mirror of
https://github.com/tahoe-lafs/tahoe-lafs.git
synced 2025-02-20 01:36:17 +00:00
remove parts of pycrypto that we are no longer going to use: SHA256 and RSA
This commit is contained in:
parent
5807e83f7b
commit
97de6a03d2
8
setup.py
8
setup.py
@ -122,14 +122,6 @@ setup(name='allmydata-tahoe',
|
||||
Extension("allmydata.Crypto.Cipher.AES",
|
||||
include_dirs=["src/allmydata/Crypto"],
|
||||
sources=["src/allmydata/Crypto/AES.c"]),
|
||||
Extension("allmydata.Crypto.Hash.SHA256",
|
||||
include_dirs=["src/allmydata/Crypto"],
|
||||
sources=["src/allmydata/Crypto/SHA256.c"]),
|
||||
# _fastmath requires gmp. Since we're not using rsa yet, hold off
|
||||
# on requiring this. (note that RSA.py doesn't require _fastmath,
|
||||
# but I doubt we'd want to use the pure-python version).
|
||||
# Extension("allmydata.Crypto.PublicKey._fastmath",
|
||||
# sources=["src/allmydata/Crypto/_fastmath.c"]),
|
||||
],
|
||||
zip_safe=False, # We prefer unzipped for easier access.
|
||||
)
|
||||
|
@ -1,257 +0,0 @@
|
||||
#
|
||||
# RSA.py : RSA encryption/decryption
|
||||
#
|
||||
# Part of the Python Cryptography Toolkit
|
||||
#
|
||||
# Distribute and use freely; there are no restrictions on further
|
||||
# dissemination and usage except those imposed by the laws of your
|
||||
# country of residence. This software is provided "as is" without
|
||||
# warranty of fitness for use or suitability for any purpose, express
|
||||
# or implied. Use at your own risk or not at all.
|
||||
#
|
||||
|
||||
__revision__ = "$Id: RSA.py,v 1.20 2004/05/06 12:52:54 akuchling Exp $"
|
||||
|
||||
from allmydata.Crypto.PublicKey import pubkey
|
||||
from allmydata.Crypto.Util import number
|
||||
|
||||
_fastmath = None
|
||||
try:
|
||||
from allmydata.Crypto.PublicKey import _fastmath
|
||||
except ImportError:
|
||||
pass
|
||||
|
||||
class error (Exception):
|
||||
pass
|
||||
|
||||
def generate(bits, randfunc, progress_func=None):
|
||||
"""generate(bits:int, randfunc:callable, progress_func:callable)
|
||||
|
||||
Generate an RSA key of length 'bits', using 'randfunc' to get
|
||||
random data and 'progress_func', if present, to display
|
||||
the progress of the key generation.
|
||||
"""
|
||||
obj=RSAobj()
|
||||
|
||||
# Generate the prime factors of n
|
||||
if progress_func:
|
||||
progress_func('p,q\n')
|
||||
p = q = 1L
|
||||
while number.size(p*q) < bits:
|
||||
p = pubkey.getPrime(bits/2, randfunc)
|
||||
q = pubkey.getPrime(bits/2, randfunc)
|
||||
|
||||
# p shall be smaller than q (for calc of u)
|
||||
if p > q:
|
||||
(p, q)=(q, p)
|
||||
obj.p = p
|
||||
obj.q = q
|
||||
|
||||
if progress_func:
|
||||
progress_func('u\n')
|
||||
obj.u = pubkey.inverse(obj.p, obj.q)
|
||||
obj.n = obj.p*obj.q
|
||||
|
||||
obj.e = 65537L
|
||||
if progress_func:
|
||||
progress_func('d\n')
|
||||
obj.d=pubkey.inverse(obj.e, (obj.p-1)*(obj.q-1))
|
||||
|
||||
assert bits <= 1+obj.size(), "Generated key is too small"
|
||||
|
||||
return obj
|
||||
|
||||
def construct(tuple):
|
||||
"""construct(tuple:(long,) : RSAobj
|
||||
Construct an RSA object from a 2-, 3-, 5-, or 6-tuple of numbers.
