For a brief while (in between releases 1.9 and 1.10, specifically from
revision bc21726 on 12-Mar-2012, until bf416af on 10-Jun-2012), the new
introducer code stored its node key in NODEDIR/private/server.privkey .
After that point, it was updated to store this key in
NODEDIR/private/node.privkey instead. Fallback code was added to read
from the old location if present (so that folks using development
versions could keep their node keys after the bf416af change).
This patch removes the fallback code. If you have a node which was run
under a version of Tahoe within this range, you need to manually update
your node by running:
mv NODEDIR/private/server.privkey NODEDIR/private/node.privkey
and then restart the node. If you accidentally start an older node with
code after this patch, it will create a new key (and other peers will
think a new server has appeared). You can either stick with the new key,
or use the command above to switch back to the old key.
See docs/nodekeys.rst (not yet written) for details about the node key
and how it is used.
This should now fail quickly (during "tahoe start"). Previously this
would silently treat an unparseable size as "0", and the only way to
discover that it had had a problem would be to look at the foolscap log,
or examine the storage-service web page for the unexpected "Reserved
Size" number.
This stores the sequence number in BASEDIR/announcement-seqnum, and
increments it each time any service is published (every service
announcement is regenerated with the new sequence number). As everyone
knows, time is an illusion, and occasionally goes backwards, so a
counter is generally safer (and reveals less information about the
node).
Later, we'll improve the introducer client to tolerate rollbacks (where,
perhaps due to a VM being restarted from an earlier checkpoint, the
stored sequence number reverts to an earlier version).
This prepares for invitation-based reciprocal-permission Accounting. In
the scheme I'm developing, nodes publish "I accept shares from Y"
messages, which are assembled into a graph, and server will accept
shares from any client node reachable in this graph. For this to work,
the serverX->clientY edge must be connectable to the serverY->clientZ
edge, which means "clientY" and "serverY" must be connected. If clientY
and serverY are two distinct keys, they must be cross-signed. Life is
easier if there's just one key "Y", rather than distinct client- and
server- keys. Calling this one key "server.privkey" would be confusing.
"node.privkey" and "node.pubkey" makes more sense.
One-server-per-node is a pretty easy restriction. Originally I was
thinking that the client.key should be provided in each webapi call,
just like a filecap is, making a single node useable by multiple users
(Accounting principals), and not providing any ambient storage
authority. But I've been unable to think of a comfortable WUI for
that (at least without requiring javascript), nor a friendly way to
transfer account authority (e.g. writecaps that include storage
authority). So I'm more willing to have one-client-per-node these days.
(and note that this rename doesn't seriously preclude
many-clients-per-node or zero-clients-per-node anyways, it just makes
one-client-per-node less awkward)
This introduces new client and server halves to the Introducer (renaming the
old one with a _V1 suffix). Both have fallbacks to accomodate talking to a
different version: the publishing client switches on whether the server's
.get_version() advertises V2 support, the server switches on which
subscription method was invoked by the subscribing client.
The V2 protocol sends a three-tuple of (serialized announcement dictionary,
signature, pubkey) for each announcement. The V2 server dispatches messages
to subscribers according to the service-name, and throws errors for invalid
signatures, but does not otherwise examine the messages. The V2 receiver's
subscription callback will receive a (serverid, ann_dict) pair. The
'serverid' will be equal to the pubkey if all of the following are true:
the originating client is V2, and was told a privkey to use
the announcement went through a V2 server
the signature is valid
If not, 'serverid' will be equal to the tubid portion of the announced FURL,
as was the case for V1 receivers.
Servers will create a keypair if one does not exist yet, stored in
private/server.privkey .
The signed announcement dictionary puts the server FURL in a key named
"anonymous-storage-FURL", which anticipates upcoming Accounting-related
changes in the server advertisements. It also provides a key named
"permutation-seed-base32" to tell clients what permutation seed to use. This
is computed at startup, using tubid if there are existing shares, otherwise
the pubkey, to retain share-order compatibility for existing servers.
* fix tahoe.cfg control of default mutable type
* tolerate arbitrary case in [client]mutable.format value
* small docs improvements
* use get_mutable_type() as a format-is-mutable predicate
* tighten up error message
* fix CLI commands (put, mkdir) to send format=, not mutable-type=
* fix tests
* test_cli: fix tests that observe t=json output, don't ignore failures in
'tahoe put'
* fix handling of version= to make it easier to use the default
* interpret ?mutable=true&format=MDMF as MDMF, not SDMF
This consistently records all immutable uploads in the Recent Uploads And
Downloads page, regardless of code path. Previously, certain webapi upload
operations (like PUT /uri/$DIRCAP/newchildname) failed to pass the History
object and were left out.
