Complete the getter-based transformation, by hiding ".uri" and updating
callers to use get_uri(). Also don't set a dummy self._uri, leave it
undefined until someone calls set_uri().
If a server did not respond to the pre-repair filecheck, but did respond
to the repair, that server was not correctly added to the
RepairResults.data["servers-responding"] list. (This resulted from a
buggy usage of DictOfSets.union() in filenode.py).
In addition, servers to which filecheck queries were sent, but did not
respond, were incorrectly added to the servers-responding list
anyawys. (This resulted from code in the checker.py not paying attention
to the 'responded' flag).
The first bug was neatly masked by the second: it's pretty rare to have
a server suddenly start responding in the one-second window between a
filecheck and a subsequent repair, and if the server was around for the
filecheck, you'd never notice the problem. I only spotted the smelly
code while I was changing it for IServer cleanup purposes.
I added coverage to test_repairer.py for this. Trying to get that test
to fail before fixing the first bug is what led me to discover the
second bug. I also had to update test_corrupt_file_verno, since it was
incorrectly asserting that 10 servers responded, when in fact one of
them throws an error (but the second bug was causing it to be reported
anyways).
* repairer (really the uploader) reads beyond end of input file (Uploadable)
* new-downloader does not tolerate overreads
* uploader does lots of tiny reads (inefficient)
This fixes the last two. The uploader still does a single overread at the end
of the input file, but now that's ok so we can leave it in place. The
uploader now expects the Uploadable to behave like a normal disk
file (reading beyond EOF will return less data than was asked for), and now
the new-downloadable behaves that way.
This patch also renames some instances of "find_shares()" to "find_all_shares()" and other instances to "find_uri_shares()" as appropriate -- the conflation between those names confused me at first when writing these tests.
Verifier misses
The results (described in #819) match our expectations: it misses corruption
in unused share fields and in most container fields (which are only visible
to the storage server, not the client). 1265 bytes of a 2753 byte
share (hosting a 56-byte file with an artifically small segment size) are
unused, mostly in the unused tail of the overallocated UEB space (765 bytes),
and the allocated-but-unwritten plaintext_hash_tree (480 bytes).
* remove Downloader.download_to_data/download_to_filename/download_to_filehandle
* remove download.Data/FileName/FileHandle targets
* remove filenode.download/download_to_data/download_to_filename methods
* leave Downloader.download (the whole Downloader will go away eventually)
* add util.consumer.MemoryConsumer/download_to_data, for convenience
(this is mostly used by unit tests, but it gets used by enough non-test
code to warrant putting it in allmydata.util)
* update tests
* removes about 180 lines of code. Yay negative code days!
Overall plan is to rewrite immutable/download.py and leave filenode.read() as
the sole read-side API.
Obviously requiring the code under test to perform within some limit isn't very meaningful if we raise the limit whenever the test goes outside of it.
But I still don't want to remove the test code which measures how many writes (and, elsewhere, how many reads) a client does in order to fulfill these duties.
Let this number -- now 20 -- stand as an approximation of the inefficiency of our code divided by my mental model of how many operations are actually optimal for these duties.
This is important, because if the repairer doesn't completely repair all kinds of corruption (as the current one doesn't), then the successive tests get messed up by assuming that the shares were uncorrupted when the test first set about to corrupt them.
This implements an immutable repairer by marrying a CiphertextDownloader to a CHKUploader. It extends the IDownloadTarget interface so that the downloader can provide some metadata that the uploader requires.
The processing is incremental -- it uploads the first segments before it finishes downloading the whole file. This is necessary so that you can repair large files without running out of RAM or using a temporary file on the repairer.
It requires only a verifycap, not a readcap. That is: it doesn't need or use the decryption key, only the integrity check codes.
There are several tests marked TODO and several instances of XXX in the source code. I intend to open tickets to document further improvements to functionality and testing, but the current version is probably good enough for Tahoe-1.3.0.