2007-01-26 01:02:16 +00:00
/**
* pyfec - - fast forward error correction library with Python interface
*
* Copyright ( C ) 2007 Allmydata , Inc .
* Author : Zooko Wilcox - O ' Hearn
* mailto : zooko @ zooko . com
*
* This file is part of pyfec .
*
* This program is free software ; you can redistribute it and / or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation ; either version 2
* of the License , or ( at your option ) any later version .
*
* This program is distributed in the hope that it will be useful ,
* but WITHOUT ANY WARRANTY ; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the
* GNU General Public License for more details .
*
* You should have received a copy of the GNU General Public License
* along with this program ; if not , write to the Free Software
* Foundation , Inc . , 51 Franklin Street , Fifth Floor , Boston , MA 02110 - 1301 , USA .
2007-01-23 00:17:31 +00:00
*/
2007-01-26 01:02:16 +00:00
2007-01-23 00:17:31 +00:00
/*
2007-01-26 01:02:16 +00:00
* Much of this work is derived from the " fec " software by Luigi Rizzo , et
* al . , the copyright notice and licence terms of which are included below
* for reference .
2007-01-23 00:17:31 +00:00
* fec . c - - forward error correction based on Vandermonde matrices
* 980624
* ( C ) 1997 - 98 Luigi Rizzo ( luigi @ iet . unipi . it )
*
* Portions derived from code by Phil Karn ( karn @ ka9q . ampr . org ) ,
* Robert Morelos - Zaragoza ( robert @ spectra . eng . hawaii . edu ) and Hari
* Thirumoorthy ( harit @ spectra . eng . hawaii . edu ) , Aug 1995
*
* Modifications by Dan Rubenstein ( see Modifications . txt for
* their description .
* Modifications ( C ) 1998 Dan Rubenstein ( drubenst @ cs . umass . edu )
*
* Redistribution and use in source and binary forms , with or without
* modification , are permitted provided that the following conditions
* are met :
*
* 1. Redistributions of source code must retain the above copyright
* notice , this list of conditions and the following disclaimer .
* 2. Redistributions in binary form must reproduce the above
* copyright notice , this list of conditions and the following
* disclaimer in the documentation and / or other materials
* provided with the distribution .
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHORS ` ` AS IS ' ' AND
* ANY EXPRESS OR IMPLIED WARRANTIES , INCLUDING , BUT NOT LIMITED TO ,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
* PARTICULAR PURPOSE ARE DISCLAIMED . IN NO EVENT SHALL THE AUTHORS
* BE LIABLE FOR ANY DIRECT , INDIRECT , INCIDENTAL , SPECIAL , EXEMPLARY ,
* OR CONSEQUENTIAL DAMAGES ( INCLUDING , BUT NOT LIMITED TO ,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES ; LOSS OF USE , DATA ,
* OR PROFITS ; OR BUSINESS INTERRUPTION ) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY , WHETHER IN CONTRACT , STRICT LIABILITY , OR
* TORT ( INCLUDING NEGLIGENCE OR OTHERWISE ) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE , EVEN IF ADVISED OF THE POSSIBILITY
* OF SUCH DAMAGE .
*/
# include <stdio.h>
# include <stdlib.h>
# include <string.h>
# include <assert.h>
# include "fec.h"
/*
* If you get a error returned ( negative value ) from a fec_ * function ,
* look in here for the error message .
*/
# define FEC_ERROR_SIZE 1025
char fec_error [ FEC_ERROR_SIZE + 1 ] ;
# define ERR(...) (snprintf(fec_error, FEC_ERROR_SIZE, __VA_ARGS__))
/*
* Primitive polynomials - see Lin & Costello , Appendix A ,
* and Lee & Messerschmitt , p . 453.
*/
static const char * const Pp = " 101110001 " ;
/*
* To speed up computations , we have tables for logarithm , exponent and
* inverse of a number . We use a table for multiplication as well ( it takes
* 64 K , no big deal even on a PDA , especially because it can be
* pre - initialized an put into a ROM ! ) , otherwhise we use a table of
* logarithms . In any case the macro gf_mul ( x , y ) takes care of
* multiplications .