I rerecorded this patch, originally by David-Sarah, to use "darcs replace" instead of editing to do the renames. This uncovered one missed rename in Client.init_drop_uploader. (Which also means that code isn't exercised by the current unit tests.)
refs #1429
Pass around IServer instance instead of (peerid, rref) tuple. Replace
"descriptor" with "server". Other replacements:
get_all_servers -> get_connected_servers/get_known_servers
get_servers_for_index -> get_servers_for_psi (now returns IServers)
This change still needs to be pushed further down: lots of code is now
getting the IServer and then distributing (peerid, rref) internally.
Instead, it ought to distribute the IServer internally and delay
extracting a serverid or rref until the last moment.
no_network.py was updated to retain parallelism.
* change t=mkdir-with-children to not use multipart/form encoding. Instead,
the request body is all JSON. t=mkdir-immutable uses this format too.
* make nodemaker.create_immutable_dirnode() get convergence from SecretHolder,
but let callers override it
* raise NotDeepImmutableError instead of using assert()
* add mutable= argument to DirectoryNode.create_subdirectory(), default True
interfaces.py: define INodeMaker, document argument values, change
create_new_mutable_directory() to take dict-of-nodes. Change
dirnode.set_nodes() and dirnode.create_subdirectory() too.
nodemaker.py: use INodeMaker, update create_new_mutable_directory()
client.py: have create_dirnode() delegate initial_children= to nodemaker
dirnode.py (Adder): take dict-of-nodes instead of list-of-nodes, which
updates set_nodes() and create_subdirectory()
web/common.py (convert_initial_children_json): create dict-of-nodes
web/directory.py: same
web/unlinked.py: same
test_dirnode.py: update tests to match
invoked with the new MutableFileNode and is supposed to return the initial
contents. This can be used by e.g. a new dirnode which needs the filenode's
writekey to encrypt its initial children.
create_mutable_file() still accepts a bytestring too, or None for an empty
file.
This makes it more obvious that the Helper currently generates leases with
the Helper's own secrets, rather than getting values from the client, which
is arguably a bug that will likely be resolved with the Accounting project.
child of the client, access with client.downloader instead of
client.getServiceNamed("downloader"). The single "Downloader" instance is
scheduled for demolition anyways, to be replaced by individual
filenode.download calls.
* stop using IURI as an adapter
* pass cap strings around instead of URI instances
* move filenode/dirnode creation duties from Client to new NodeMaker class
* move other Client duties to KeyGenerator, SecretHolder, History classes
* stop passing Client reference to dirnode/filenode constructors
- pass less-powerful references instead, like StorageBroker or Uploader
* always create DirectoryNodes by wrapping a filenode (mutable for now)
* remove some specialized mock classes from unit tests
Detailed list of changes (done one at a time, then merged together)
always pass a string to create_node_from_uri(), not an IURI instance
always pass a string to IFilesystemNode constructors, not an IURI instance
stop using IURI() as an adapter, switch on cap prefix in create_node_from_uri()
client.py: move SecretHolder code out to a separate class
test_web.py: hush pyflakes
client.py: move NodeMaker functionality out into a separate object
LiteralFileNode: stop storing a Client reference
immutable Checker: remove Client reference, it only needs a SecretHolder
immutable Upload: remove Client reference, leave SecretHolder and StorageBroker
immutable Repairer: replace Client reference with StorageBroker and SecretHolder
immutable FileNode: remove Client reference
mutable.Publish: stop passing Client
mutable.ServermapUpdater: get StorageBroker in constructor, not by peeking into Client reference
MutableChecker: reference StorageBroker and History directly, not through Client
mutable.FileNode: removed unused indirection to checker classes
mutable.FileNode: remove Client reference
client.py: move RSA key generation into a separate class, so it can be passed to the nodemaker
move create_mutable_file() into NodeMaker
test_dirnode.py: stop using FakeClient mockups, use NoNetworkGrid instead. This simplifies the code, but takes longer to run (17s instead of 6s). This should come down later when other cleanups make it possible to use simpler (non-RSA) fake mutable files for dirnode tests.
test_mutable.py: clean up basedir names
client.py: move create_empty_dirnode() into NodeMaker
dirnode.py: get rid of DirectoryNode.create
remove DirectoryNode.init_from_uri, refactor NodeMaker for customization, simplify test_web's mock Client to match
stop passing Client to DirectoryNode, make DirectoryNode.create_with_mutablefile the normal DirectoryNode constructor, start removing client from NodeMaker
remove Client from NodeMaker
move helper status into History, pass History to web.Status instead of Client
test_mutable.py: fix minor typo
we actually exercise during tests) into more specific exceptions, so they
don't get optimized away. The best rule to follow is probably this: if an
exception is worth testing, then it's part of the API, and AssertionError
should never be part of the API. Closes#749.
