pyfec: fix preconditions and typing, remove unused error-checking, tidy-up naming and documentation

This commit is contained in:
Zooko O'Whielacronx 2007-02-01 00:03:25 -07:00
parent 1eccff29ff
commit 8f17174cb8
4 changed files with 76 additions and 80 deletions

View File

@ -111,8 +111,8 @@ Encoder_init(Encoder *self, PyObject *args, PyObject *kwdict) {
py_raise_fec_error("Precondition violation: second argument is required to be greater than or equal to 1, but it was %d", self->mm);
return -1;
}
if (self->mm > 255) {
py_raise_fec_error("Precondition violation: second argument is required to be less than or equal to 255, but it was %d", self->mm);
if (self->mm > 256) {
py_raise_fec_error("Precondition violation: second argument is required to be less than or equal to 256, but it was %d", self->mm);
return -1;
}
if (self->kk > self->mm) {
@ -142,14 +142,14 @@ Encoder_encode(Encoder *self, PyObject *args) {
gf* check_shares_produced[self->mm - self->kk]; /* This is an upper bound -- we will actually use only num_check_shares_produced of these elements (see below). */
PyObject* pystrs_produced[self->mm - self->kk]; /* This is an upper bound -- we will actually use only num_check_shares_produced of these elements (see below). */
unsigned char num_check_shares_produced = 0; /* The first num_check_shares_produced elements of the check_shares_produced array and of the pystrs_produced array will be used. */
unsigned num_check_shares_produced = 0; /* The first num_check_shares_produced elements of the check_shares_produced array and of the pystrs_produced array will be used. */
const gf* incshares[self->kk];
unsigned char num_desired_shares;
unsigned num_desired_shares;
PyObject* fast_desired_shares_ids = NULL;
PyObject** fast_desired_shares_ids_items;
unsigned char c_desired_shares_ids[self->mm];
unsigned char c_desired_checkshares_ids[self->mm - self->kk];
unsigned char i;
unsigned c_desired_shares_ids[self->mm];
unsigned c_desired_checkshares_ids[self->mm - self->kk];
unsigned i;
if (desired_shares_ids) {
fast_desired_shares_ids = PySequence_Fast(desired_shares_ids, "Second argument (optional) was not a sequence.");
num_desired_shares = PySequence_Fast_GET_SIZE(fast_desired_shares_ids);
@ -360,8 +360,8 @@ Decoder_init(Encoder *self, PyObject *args, PyObject *kwdict) {
py_raise_fec_error("Precondition violation: second argument is required to be greater than or equal to 1, but it was %d", self->mm);
return -1;
}
if (self->mm > 255) {
py_raise_fec_error("Precondition violation: second argument is required to be less than or equal to 255, but it was %d", self->mm);
if (self->mm > 256) {
py_raise_fec_error("Precondition violation: second argument is required to be less than or equal to 256, but it was %d", self->mm);
return -1;
}
if (self->kk > self->mm) {
@ -393,10 +393,10 @@ Decoder_decode(Decoder *self, PyObject *args) {
return NULL;
const gf*restrict cshares[self->kk];
unsigned char cshareids[self->kk];
unsigned cshareids[self->kk];
gf*restrict recoveredcstrs[self->kk]; /* self->kk is actually an upper bound -- we probably won't need all of this space. */
PyObject*restrict recoveredpystrs[self->kk]; /* self->kk is actually an upper bound -- we probably won't need all of this space. */
unsigned char i;
unsigned i;
for (i=0; i<self->kk; i++)
recoveredpystrs[i] = NULL;
PyObject*restrict fastshares = PySequence_Fast(shares, "First argument was not a sequence.");
@ -416,7 +416,7 @@ Decoder_decode(Decoder *self, PyObject *args) {
}
/* Construct a C array of gf*'s of the data and another of C ints of the shareids. */
unsigned char needtorecover=0;
unsigned needtorecover=0;
PyObject** fastshareidsitems = PySequence_Fast_ITEMS(fastshareids);
if (!fastshareidsitems)
goto err;
@ -428,11 +428,11 @@ Decoder_decode(Decoder *self, PyObject *args) {
if (!PyInt_Check(fastshareidsitems[i]))
goto err;
long tmpl = PyInt_AsLong(fastshareidsitems[i]);
if (tmpl < 0 || tmpl >= UCHAR_MAX) {
if (tmpl < 0 || tmpl > 255) {
py_raise_fec_error("Precondition violation: Share ids can't be less than zero or greater than 255. %ld\n", tmpl);
goto err;
}
cshareids[i] = (unsigned char)tmpl;
cshareids[i] = (unsigned)tmpl;
if (cshareids[i] >= self->kk)
needtorecover+=1;
@ -455,7 +455,7 @@ Decoder_decode(Decoder *self, PyObject *args) {
i++;
else {
/* put pkt in the right position. */
unsigned char c = cshareids[i];
unsigned c = cshareids[i];
SWAP (cshareids[i], cshareids[c], int);
SWAP (cshares[i], cshares[c], const gf*);
@ -477,7 +477,7 @@ Decoder_decode(Decoder *self, PyObject *args) {
fec_decode(self->fec_matrix, cshares, recoveredcstrs, cshareids, sz);
/* Wrap up both original primary shares and decoded shares into a Python list of Python strings. */
unsigned char nextrecoveredix=0;
unsigned nextrecoveredix=0;
result = PyList_New(self->kk);
if (result == NULL)
goto err;