*/
static gf gf_exp [ 510 ] ; /* index->poly form conversion table */
static int gf_log [ 256 ] ; /* Poly->index form conversion table */
static gf inverse [ 256 ] ; /* inverse of field elem. */
/* inv[\alpha**i]=\alpha**(GF_SIZE-i-1) */
/*
* modnn ( x ) computes x % GF_SIZE , where GF_SIZE is 2 * * GF_BITS - 1 ,
* without a slow divide .
*/
static inline gf
modnn ( int x ) {
while ( x > = 255 ) {
x - = 255 ;
x = ( x > > 8 ) + ( x & 255 ) ;
}
return x ;
}
# define SWAP(a,b,t) {t tmp; tmp=a; a=b; b=tmp;}
/*
* gf_mul ( x , y ) multiplies two numbers . It is much faster to use a
* multiplication table .
*
* USE_GF_MULC , GF_MULC0 ( c ) and GF_ADDMULC ( x ) can be used when multiplying
* many numbers by the same constant . In this case the first call sets the
* constant , and others perform the multiplications . A value related to the
* multiplication is held in a local variable declared with USE_GF_MULC . See
* usage in addmul1 ( ) .
*/
static gf gf_mul_table [ 256 ] [ 256 ] ;
# define gf_mul(x,y) gf_mul_table[x][y]
# define USE_GF_MULC register gf * __gf_mulc_
# define GF_MULC0(c) __gf_mulc_ = gf_mul_table[c]
# define GF_ADDMULC(dst, x) dst ^= __gf_mulc_[x]
/*
* Generate GF ( 2 * * m ) from the irreducible polynomial p ( X ) in p [ 0 ] . . p [ m ]
* Lookup tables :
* index - > polynomial form gf_exp [ ] contains j = \ alpha ^ i ;
* polynomial form - > index form gf_log [ j = \ alpha ^ i ] = i
* \ alpha = x is the primitive element of GF ( 2 ^ m )
*
* For efficiency , gf_exp [ ] has size 2 * GF_SIZE , so that a simple
* multiplication of two numbers can be resolved without calling modnn
*/
static void
init_mul_table ( ) {
int i , j ;
for ( i = 0 ; i < 256 ; i + + )
for ( j = 0 ; j < 256 ; j + + )
gf_mul_table [ i ] [ j ] = gf_exp [ modnn ( gf_log [ i ] + gf_log [ j ] ) ] ;
for ( j = 0 ; j < 256 ; j + + )
gf_mul_table [ 0 ] [ j ] = gf_mul_table [ j ] [ 0 ] = 0 ;
}
/*
* i use malloc so many times , it is easier to put checks all in
* one place .
*/
static void *
my_malloc ( int sz , char * err_string ) {
void * p = malloc ( sz ) ;
if ( p = = NULL ) {
ERR ( " Malloc failure allocating %s \n " , err_string ) ;
exit ( 1 ) ;
}
return p ;
}
# define NEW_GF_MATRIX(rows, cols) \
( gf * ) my_malloc ( rows * cols * sizeof ( gf ) , " ## __LINE__ ## " )
/*
* initialize the data structures used for computations in GF .
*/
static void
generate_gf ( void ) {
int i ;
gf mask ;
mask = 1 ; /* x ** 0 = 1 */
gf_exp [ 8 ] = 0 ; /* will be updated at the end of the 1st loop */
/*
* first , generate the ( polynomial representation of ) powers of \ alpha ,
* which are stored in gf_exp [ i ] = \ alpha * * i .
* At the same time build gf_log [ gf_exp [ i ] ] = i .
* The first 8 powers are simply bits shifted to the left .
