data on the way out. This
lets us put off changing the callers for a little bit longer.
Complete the getter-based transformation, by hiding ".uri" and updating
callers to use get_uri(). Also don't set a dummy self._uri, leave it
undefined until someone calls set_uri().
Populate most of UploadResults (except .uri, which is learned later when
using a Helper) in the constructor, instead of allowing creators to
write to attributes later. This will help isolate the fields that we
want to change to use IServers.
This splits the pb.Copyable on-wire object (HelperUploadResults) out
from the local results object (UploadResults). To maintain compatibility
with older Helpers, we have to leave pb.Copyable classes alone and
unmodified, but we want to change UploadResults to use IServers instead
of serverids. So by using a different class on the wire, and translating
to/from it on either end, we can accomplish both.
This makes it more obvious that the Helper currently generates leases with
the Helper's own secrets, rather than getting values from the client, which
is arguably a bug that will likely be resolved with the Accounting project.
* stop using IURI as an adapter
* pass cap strings around instead of URI instances
* move filenode/dirnode creation duties from Client to new NodeMaker class
* move other Client duties to KeyGenerator, SecretHolder, History classes
* stop passing Client reference to dirnode/filenode constructors
- pass less-powerful references instead, like StorageBroker or Uploader
* always create DirectoryNodes by wrapping a filenode (mutable for now)
* remove some specialized mock classes from unit tests
Detailed list of changes (done one at a time, then merged together)
always pass a string to create_node_from_uri(), not an IURI instance
always pass a string to IFilesystemNode constructors, not an IURI instance
stop using IURI() as an adapter, switch on cap prefix in create_node_from_uri()
client.py: move SecretHolder code out to a separate class
test_web.py: hush pyflakes
client.py: move NodeMaker functionality out into a separate object
LiteralFileNode: stop storing a Client reference
immutable Checker: remove Client reference, it only needs a SecretHolder
immutable Upload: remove Client reference, leave SecretHolder and StorageBroker
immutable Repairer: replace Client reference with StorageBroker and SecretHolder
immutable FileNode: remove Client reference
mutable.Publish: stop passing Client
mutable.ServermapUpdater: get StorageBroker in constructor, not by peeking into Client reference
MutableChecker: reference StorageBroker and History directly, not through Client
mutable.FileNode: removed unused indirection to checker classes
mutable.FileNode: remove Client reference
client.py: move RSA key generation into a separate class, so it can be passed to the nodemaker
move create_mutable_file() into NodeMaker
test_dirnode.py: stop using FakeClient mockups, use NoNetworkGrid instead. This simplifies the code, but takes longer to run (17s instead of 6s). This should come down later when other cleanups make it possible to use simpler (non-RSA) fake mutable files for dirnode tests.
test_mutable.py: clean up basedir names
client.py: move create_empty_dirnode() into NodeMaker
dirnode.py: get rid of DirectoryNode.create
remove DirectoryNode.init_from_uri, refactor NodeMaker for customization, simplify test_web's mock Client to match
stop passing Client to DirectoryNode, make DirectoryNode.create_with_mutablefile the normal DirectoryNode constructor, start removing client from NodeMaker
remove Client from NodeMaker
move helper status into History, pass History to web.Status instead of Client
test_mutable.py: fix minor typo
This makes Uploader take an EncryptedUploadable object instead of an Uploadable object. I also changed it to return a verify cap instead of a tuple of the bits of data that one finds in a verify cap.
This will facilitate hooking together an Uploader and a Downloader to make a Repairer.
Also move offloaded.py into src/allmydata/immutable/.
Now upload or encode methods take a required argument named "convergence" which can be either None, indicating no convergent encryption at all, or a string, which is the "added secret" to be mixed in to the content hash key. If you want traditional convergent encryption behavior, set the added secret to be the empty string.
This patch also renames "content hash key" to "convergent encryption" in a argument names and variable names. (A different and larger renaming is needed in order to clarify that Tahoe supports immutable files which are not encrypted content-hash-key a.k.a. convergent encryption.)
This patch also changes a few unit tests to use non-convergent encryption, because it doesn't matter for what they are testing and non-convergent encryption is slightly faster.
base62 encoding fits more information into alphanumeric chars while avoiding the troublesome non-alphanumeric chars of base64 encoding. In particular, this allows us to work around the ext3 "32,000 entries in a directory" limit while retaining the convenient property that the intermediate directory names are leading prefixes of the storage index file names.