|
||||
"""
|
||||
|
||||
obj=RSAobj()
|
||||
if len(tuple) not in [2,3,5,6]:
|
||||
raise error, 'argument for construct() wrong length'
|
||||
for i in range(len(tuple)):
|
||||
field = obj.keydata[i]
|
||||
setattr(obj, field, tuple[i])
|
||||
if len(tuple) >= 5:
|
||||
# Ensure p is smaller than q
|
||||
if obj.p>obj.q:
|
||||
(obj.p, obj.q)=(obj.q, obj.p)
|
||||
|
||||
if len(tuple) == 5:
|
||||
# u not supplied, so we're going to have to compute it.
|
||||
obj.u=pubkey.inverse(obj.p, obj.q)
|
||||
|
||||
return obj
|
||||
|
||||
class RSAobj(pubkey.pubkey):
|
||||
keydata = ['n', 'e', 'd', 'p', 'q', 'u']
|
||||
def _encrypt(self, plaintext, K=''):
|
||||
if self.n<=plaintext:
|
||||
raise error, 'Plaintext too large'
|
||||
return (pow(plaintext, self.e, self.n),)
|
||||
|
||||
def _decrypt(self, ciphertext):
|
||||
if (not hasattr(self, 'd')):
|
||||
raise error, 'Private key not available in this object'
|
||||
if self.n<=ciphertext[0]:
|
||||
raise error, 'Ciphertext too large'
|
||||
return pow(ciphertext[0], self.d, self.n)
|
||||
|
||||
def _sign(self, M, K=''):
|
||||
return (self._decrypt((M,)),)
|
||||
|
||||
def _verify(self, M, sig):
|
||||
m2=self._encrypt(sig[0])
|
||||
if m2[0]==M:
|
||||
return 1
|
||||
else: return 0
|
||||
|
||||
def _blind(self, M, B):
|
||||
tmp = pow(B, self.e, self.n)
|
||||
return (M * tmp) % self.n
|
||||
|
||||
def _unblind(self, M, B):
|
||||
tmp = pubkey.inverse(B, self.n)
|
||||
return (M * tmp) % self.n
|
||||
|
||||
def can_blind (self):
|
||||
"""can_blind() : bool
|
||||
Return a Boolean value recording whether this algorithm can
|
||||
blind data. (This does not imply that this
|
||||
particular key object has the private information required to
|
||||
to blind a message.)
|
||||
"""
|
||||
return 1
|
||||
|
||||
def size(self):
|
||||
"""size() : int
|
||||
Return the maximum number of bits that can be handled by this key.
|
||||
"""
|
||||
return number.size(self.n) - 1
|
||||
|
||||
def has_private(self):
|
||||
"""has_private() : bool
|
||||
Return a Boolean denoting whether the object contains
|
||||
private components.
|
||||
"""
|
||||
if hasattr(self, 'd'):
|
||||
return 1
|
||||
else: return 0
|
||||
|
||||
def publickey(self):
|
||||
"""publickey(): RSAobj
|
||||
Return a new key object containing only the public key information.