*/
for ( i = 0 ; i < 8 ; i + + , mask < < = 1 ) {
gf_exp [ i ] = mask ;
gf_log [ gf_exp [ i ] ] = i ;
/*
* If Pp [ i ] = = 1 then \ alpha * * i occurs in poly - repr
* gf_exp [ 8 ] = \ alpha * * 8
*/
if ( Pp [ i ] = = ' 1 ' )
gf_exp [ 8 ] ^ = mask ;
}
/*
* now gf_exp [ 8 ] = \ alpha * * 8 is complete , so can also
* compute its inverse .
*/
gf_log [ gf_exp [ 8 ] ] = 8 ;
/*
* Poly - repr of \ alpha * * ( i + 1 ) is given by poly - repr of
* \ alpha * * i shifted left one - bit and accounting for any
* \ alpha * * 8 term that may occur when poly - repr of
* \ alpha * * i is shifted .
*/
mask = 1 < < 7 ;
for ( i = 9 ; i < 255 ; i + + ) {
if ( gf_exp [ i - 1 ] > = mask )
gf_exp [ i ] = gf_exp [ 8 ] ^ ( ( gf_exp [ i - 1 ] ^ mask ) < < 1 ) ;
else
gf_exp [ i ] = gf_exp [ i - 1 ] < < 1 ;
gf_log [ gf_exp [ i ] ] = i ;
}
/*
* log ( 0 ) is not defined , so use a special value
*/
gf_log [ 0 ] = 255 ;
/* set the extended gf_exp values for fast multiply */
for ( i = 0 ; i < 255 ; i + + )
gf_exp [ i + 255 ] = gf_exp [ i ] ;
/*
* again special cases . 0 has no inverse . This used to
* be initialized to 255 , but it should make no difference
* since noone is supposed to read from here .
*/
inverse [ 0 ] = 0 ;
inverse [ 1 ] = 1 ;
for ( i = 2 ; i < = 255 ; i + + )
inverse [ i ] = gf_exp [ 255 - gf_log [ i ] ] ;
}
/*
* Various linear algebra operations that i use often .
*/
/*
* addmul ( ) computes dst [ ] = dst [ ] + c * src [ ]
* This is used often , so better optimize it ! Currently the loop is
* unrolled 16 times , a good value for 486 and pentium - class machines .
* The case c = 0 is also optimized , whereas c = 1 is not . These
* calls are unfrequent in my typical apps so I did not bother .
*/
# define addmul(dst, src, c, sz) \
if ( c ! = 0 ) addmul1 ( dst , src , c , sz )
# define UNROLL 16 /* 1, 4, 8, 16 */
static void
addmul1 ( gf * dst1 , const gf * src1 , gf c , int sz ) {
USE_GF_MULC ;
register gf * dst = dst1 ;
register const gf * src = src1 ;
gf * lim = & dst [ sz - UNROLL + 1 ] ;
GF_MULC0 ( c ) ;
# if (UNROLL > 1) /* unrolling by 8/16 is quite effective on the pentium */
for ( ; dst < lim ; dst + = UNROLL , src + = UNROLL ) {
GF_ADDMULC ( dst [ 0 ] , src [ 0 ] ) ;
GF_ADDMULC ( dst [ 1 ] , src [ 1 ] ) ;
GF_ADDMULC ( dst [ 2 ] , src [ 2 ] ) ;
GF_ADDMULC ( dst [ 3 ] , src [ 3 ] ) ;
# if (UNROLL > 4)
GF_ADDMULC ( dst [ 4 ] , src [ 4 ] ) ;
GF_ADDMULC ( dst [ 5 ] , src [ 5 ] ) ;
GF_ADDMULC ( dst [ 6 ] , src [ 6 ] ) ;
GF_ADDMULC ( dst [ 7 ] , src [ 7 ] ) ;
# endif
# if (UNROLL > 8)
GF_ADDMULC ( dst [ 8 ] , src [ 8 ] ) ;
GF_ADDMULC ( dst [ 9 ] , src [ 9 ] ) ;
GF_ADDMULC ( dst [ 10 ] , src [ 10 ] ) ;
GF_ADDMULC ( dst [ 11 ] , src [ 11 ] ) ;
GF_ADDMULC ( dst [ 12 ] , src [ 12 ] ) ;
GF_ADDMULC ( dst [ 13 ] , src [ 13 ] ) ;
GF_ADDMULC ( dst [ 14 ] , src [ 14 ] ) ;
GF_ADDMULC ( dst [ 15 ] , src [ 15 ] ) ;
# endif
}