View File

@ -128,7 +128,7 @@ modnn(int x) {
* many numbers by the same constant. In this case the first call sets the
* constant, and others perform the multiplications. A value related to the
* multiplication is held in a local variable declared with USE_GF_MULC . See
* usage in addmul1().
* usage in _addmul1().
*/
static gf gf_mul_table[256][256];
@ -174,7 +174,7 @@ my_malloc (int sz, char *err_string) {
}
#define NEW_GF_MATRIX(rows, cols) \
(gf *)my_malloc(rows * cols * sizeof(gf), " ## __LINE__ ## " )
(gf*)my_malloc(rows * cols, " ## __LINE__ ## " )
/*
* initialize the data structures used for computations in GF.
@ -252,15 +252,13 @@ generate_gf (void) {
* calls are unfrequent in my typical apps so I did not bother.
*/
#define addmul(dst, src, c, sz) \
if (c != 0) addmul1(dst, src, c, sz)
if (c != 0) _addmul1(dst, src, c, sz)
#define UNROLL 16 /* 1, 4, 8, 16 */
static void
addmul1 (gf * dst1, const gf * src1, gf c, int sz) {
_addmul1(register gf*restrict dst, const register gf*restrict src, gf c, size_t sz) {
USE_GF_MULC;
register gf *dst = dst1;
register const gf *src = src1;
gf *lim = &dst[sz - UNROLL + 1];
const gf* lim = &dst[sz - UNROLL + 1];
GF_MULC0 (c);
@ -297,8 +295,8 @@ addmul1 (gf * dst1, const gf * src1, gf c, int sz) {
* computes C = AB where A is n*k, B is k*m, C is n*m
*/
static void
matmul (gf * a, gf * b, gf * c, int n, int k, int m) {
int row, col, i;
_matmul(gf * a, gf * b, gf * c, unsigned n, unsigned k, unsigned m) {
unsigned row, col, i;
for (row = 0; row < n; row++) {
for (col = 0; col < m; col++) {
@ -313,20 +311,21 @@ matmul (gf * a, gf * b, gf * c, int n, int k, int m) {
}
/*
* invert_mat() takes a matrix and produces its inverse
* _invert_mat() takes a matrix and produces its inverse
* k is the size of the matrix.
* (Gauss-Jordan, adapted from Numerical Recipes in C)
* Return non-zero if singular.
*/
static int
invert_mat (gf * src, int k) {
static void
_invert_mat(gf* src, unsigned k) {
gf c, *p;
int irow, icol, row, col, i, ix;
unsigned irow = 0;
unsigned icol = 0;
unsigned row, col, i, ix;
int error = -1;
int *indxc = (int *) my_malloc (k * sizeof (int), "indxc");
int *indxr = (int *) my_malloc (k * sizeof (int), "indxr");
int *ipiv = (int *) my_malloc (k * sizeof (int), "ipiv");
unsigned* indxc = (unsigned*) my_malloc (k * sizeof(unsigned), "indxc");
unsigned* indxr = (unsigned*) my_malloc (k * sizeof(unsigned), "indxr");
unsigned* ipiv = (unsigned*) my_malloc (k * sizeof(unsigned), "ipiv");
gf *id_row = NEW_GF_MATRIX (1, k);
gf *temp_row = NEW_GF_MATRIX (1, k);
@ -343,7 +342,6 @@ invert_mat (gf * src, int k) {
* Zeroing column 'col', look for a non-zero element.
* First try on the diagonal, if it fails, look elsewhere.
*/
irow = icol = -1;
if (ipiv[col] != 1 && src[col * k + col] != 0) {
irow = col;
icol = col;
@ -365,10 +363,6 @@ invert_mat (gf * src, int k) {
}
}
}
if (icol == -1) {
ERR("Pivot not found!");
goto fail;
}
found_piv:
++(ipiv[icol]);
/*
@ -416,26 +410,17 @@ invert_mat (gf * src, int k) {
}
id_row[icol] = 0;
} /* done all columns */
for (col = k - 1; col >= 0; col--) {
if (indxr[col] < 0 || indxr[col] >= k) {
ERR("AARGH, indxr[col] %d\n", indxr[col]);
goto fail;
} else if (indxc[col] < 0 || indxc[col] >= k) {
ERR("AARGH, indxc[col] %d\n", indxc[col]);
goto fail;
} else if (indxr[col] != indxc[col]) {
for (col = k; col > 0; col--)
if (indxr[col-1] != indxc[col-1])
for (row = 0; row < k; row++)
SWAP (src[row * k + indxr[col]], src[row * k + indxc[col]], gf);
}
}
error = 0;
SWAP (src[row * k + indxr[col-1]], src[row * k + indxc[col-1]], gf);
fail:
free (indxc);
free (indxr);
free (ipiv);
free (id_row);
free (temp_row);
return error;
return;
}
/*
@ -449,14 +434,14 @@ invert_mat (gf * src, int k) {
* p = coefficients of the matrix (p_i)