|
||||
"""
|
||||
return construct((self.n, self.e))
|
||||
|
||||
class RSAobj_c(pubkey.pubkey):
|
||||
keydata = ['n', 'e', 'd', 'p', 'q', 'u']
|
||||
|
||||
def __init__(self, key):
|
||||
self.key = key
|
||||
|
||||
def __getattr__(self, attr):
|
||||
if attr in self.keydata:
|
||||
return getattr(self.key, attr)
|
||||
else:
|
||||
if self.__dict__.has_key(attr):
|
||||
self.__dict__[attr]
|
||||
else:
|
||||
raise AttributeError, '%s instance has no attribute %s' % (self.__class__, attr)
|
||||
|
||||
def __getstate__(self):
|
||||
d = {}
|
||||
for k in self.keydata:
|
||||
if hasattr(self.key, k):
|
||||
d[k]=getattr(self.key, k)
|
||||
return d
|
||||
|
||||
def __setstate__(self, state):
|
||||
n,e = state['n'], state['e']
|
||||
if not state.has_key('d'):
|
||||
self.key = _fastmath.rsa_construct(n,e)
|
||||
else:
|
||||
d = state['d']
|
||||
if not state.has_key('q'):
|
||||
self.key = _fastmath.rsa_construct(n,e,d)
|
||||
else:
|
||||
p, q, u = state['p'], state['q'], state['u']
|
||||
self.key = _fastmath.rsa_construct(n,e,d,p,q,u)
|
||||
|
||||
def _encrypt(self, plain, K):
|
||||
return (self.key._encrypt(plain),)
|
||||
|
||||
def _decrypt(self, cipher):
|
||||
return self.key._decrypt(cipher[0])
|
||||
|
||||
def _sign(self, M, K):
|
||||
return (self.key._sign(M),)
|
||||
|
||||
def _verify(self, M, sig):
|
||||
return self.key._verify(M, sig[0])
|
||||
|
||||
def _blind(self, M, B):
|
||||
return self.key._blind(M, B)
|
||||
|
||||
def _unblind(self, M, B):
|
||||
return self.key._unblind(M, B)
|
||||
|
||||
def can_blind (self):
|
||||
return 1
|
||||
|
||||
def size(self):
|
||||
return self.key.size()
|
||||
|
||||
def has_private(self):
|
||||
return self.key.has_private()
|
||||
|
||||
def publickey(self):
|
||||
return construct_c((self.key.n, self.key.e))
|
||||
|
||||
def generate_c(bits, randfunc, progress_func = None):
|
||||
# Generate the prime factors of n
|
||||
if progress_func:
|
||||
progress_func('p,q\n')
|
||||
|
||||
p = q = 1L
|
||||
while number.size(p*q) < bits:
|
||||
p = pubkey.getPrime(bits/2, randfunc)
|
||||
q = pubkey.getPrime(bits/2, randfunc)
|
||||
|
||||
# p shall be smaller than q (for calc of u)
|
||||
if p > q:
|
||||
(p, q)=(q, p)
|
||||
if progress_func:
|
||||
progress_func('u\n')
|
||||
u=pubkey.inverse(p, q)
|
||||
n=p*q
|
||||
|
||||
e = 65537L
|
||||
if progress_func:
|
||||
progress_func('d\n')
|
||||
d=pubkey.inverse(e, (p-1)*(q-1))
|
||||
key = _fastmath.rsa_construct(n,e,d,p,q,u)
|
||||
obj = RSAobj_c(key)
|
||||
|
||||
## print p
|
||||
## print q
|
||||
## print number.size(p), number.size(q), number.size(q*p),
|
||||
## print obj.size(), bits
|
||||
assert bits <= 1+obj.size(), "Generated key is too small"
|
||||
return obj
|
||||
|
||||
|
||||
def construct_c(tuple):
|
||||
key = apply(_fastmath.rsa_construct, tuple)
|
||||
return RSAobj_c(key)
|
||||
|
||||
object = RSAobj
|
||||
|
||||
generate_py = generate
|
||||
construct_py = construct
|
||||
|
||||
if _fastmath:
|
||||
#print "using C version of RSA"
|
||||
generate = generate_c
|
||||
construct = construct_c
|
||||
error = _fastmath.error
|
@ -1,17 +0,0 @@
|
||||
"""Public-key encryption and signature algorithms.
|
||||
|
||||
Public-key encryption uses two different keys, one for encryption and
|
||||
one for decryption. The encryption key can be made public, and the
|
||||
decryption key is kept private. Many public-key algorithms can also
|
||||
be used to sign messages, and some can *only* be used for signatures.
|
||||
|
||||
Crypto.PublicKey.DSA Digital Signature Algorithm. (Signature only)
|
||||
Crypto.PublicKey.ElGamal (Signing and encryption)
|
||||
Crypto.PublicKey.RSA (Signing, encryption, and blinding)
|
||||
Crypto.PublicKey.qNEW (Signature only)
|
||||
|
||||
"""