# endif
lim + = UNROLL - 1 ;
for ( ; dst < lim ; dst + + , src + + ) /* final components */
GF_ADDMULC ( * dst , * src ) ;
}
/*
* computes C = AB where A is n * k , B is k * m , C is n * m
*/
static void
matmul ( gf * a , gf * b , gf * c , int n , int k , int m ) {
int row , col , i ;
for ( row = 0 ; row < n ; row + + ) {
for ( col = 0 ; col < m ; col + + ) {
gf * pa = & a [ row * k ] ;
gf * pb = & b [ col ] ;
gf acc = 0 ;
for ( i = 0 ; i < k ; i + + , pa + + , pb + = m )
acc ^ = gf_mul ( * pa , * pb ) ;
c [ row * m + col ] = acc ;
}
}
}
/*
* invert_mat ( ) takes a matrix and produces its inverse
* k is the size of the matrix .
* ( Gauss - Jordan , adapted from Numerical Recipes in C )
* Return non - zero if singular .
*/
static int
invert_mat ( gf * src , int k ) {
gf c , * p ;
int irow , icol , row , col , i , ix ;
int error = - 1 ;
int * indxc = ( int * ) my_malloc ( k * sizeof ( int ) , " indxc " ) ;
int * indxr = ( int * ) my_malloc ( k * sizeof ( int ) , " indxr " ) ;
int * ipiv = ( int * ) my_malloc ( k * sizeof ( int ) , " ipiv " ) ;
gf * id_row = NEW_GF_MATRIX ( 1 , k ) ;
gf * temp_row = NEW_GF_MATRIX ( 1 , k ) ;
memset ( id_row , ' \0 ' , k * sizeof ( gf ) ) ;
/*
* ipiv marks elements already used as pivots .
*/
for ( i = 0 ; i < k ; i + + )
ipiv [ i ] = 0 ;
for ( col = 0 ; col < k ; col + + ) {
gf * pivot_row ;
/*
* Zeroing column ' col ' , look for a non - zero element .
* First try on the diagonal , if it fails , look elsewhere .
*/
irow = icol = - 1 ;
if ( ipiv [ col ] ! = 1 & & src [ col * k + col ] ! = 0 ) {
irow = col ;
icol = col ;
goto found_piv ;
}
for ( row = 0 ; row < k ; row + + ) {
if ( ipiv [ row ] ! = 1 ) {
for ( ix = 0 ; ix < k ; ix + + ) {
if ( ipiv [ ix ] = = 0 ) {
if ( src [ row * k + ix ] ! = 0 ) {
irow = row ;
icol = ix ;
goto found_piv ;
}
} else if ( ipiv [ ix ] > 1 ) {
ERR ( " singular matrix " ) ;
goto fail ;
}
}
}
}
if ( icol = = - 1 ) {
ERR ( " Pivot not found! " ) ;
goto fail ;
}
found_piv :
+ + ( ipiv [ icol ] ) ;
/*
* swap rows irow and icol , so afterwards the diagonal
* element will be correct . Rarely done , not worth
* optimizing .
*/
if ( irow ! = icol )
for ( ix = 0 ; ix < k ; ix + + )
SWAP ( src [ irow * k + ix ] , src [ icol * k + ix ] , gf ) ;
indxr [ col ] = irow ;
indxc [ col ] = icol ;
pivot_row = & src [ icol * k ] ;
c = pivot_row [ icol ] ;
if ( c = = 0 ) {
ERR ( " singular matrix 2 " ) ;
goto fail ;
}
if ( c ! = 1 ) { /* otherwhise this is a NOP */
/*
* this is done often , but optimizing is not so
* fruitful , at least in the obvious ways ( unrolling )
*/
c = inverse [ c ] ;
pivot_row [ icol ] = 1 ;
for ( ix = 0 ; ix < k ; ix + + )
pivot_row [ ix ] = gf_mul ( c , pivot_row [ ix ] ) ;
}
/*
* from all rows , remove multiples of the selected row
* to zero the relevant entry ( in fact , the entry is not zero
* because we know it must be zero ) .