If you open up a directory containing thousands of files, it currently computes the cache filename and checks for the cache file on disk immediately for each immutble file in that directory. With this patch, it delays those steps until you try to do something with an immutable file that could use the cache.
The idea is that future versions of Tahoe will add new URI types that this
version won't recognize, but might store them in directories that we *can*
read. We should handle these "objects from the future" as best we can.
Previous releases of Tahoe would just explode. With this change, we'll
continue to be able to work with everything else in the directory.
The code change is to wrap anything we don't recognize as an UnknownNode
instance (as opposed to a FileNode or DirectoryNode). Then webapi knows how
to render these (mostly by leaving fields blank), deep-check knows to skip
over them, deep-stats counts them in "count-unknown". You can rename and
delete these things, but you can't add new ones (because we wouldn't know how
to generate a readcap to put into the dirnode's rocap slot, and because this
lets us catch typos better).
This reduces the total test time on my laptop from 400s to 283s.
* src/allmydata/test/test_system.py (SystemTest.test_mutable._test_debug):
Remove assertion about container_size/data_size, this changes with keysize
and was too variable anyways.
* src/allmydata/mutable/filenode.py (MutableFileNode.create): add keysize=
* src/allmydata/dirnode.py (NewDirectoryNode.create): same
* src/allmydata/client.py (Client.DEFAULT_MUTABLE_KEYSIZE): add default,
this overrides the one in MutableFileNode
A test failed on draco (MacPPC) because it took 67.1 seconds to get around to running the test, and the node had already stopped itself when the hotline file was 60 seconds old.
A test failed on draco (MacPPC) because it took 49 seconds to get around to running the test, and the node had already stopped itself when the hotline file was 40 seconds old.
It is currently hardcoded in setup.py to be 'allmydata-tahoe'. Ticket #556 is to make it configurable by a runtime command-line argument to setup.py: "--appname=foo", but I suddenly wondered if we really wanted that and at the same time realized that we don't need that for tahoe-1.3.0 release, so this patch just hardcodes it in setup.py.
setup.py inspects a file named 'src/allmydata/_appname.py' and assert that it contains the string "__appname__ = 'allmydata-tahoe'", and creates it if it isn't already present. src/allmydata/__init__.py import _appname and reads __appname__ from it. The rest of the Python code imports allmydata and inspects "allmydata.__appname__", although actually every use it uses "allmydata.__full_version__" instead, where "allmydata.__full_version__" is created in src/allmydata/__init__.py to be:
__full_version__ = __appname + '-' + str(__version__).
All the code that emits an "application version string" when describing what version of a protocol it supports (introducer server, storage server, upload helper), or when describing itself in general (introducer client), usese allmydata.__full_version__.
This fixes ticket #556 at least well enough for tahoe-1.3.0 release.
This reverses some, but not all, of the changes that were committed in the following set of patches.
rolling back:
Sun Jan 18 09:54:30 MST 2009 toby.murray
* add 'web.ambient_upload_authority' as a paramater to tahoe.cfg
M ./src/allmydata/client.py -1 +3
M ./src/allmydata/test/common.py -7 +9
A ./src/allmydata/test/test_ambient_upload_authority.py
M ./src/allmydata/web/root.py +12
M ./src/allmydata/webish.py -1 +4
Sun Jan 18 09:56:08 MST 2009 zooko@zooko.com
* trivial: whitespace
I ran emacs's "M-x whitespace-cleanup" on the files that Toby's recent patch had touched that had trailing whitespace on some lines.
M ./src/allmydata/test/test_ambient_upload_authority.py -9 +8
M ./src/allmydata/web/root.py -2 +1
M ./src/allmydata/webish.py -2 +1
Mon Jan 19 14:16:19 MST 2009 zooko@zooko.com
* trivial: remove unused import noticed by pyflakes
M ./src/allmydata/test/test_ambient_upload_authority.py -1
Mon Jan 19 21:38:35 MST 2009 toby.murray
* doc: describe web.ambient_upload_authority
M ./docs/configuration.txt +14
M ./docs/frontends/webapi.txt +11
Mon Jan 19 21:38:57 MST 2009 zooko@zooko.com
* doc: add Toby Murray to the CREDITS
M ./CREDITS +4
FileDownloader takes a verify cap and produces ciphertext, instead of taking a read cap and producing plaintext.