* q = values of the polynomial (known)
*/
int
invert_vdm (gf * src, int k) {
int i, j, row, col;
void
_invert_vdm (gf* src, unsigned k) {
unsigned i, j, row, col;
gf *b, *c, *p;
gf t, xx;
if (k == 1) /* degenerate case, matrix must be p^0 = 1 */
return 0;
return;
/*
* c holds the coefficient of P(x) = Prod (x - p_i), i=0..k-1
* b holds the coefficient for the matrix inversion
@ -491,9 +476,9 @@ invert_vdm (gf * src, int k) {
xx = p[row];
t = 1;
b[k - 1] = 1; /* this is in fact c[k] */
for (i = k - 2; i >= 0; i--) {
b[i] = c[i + 1] ^ gf_mul (xx, b[i + 1]);
t = gf_mul (xx, t) ^ b[i];
for (i = k - 1; i > 0; i--) {
b[i-1] = c[i] ^ gf_mul (xx, b[i]);
t = gf_mul (xx, t) ^ b[i-1];
}
for (col = 0; col < k; col++)
src[col * k + row] = gf_mul (inverse[t], b[col]);
@ -501,7 +486,7 @@ invert_vdm (gf * src, int k) {
free (c);
free (b);
free (p);
return 0;
return;
}
static int fec_initialized = 0;
@ -531,13 +516,9 @@ fec_free (fec_t *p) {
free (p);
}
/*
* create a new encoder, returning a descriptor. This contains k,n and
* the encoding matrix.
*/
fec_t *
fec_new (unsigned char k, unsigned char n) {
unsigned char row, col;
fec_new(unsigned k, unsigned n) {
unsigned row, col;
gf *p, *tmp_m;
fec_t *retval;
@ -569,8 +550,8 @@ fec_new (unsigned char k, unsigned char n) {
* k*k vandermonde matrix, multiply right the bottom n-k rows
* by the inverse, and construct the identity matrix at the top.
*/
invert_vdm (tmp_m, k); /* much faster than invert_mat */
matmul (tmp_m + k * k, tmp_m, retval->enc_matrix + k * k, n - k, k, k);
_invert_vdm (tmp_m, k); /* much faster than _invert_mat */
_matmul(tmp_m + k * k, tmp_m, retval->enc_matrix + k * k, n - k, k, k);
/*
* the upper matrix is I so do not bother with a slow multiply
*/
@ -583,9 +564,9 @@ fec_new (unsigned char k, unsigned char n) {
}
void
fec_encode(const fec_t* code, const gf*restrict const*restrict const src, gf*restrict const*restrict const fecs, const unsigned char*restrict const share_ids, unsigned char num_share_ids, size_t sz) {
fec_encode(const fec_t* code, const gf*restrict const*restrict const src, gf*restrict const*restrict const fecs, const unsigned*restrict const share_ids, size_t num_share_ids, size_t sz) {
unsigned i, j;
unsigned char fecnum;
unsigned fecnum;
gf* p;
for (i=0; i<num_share_ids; i++) {
@ -594,7 +575,7 @@ fec_encode(const fec_t* code, const gf*restrict const*restrict const src, gf*res
memset(fecs[i], 0, sz);
p = &(code->enc_matrix[fecnum * code->k]);
for (j = 0; j < code->k; j++)
addmul (fecs[i], src[j], p[j], sz);
addmul(fecs[i], src[j], p[j], sz);
}
}
@ -604,7 +585,7 @@ fec_encode(const fec_t* code, const gf*restrict const*restrict const src, gf*res
* @param matrix a space allocated for a k by k matrix
*/
void
build_decode_matrix_into_space(const fec_t*restrict const code, const unsigned char*const restrict index, const unsigned char k, gf*restrict const matrix) {
build_decode_matrix_into_space(const fec_t*restrict const code, const unsigned*const restrict index, const unsigned k, gf*restrict const matrix) {
unsigned i;
gf* p;
for (i=0, p=matrix; i < k; i++, p += k) {
@ -615,11 +596,11 @@ build_decode_matrix_into_space(const fec_t*restrict const code, const unsigned c
memcpy(p, &(code->enc_matrix[index[i] * code->k]), k);
}
}
invert_mat (matrix, k);
_invert_mat (matrix, k);
}
void
fec_decode(const fec_t* code, const gf*restrict const*restrict const inpkts, gf*restrict const*restrict const outpkts, const unsigned char*restrict const index, size_t sz) {
fec_decode(const fec_t* code, const gf*restrict const*restrict const inpkts, gf*restrict const*restrict const outpkts, const unsigned*restrict const index, size_t sz) {
gf m_dec[code->k * code->k];
build_decode_matrix_into_space(code, index, code->k, m_dec);