|
||||
|
||||
__all__ = ['RSA']
|
||||
__revision__ = "$Id: __init__.py,v 1.4 2003/04/03 20:27:13 akuchling Exp $"
|
||||
|
@ -1,173 +0,0 @@
|
||||
#
|
||||
# pubkey.py : Internal functions for public key operations
|
||||
#
|
||||
# Part of the Python Cryptography Toolkit
|
||||
#
|
||||
# Distribute and use freely; there are no restrictions on further
|
||||
# dissemination and usage except those imposed by the laws of your
|
||||
# country of residence. This software is provided "as is" without
|
||||
# warranty of fitness for use or suitability for any purpose, express
|
||||
# or implied. Use at your own risk or not at all.
|
||||
#
|
||||
|
||||
__revision__ = "$Id: pubkey.py,v 1.11 2003/04/03 20:36:14 akuchling Exp $"
|
||||
|
||||
import types, warnings
|
||||
from allmydata.Crypto.Util.number import bignum, bytes_to_long, \
|
||||
long_to_bytes, error
|
||||
|
||||
# Basic public key class
|
||||
class pubkey:
|
||||
def __init__(self):
|
||||
pass
|
||||
|
||||
def __getstate__(self):
|
||||
"""To keep key objects platform-independent, the key data is
|
||||
converted to standard Python long integers before being
|
||||
written out. It will then be reconverted as necessary on
|
||||
restoration."""
|
||||
d=self.__dict__
|
||||
for key in self.keydata:
|
||||
if d.has_key(key): d[key]=long(d[key])
|
||||
return d
|
||||
|
||||
def __setstate__(self, d):
|
||||
"""On unpickling a key object, the key data is converted to the big
|
||||
number representation being used, whether that is Python long
|
||||
integers, MPZ objects, or whatever."""
|
||||
for key in self.keydata:
|
||||
if d.has_key(key): self.__dict__[key]=bignum(d[key])
|
||||
|
||||
def encrypt(self, plaintext, K):
|
||||
"""encrypt(plaintext:string|long, K:string|long) : tuple
|
||||
Encrypt the string or integer plaintext. K is a random
|
||||
parameter required by some algorithms.
|
||||
"""
|
||||
wasString=0
|
||||
if isinstance(plaintext, types.StringType):
|
||||
plaintext=bytes_to_long(plaintext) ; wasString=1
|
||||
if isinstance(K, types.StringType):
|
||||
K=bytes_to_long(K)
|
||||
ciphertext=self._encrypt(plaintext, K)
|
||||
if wasString: return tuple(map(long_to_bytes, ciphertext))
|
||||
else: return ciphertext
|
||||
|
||||
def decrypt(self, ciphertext):
|
||||
"""decrypt(ciphertext:tuple|string|long): string
|
||||
Decrypt 'ciphertext' using this key.
|
||||
"""
|
||||
wasString=0
|
||||
if not isinstance(ciphertext, types.TupleType):
|
||||
ciphertext=(ciphertext,)
|
||||
if isinstance(ciphertext[0], types.StringType):
|
||||
ciphertext=tuple(map(bytes_to_long, ciphertext)) ; wasString=1
|
||||
plaintext=self._decrypt(ciphertext)
|
||||
if wasString: return long_to_bytes(plaintext)
|
||||
else: return plaintext
|
||||
|
||||
def sign(self, M, K):
|
||||
"""sign(M : string|long, K:string|long) : tuple
|
||||
Return a tuple containing the signature for the message M.
|
||||
K is a random parameter required by some algorithms.
|
||||
"""
|
||||
if (not self.has_private()):
|
||||
raise error, 'Private key not available in this object'
|
||||
if isinstance(M, types.StringType): M=bytes_to_long(M)
|
||||
if isinstance(K, types.StringType): K=bytes_to_long(K)
|
||||
return self._sign(M, K)
|
||||
|
||||
def verify (self, M, signature):
|
||||
"""verify(M:string|long, signature:tuple) : bool
|
||||
Verify that the signature is valid for the message M;
|
||||
returns true if the signature checks out.
|
||||
"""
|
||||
if isinstance(M, types.StringType): M=bytes_to_long(M)
|
||||
return self._verify(M, signature)
|
||||
|
||||
# alias to compensate for the old validate() name
|
||||
def validate (self, M, signature):
|
||||
warnings.warn("validate() method name is obsolete; use verify()",
|
||||
DeprecationWarning)
|
||||
|
||||
def blind(self, M, B):
|
||||
"""blind(M : string|long, B : string|long) : string|long
|
||||
Blind message M using blinding factor B.