FileDownloader does all integrity checking including the mandatory ciphertext hash tree and the optional ciphertext flat hash, rather than expecting its target to do some of that checking.
Rename immutable.download.Output to immutable.download.DecryptingOutput. An instance of DecryptingOutput can be passed to FileDownloader to use as the latter's target. Text pushed to the DecryptingOutput is decrypted and then pushed to *its* target.
DecryptingOutput satisfies the IConsumer interface, and if its target also satisfies IConsumer, then it forwards and pause/unpause signals to its producer (which is the FileDownloader).
This patch also changes some logging code to use the new logging mixin class.
Check integrity of a segment and decrypt the segment one block-sized buffer at a time instead of copying the buffers together into one segment-sized buffer (reduces peak memory usage, I think, and is probably a tad faster/less CPU, depending on your encoding parameters).
Refactor FileDownloader so that processing of segments and of tail-segment share as much code is possible.
FileDownloader and FileNode take caps as instances of URI (Python objects), not as strings.
This makes Uploader take an EncryptedUploadable object instead of an Uploadable object. I also changed it to return a verify cap instead of a tuple of the bits of data that one finds in a verify cap.
This will facilitate hooking together an Uploader and a Downloader to make a Repairer.
Also move offloaded.py into src/allmydata/immutable/.
Removed the Checker service, removed checker results storage (both in-memory
and the tiny stub of sqlite-based storage). Added ICheckable, all
check/verify is now done by calling the check() method on filenodes and
dirnodes (immutable files, literal files, mutable files, and directory
instances).
Checker results are returned in a Results instance, with an html() method for
display. Checker results have been temporarily removed from the wui directory
listing until we make some other fixes.
Also fixed client.create_node_from_uri() to create LiteralFileNodes properly,
since they have different checking behavior. Previously we were creating full
FileNodes with LIT uris inside, which were downloadable but not checkable.
adds a stats_producer for the upload helper, which provides a series of counters
to the stats gatherer, under the name 'chk_upload_helper'.
it examines both the 'incoming' directory, and the 'encoding' dir, providing
inc_count inc_size inc_size_old enc_count enc_size enc_size_old, respectively
the number of files in each dir, the total size thereof, and the aggregate
size of all files older than 48hrs
this adds a new service to pre-generate RSA key pairs. This allows
the expensive (i.e. slow) key generation to be placed into a process
outside the node, so that the node's reactor will not block when it
needs a key pair, but instead can retrieve them from a pool of already
generated key pairs in the key-generator service.
it adds a tahoe create-key-generator command which initialises an
empty dir with a tahoe-key-generator.tac file which can then be run
via twistd. it stashes its .pem and portnum for furl stability and
writes the furl of the key gen service to key_generator.furl, also
printing it to stdout.
by placing a key_generator.furl file into the nodes config directory
(e.g. ~/.tahoe) a node will attempt to connect to such a service, and
will use that when creating mutable files (i.e. directories) whenever
possible. if the keygen service is unavailable, it will perform the
key generation locally instead, as before.
Now upload or encode methods take a required argument named "convergence" which can be either None, indicating no convergent encryption at all, or a string, which is the "added secret" to be mixed in to the content hash key. If you want traditional convergent encryption behavior, set the added secret to be the empty string.
This patch also renames "content hash key" to "convergent encryption" in a argument names and variable names. (A different and larger renaming is needed in order to clarify that Tahoe supports immutable files which are not encrypted content-hash-key a.k.a. convergent encryption.)
This patch also changes a few unit tests to use non-convergent encryption, because it doesn't matter for what they are testing and non-convergent encryption is slightly faster.
this adds an interface, IStatsProducer, defining the get_stats() method
which the stats provider calls upon and registered producer, and made the
register_producer() method check that interface is implemented.
also refine the startup logic, so that the stats provider doesn't try and
connect out to the stats gatherer until after the node declares the tub
'ready'. this is to address an issue whereby providers would attach to
the gatherer without providing a valid furl, and hence the gatherer would
be unable to determine the tubid of the connected client, leading to lost
samples.
We have a desire to collect runtime statistics from multiple nodes primarily
for server monitoring purposes. This implements a simple implementation of
such a system, as a skeleton to build more sophistication upon.
Each client now looks for a 'stats_gatherer.furl' config file. If it has
been configured to use a stats gatherer, then it instantiates internally
a StatsProvider. This is a central place for code which wishes to offer
stats up for monitoring to report them to, either by calling
stats_provider.count('stat.name', value) to increment a counter, or by
registering a class as a stats producer with sp.register_producer(obj).
The StatsProvider connects to the StatsGatherer server and provides its
provider upon startup. The StatsGatherer is then responsible for polling
the attached providers periodically to retrieve the data provided.