View File

@ -71,12 +71,16 @@ typedef unsigned char gf;
typedef struct {
unsigned long magic;
unsigned char k, n; /* parameters of the code */
unsigned k, n; /* parameters of the code */
gf* enc_matrix;
} fec_t;
void fec_free (fec_t* p);
fec_t* fec_new (unsigned char k, unsigned char n);
/**
* param k the number of shares required to reconstruct
* param m the total number of share created
*/
fec_t* fec_new(unsigned k, unsigned m);
void fec_free(fec_t* p);
/**
* @param inpkts the "primary shares" i.e. the chunks of the input data
@ -84,7 +88,7 @@ fec_t* fec_new (unsigned char k, unsigned char n);
* @param share_ids the numbers of the desired shares -- including both primary shares (the id < k) which fec_encode() ignores and check shares (the id >= k) which fec_encode() will produce and store into the buffers of the fecs parameter
* @param num_share_ids the length of the share_ids array
*/
void fec_encode(const fec_t* code, const gf*restrict const*restrict const src, gf*restrict const*restrict const fecs, const unsigned char*restrict const share_ids, unsigned char num_share_ids, size_t sz);
void fec_encode(const fec_t* code, const gf*restrict const*restrict const src, gf*restrict const*restrict const fecs, const unsigned*restrict const share_ids, size_t num_share_ids, size_t sz);
/**
* @param inpkts an array of packets (size k)
@ -92,6 +96,6 @@ void fec_encode(const fec_t* code, const gf*restrict const*restrict const src, g
* @param index an array of the shareids of the packets in inpkts
* @param sz size of a packet in bytes
*/
void fec_decode(const fec_t* code, const gf*restrict const*restrict const inpkts, gf*restrict const*restrict const outpkts, const unsigned char*restrict const index, size_t sz);
void fec_decode(const fec_t* code, const gf*restrict const*restrict const inpkts, gf*restrict const*restrict const outpkts, const unsigned*restrict const index, size_t sz);
/* end of file */

View File

@ -30,6 +30,17 @@ import sys
import fec
from base64 import b32encode
def ab(x): # debuggery
if len(x) >= 3:
return "%s:%s" % (len(x), b32encode(x[-3:]),)
elif len(x) == 2:
return "%s:%s" % (len(x), b32encode(x[-2:]),)
elif len(x) == 1:
return "%s:%s" % (len(x), b32encode(x[-1:]),)
elif len(x) == 0:
return "%s:%s" % (len(x), "--empty--",)
def _h(k, m, ss):
# sys.stdout.write("k: %s, m: %s, len(ss): %r, len(ss[0]): %r" % (k, m, len(ss), len(ss[0]),)) ; sys.stdout.flush()
encer = fec.Encoder(k, m)
@ -47,7 +58,7 @@ def _h(k, m, ss):
decoded = decer.decode(shares, nums)
# sys.stdout.write("decoded.\n") ; sys.stdout.flush()
assert len(decoded) == len(ss), (len(decoded), len(ss),)
assert tuple([str(s) for s in decoded]) == tuple([str(s) for s in ss]), (tuple([str(s) for s in decoded]), tuple([str(s) for s in ss]),)
assert tuple([str(s) for s in decoded]) == tuple([str(s) for s in ss]), (tuple([ab(str(s)) for s in decoded]), tuple([ab(str(s)) for s in ss]),)
def randstr(n):
return ''.join(map(chr, map(random.randrange, [0]*n, [256]*n)))
@ -81,7 +92,7 @@ def _test_random():
_h(k, m, ss)
def test_random():
for i in range(2**5):
for i in range(2**7):
# sys.stdout.write(",")
_test_random()
# sys.stdout.write(".")