|
||||
"""
|
||||
wasString=0
|
||||
if isinstance(M, types.StringType):
|
||||
M=bytes_to_long(M) ; wasString=1
|
||||
if isinstance(B, types.StringType): B=bytes_to_long(B)
|
||||
blindedmessage=self._blind(M, B)
|
||||
if wasString: return long_to_bytes(blindedmessage)
|
||||
else: return blindedmessage
|
||||
|
||||
def unblind(self, M, B):
|
||||
"""unblind(M : string|long, B : string|long) : string|long
|
||||
Unblind message M using blinding factor B.
|
||||
"""
|
||||
wasString=0
|
||||
if isinstance(M, types.StringType):
|
||||
M=bytes_to_long(M) ; wasString=1
|
||||
if isinstance(B, types.StringType): B=bytes_to_long(B)
|
||||
unblindedmessage=self._unblind(M, B)
|
||||
if wasString: return long_to_bytes(unblindedmessage)
|
||||
else: return unblindedmessage
|
||||
|
||||
|
||||
# The following methods will usually be left alone, except for
|
||||
# signature-only algorithms. They both return Boolean values
|
||||
# recording whether this key's algorithm can sign and encrypt.
|
||||
def can_sign (self):
|
||||
"""can_sign() : bool
|
||||
Return a Boolean value recording whether this algorithm can
|
||||
generate signatures. (This does not imply that this
|
||||
particular key object has the private information required to
|
||||
to generate a signature.)
|
||||
"""
|
||||
return 1
|
||||
|
||||
def can_encrypt (self):
|
||||
"""can_encrypt() : bool
|
||||
Return a Boolean value recording whether this algorithm can
|
||||
encrypt data. (This does not imply that this
|
||||
particular key object has the private information required to
|
||||
to decrypt a message.)
|
||||
"""
|
||||
return 1
|
||||
|
||||
def can_blind (self):
|
||||
"""can_blind() : bool
|
||||
Return a Boolean value recording whether this algorithm can
|
||||
blind data. (This does not imply that this
|
||||
particular key object has the private information required to
|
||||
to blind a message.)
|
||||
"""
|
||||
return 0
|
||||
|
||||
# The following methods will certainly be overridden by
|
||||
# subclasses.
|
||||
|
||||
def size (self):
|
||||
"""size() : int
|
||||
Return the maximum number of bits that can be handled by this key.
|
||||
"""
|
||||
return 0
|
||||
|
||||
def has_private (self):
|
||||
"""has_private() : bool
|
||||
Return a Boolean denoting whether the object contains
|
||||
private components.
|
||||
"""
|
||||
return 0
|
||||
|
||||
def publickey (self):
|
||||
"""publickey(): object
|
||||
Return a new key object containing only the public information.
|
||||
"""
|
||||
return self
|
||||
|
||||
def __eq__ (self, other):
|
||||
"""__eq__(other): 0, 1
|
||||
Compare us to other for equality.
|
||||
"""
|
||||
return self.__getstate__() == other.__getstate__()
|
@ -1,7 +1,6 @@
|
||||
|
||||
This directory contains pieces of the PyCrypto package. We've copied just the
|
||||
parts we need (AES with zooko's fast-CTR-mode patch, SHA256, Util.number, and
|
||||
eventually RSA) into the tahoe tree.
|
||||
parts we need (AES with zooko's fast-CTR-mode patch, Util.number) into the tahoe tree.
|
||||
|
||||
|
||||
PyCrypto is published with the following license:
|
||||
|
@ -1,200 +0,0 @@
|
||||
/*
|
||||
* An implementation of the SHA-256 hash function, this is endian neutral
|
||||
* so should work just about anywhere.
|
||||
*
|
||||
* This code works much like the MD5 code provided by RSA. You sha_init()
|
||||
* a "sha_state" then sha_process() the bytes you want and sha_done() to get
|
||||
* the output.
|
||||
*
|
||||
* Revised Code: Complies to SHA-256 standard now.