The provider queries each registered producer when the gatherer queries
the provider. Both the internal 'counters' and the queried 'stats' are
then reported to the gatherer.
This provides a simple gatherer app, (c.f. make stats-gatherer-run)
which prints its furl and listens for incoming connections. Once a
minute, the gatherer polls all connected providers, and writes the
retrieved data into a pickle file.
Also included is a munin plugin which knows how to read the gatherer's
stats.pickle and output data munin can interpret. this plugin,
tahoe-stats.py can be symlinked as multiple different names within
munin's 'plugins' directory, and inspects argv to determine which
data to display, doing a lookup in a table within that file.
It looks in the environment for 'statsfile' to determine the path to
the gatherer's stats.pickle. An example plugins-conf.d file is
provided.
a recent purge of the start.html code also took away the logic that wrote
'node.url' into the node root. this is required for the tahoe cli tool to
find the node. this puts back a limited fraction of that code, so that the
node writes out a node.url file upon startup.
* rename my_private_dir.cap to root_dir.cap
* move it into the private subdir
* change the cmdline argument "--root-uri=[private]" to "--dir-uri=[root]"
* use new decentralized directories everywhere instead of old centralized directories
* provide UI to them through the web server
* provide UI to them through the CLI
* update unit tests to simulate decentralized mutable directories in order to test other components that rely on them
* remove the notion of a "vdrive server" and a client thereof
* remove the notion of a "public vdrive", which was a directory that was centrally published/subscribed automatically by the tahoe node (you can accomplish this manually by making a directory and posting the URL to it on your web site, for example)
* add a notion of "wait_for_numpeers" when you need to publish data to peers, which is how many peers should be attached before you start. The default is 1.
* add __repr__ for filesystem nodes (note: these reprs contain a few bits of the secret key!)
* fix a few bugs where we used to equate "mutable" with "not read-only". Nowadays all directories are mutable, but some might be read-only (to you).
* fix a few bugs where code wasn't aware of the new general-purpose metadata dict the comes with each filesystem edge
* sundry fixes to unit tests to adjust to the new directories, e.g. don't assume that every share on disk belongs to a chk file.
The URI typenames need revision, and only a few dirnode methods are
implemented. Filenodes are non-functional, but URI/key-management is in
place. There are a lot of classes with names like "NewDirectoryNode" that
will need to be rename once we decide what (if any) backwards compatibility
want to retain.
This makes it so that an optional file which is unreadable or is rm'ed
at the wrong moment will be ignored instead of raising an exception.
It also bums out a couple of unnecessary lines of code (the explicit
".close()" call).
By writing something like "25 75 100" into a file named 'encoding_parameters'
in the central Introducer's base directory, all clients which use that
introducer will be advised to use 25-out-of-100 encoding for files (i.e.
100 shares will be produced, 25 are required to reconstruct, and the upload
process will be happy if it can find homes for at least 75 shares). The
default values are "3 7 10". For small meshes, the defaults are probably
good, but for larger ones it may be appropriate to increase the number of
shares.
To use this, write a number like 10MB or 5Gb or 5000000000 to a file
named 'sizelimit' in the client's base directory. The node will not grant
leases for shares that would take it much beyond this many bytes of
storage. Note that metadata is not included in the allocation count until
a restart, so the actual space consumed may grow beyond the limit if
the node is not restarted very frequently and the amount of metadata is
significant.
These allow client-side code to conveniently retrieve the IDirectoryNode
instances for both the global shared public root directory, and the per-user
private root directory.
Rather than use separate client.pem and introducer.pem files, use 'node.pem'
for all nodes regardless of what type it is. This is slightly cleaner, but
introduces a compatibility. Users who upgrade to this change should do
'mv client.pem node.pem' to avoid generating a new certificate and thus
changing their TubID.
Added metadata to the bucket store, which is used to hold the share number
(but the bucket doesn't know that, it just gets a string).
Modified the codec interfaces a bit.
Try to pass around URIs to/from download/upload instead of verifierids.
URI format is still in flux.
Change the current (primitive) file encoder to use a ReplicatingEncoder
because it provides ICodecEncoder. We will be moving to the (less primitive)
file encoder (currently in allmydata.encode_new) eventually, but for now
this change lets us test out PyRS or zooko's upcoming C-based RS codec in
something larger than a single unit test. This primitive file encoder only
uses a single segment, and has no merkle trees.
Also added allmydata.util.deferredutil for a DeferredList wrapper that
errbacks (but only when all component Deferreds have fired) if there were
any errors, which unfortunately is not a behavior available from the standard
DeferredList.