|
||||
*
|
||||
* Tom St Denis -- http://tomstdenis.home.dhs.org
|
||||
* */
|
||||
#include "Python.h"
|
||||
#define MODULE_NAME SHA256
|
||||
#define DIGEST_SIZE 32
|
||||
|
||||
typedef unsigned char U8;
|
||||
#ifdef __alpha__
|
||||
typedef unsigned int U32;
|
||||
#elif defined(__amd64__)
|
||||
#include <inttypes.h>
|
||||
typedef uint32_t U32;
|
||||
#else
|
||||
typedef unsigned int U32;
|
||||
#endif
|
||||
|
||||
typedef struct {
|
||||
U32 state[8], length, curlen;
|
||||
unsigned char buf[64];
|
||||
}
|
||||
hash_state;
|
||||
|
||||
/* the K array */
|
||||
static const U32 K[64] = {
|
||||
0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL, 0x3956c25bUL,
|
||||
0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL, 0xd807aa98UL, 0x12835b01UL,
|
||||
0x243185beUL, 0x550c7dc3UL, 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL,
|
||||
0xc19bf174UL, 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
|
||||
0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL, 0x983e5152UL,
|
||||
0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL, 0xc6e00bf3UL, 0xd5a79147UL,
|
||||
0x06ca6351UL, 0x14292967UL, 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL,
|
||||
0x53380d13UL, 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
|
||||
0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL, 0xd192e819UL,
|
||||
0xd6990624UL, 0xf40e3585UL, 0x106aa070UL, 0x19a4c116UL, 0x1e376c08UL,
|
||||
0x2748774cUL, 0x34b0bcb5UL, 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL,
|
||||
0x682e6ff3UL, 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
|
||||
0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
|
||||
};
|
||||
|
||||
/* Various logical functions */
|
||||
#define Ch(x,y,z) ((x & y) ^ (~x & z))
|
||||
#define Maj(x,y,z) ((x & y) ^ (x & z) ^ (y & z))
|
||||
#define S(x, n) (((x)>>((n)&31))|((x)<<(32-((n)&31))))
|
||||
#define R(x, n) ((x)>>(n))
|
||||
#define Sigma0(x) (S(x, 2) ^ S(x, 13) ^ S(x, 22))
|
||||
#define Sigma1(x) (S(x, 6) ^ S(x, 11) ^ S(x, 25))
|
||||
#define Gamma0(x) (S(x, 7) ^ S(x, 18) ^ R(x, 3))
|
||||
#define Gamma1(x) (S(x, 17) ^ S(x, 19) ^ R(x, 10))
|
||||
|
||||
/* compress 512-bits */
|
||||
static void sha_compress(hash_state * md)
|
||||
{
|
||||
U32 S[8], W[64], t0, t1;
|
||||
int i;
|
||||
|
||||
/* copy state into S */
|
||||
for (i = 0; i < 8; i++)
|
||||
S[i] = md->state[i];
|
||||
|
||||
/* copy the state into 512-bits into W[0..15] */
|
||||
for (i = 0; i < 16; i++)
|
||||
W[i] = (((U32) md->buf[(4 * i) + 0]) << 24) |
|
||||
(((U32) md->buf[(4 * i) + 1]) << 16) |
|
||||
(((U32) md->buf[(4 * i) + 2]) << 8) |
|
||||
(((U32) md->buf[(4 * i) + 3]));
|
||||
|
||||
/* fill W[16..63] */
|
||||
for (i = 16; i < 64; i++)
|
||||
W[i] = Gamma1(W[i - 2]) + W[i - 7] + Gamma0(W[i - 15]) + W[i - 16];
|
||||
|
||||
/* Compress */
|
||||
for (i = 0; i < 64; i++) {
|
||||
t0 = S[7] + Sigma1(S[4]) + Ch(S[4], S[5], S[6]) + K[i] + W[i];
|
||||
t1 = Sigma0(S[0]) + Maj(S[0], S[1], S[2]);
|
||||
S[7] = S[6];
|
||||
S[6] = S[5];
|
||||
S[5] = S[4];
|
||||
S[4] = S[3] + t0;
|
||||
S[3] = S[2];
|
||||
S[2] = S[1];
|
||||
S[1] = S[0];
|
||||
S[0] = t0 + t1;
|
||||
}
|
||||
|
||||
/* feedback */
|
||||
for (i = 0; i < 8; i++)
|
||||
md->state[i] += S[i];
|
||||
}
|
||||
|
||||
/* init the SHA state */
|
||||
void sha_init(hash_state * md)
|
||||
{
|
||||
md->curlen = md->length = 0;
|
||||
md->state[0] = 0x6A09E667UL;
|
||||
md->state[1] = 0xBB67AE85UL;
|
||||
md->state[2] = 0x3C6EF372UL;
|
||||
md->state[3] = 0xA54FF53AUL;
|
||||
md->state[4] = 0x510E527FUL;
|
||||
md->state[5] = 0x9B05688CUL;
|
||||
md->state[6] = 0x1F83D9ABUL;
|
||||
md->state[7] = 0x5BE0CD19UL;
|
||||
}
|
||||
|
||||
void sha_process(hash_state * md, unsigned char *buf, int len)
|
||||
{
|
||||
while (len--) {
|
||||
/* copy byte */
|
||||
md->buf[md->curlen++] = *buf++;
|
||||
|
||||
/* is 64 bytes full? */
|
||||
if (md->curlen == 64) {
|
||||
sha_compress(md);
|
||||
md->length += 512;
|
||||
md->curlen = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void sha_done(hash_state * md, unsigned char *hash)
|
||||
{
|
||||
int i;
|
||||
|
||||
/* increase the length of the message */
|
||||
md->length += md->curlen * 8;
|
||||
|
||||
/* append the '1' bit */
|
||||
md->buf[md->curlen++] = 0x80;
|
||||
|
||||
/* if the length is currenlly above 56 bytes we append zeros
|
||||
* then compress. Then we can fall back to padding zeros and length
|
||||
* encoding like normal.
|
||||
*/
|
||||
if (md->curlen >= 56) {
|
||||
for (; md->curlen < 64;)
|
||||
md->buf[md->curlen++] = 0;
|
||||
sha_compress(md);
|
||||
md->curlen = 0;
|
||||
}
|
||||
|
||||
/* pad upto 56 bytes of zeroes */
|
||||
for (; md->curlen < 56;)
|
||||
md->buf[md->curlen++] = 0;
|
||||
|
||||
/* since all messages are under 2^32 bits we mark the top bits zero */
|
||||
for (i = 56; i < 60; i++)
|
||||
md->buf[i] = 0;
|
||||
|
||||
/* append length */
|
||||
for (i = 60; i < 64; i++)
|
||||
md->buf[i] = (md->length >> ((63 - i) * 8)) & 255;
|
||||
sha_compress(md);
|
||||
|
||||
/* copy output */
|
||||
for (i = 0; i < 32; i++)
|
||||
hash[i] = (md->state[i >> 2] >> (((3 - i) & 3) << 3)) & 255;
|
||||
}
|
||||
|
||||
// Done
|
||||
static void hash_init (hash_state *ptr)
|
||||
{
|
||||
sha_init(ptr);
|
||||
}
|
||||
|
||||
// Done
|
||||
static void
|
||||
hash_update (hash_state *self, const U8 *buf, U32 len)
|
||||
{
|
||||
sha_process(self,(unsigned char *)buf,len);
|
||||
}
|
||||
|
||||
// Done
|
||||
static void
|
||||
hash_copy(hash_state *src, hash_state *dest)
|
||||
{
|
||||
memcpy(dest,src,sizeof(hash_state));
|
||||
}
|
||||
|
||||
// Done
|
||||
static PyObject *
|
||||
hash_digest (const hash_state *self)
|
||||
{
|
||||
unsigned char digest[32];
|
||||
hash_state temp;
|
||||
|
||||
hash_copy((hash_state*)self,&temp);
|
||||
sha_done(&temp,digest);
|
||||
return PyString_FromStringAndSize((char *)digest, 32);
|
||||
}
|
||||
|
||||
#include "hash_template.c"
|
Loading…
x
Reference in New Issue
Block a user