* ( Here , if we know that the pivot_row is the identity ,
* we can optimize the addmul ) .
*/
id_row [ icol ] = 1 ;
if ( memcmp ( pivot_row , id_row , k * sizeof ( gf ) ) ! = 0 ) {
for ( p = src , ix = 0 ; ix < k ; ix + + , p + = k ) {
if ( ix ! = icol ) {
c = p [ icol ] ;
p [ icol ] = 0 ;
addmul ( p , pivot_row , c , k ) ;
}
}
}
id_row [ icol ] = 0 ;
} /* done all columns */
for ( col = k - 1 ; col > = 0 ; col - - ) {
if ( indxr [ col ] < 0 | | indxr [ col ] > = k ) {
ERR ( " AARGH, indxr[col] %d \n " , indxr [ col ] ) ;
goto fail ;
} else if ( indxc [ col ] < 0 | | indxc [ col ] > = k ) {
ERR ( " AARGH, indxc[col] %d \n " , indxc [ col ] ) ;
goto fail ;
} else if ( indxr [ col ] ! = indxc [ col ] ) {
for ( row = 0 ; row < k ; row + + )
SWAP ( src [ row * k + indxr [ col ] ] , src [ row * k + indxc [ col ] ] , gf ) ;
}
}
error = 0 ;
fail :
free ( indxc ) ;
free ( indxr ) ;
free ( ipiv ) ;
free ( id_row ) ;
free ( temp_row ) ;
return error ;
}
/*
* fast code for inverting a vandermonde matrix .
*
* NOTE : It assumes that the matrix is not singular and _IS_ a vandermonde
* matrix . Only uses the second column of the matrix , containing the p_i ' s .
*
* Algorithm borrowed from " Numerical recipes in C " - - sec .2 .8 , but largely
* revised for my purposes .
* p = coefficients of the matrix ( p_i )
* q = values of the polynomial ( known )
*/
int
invert_vdm ( gf * src , int k ) {
int i , j , row , col ;
gf * b , * c , * p ;
gf t , xx ;
if ( k = = 1 ) /* degenerate case, matrix must be p^0 = 1 */
return 0 ;
/*
* c holds the coefficient of P ( x ) = Prod ( x - p_i ) , i = 0. . k - 1
* b holds the coefficient for the matrix inversion
*/
c = NEW_GF_MATRIX ( 1 , k ) ;
b = NEW_GF_MATRIX ( 1 , k ) ;
p = NEW_GF_MATRIX ( 1 , k ) ;
for ( j = 1 , i = 0 ; i < k ; i + + , j + = k ) {
c [ i ] = 0 ;
p [ i ] = src [ j ] ; /* p[i] */
}
/*
* construct coeffs . recursively . We know c [ k ] = 1 ( implicit )
* and start P_0 = x - p_0 , then at each stage multiply by
* x - p_i generating P_i = x P_ { i - 1 } - p_i P_ { i - 1 }
* After k steps we are done .
*/
c [ k - 1 ] = p [ 0 ] ; /* really -p(0), but x = -x in GF(2^m) */
for ( i = 1 ; i < k ; i + + ) {
gf p_i = p [ i ] ; /* see above comment */
for ( j = k - 1 - ( i - 1 ) ; j < k - 1 ; j + + )
c [ j ] ^ = gf_mul ( p_i , c [ j + 1 ] ) ;
c [ k - 1 ] ^ = p_i ;
}
for ( row = 0 ; row < k ; row + + ) {
/*
* synthetic division etc .
*/
xx = p [ row ] ;
t = 1 ;
b [ k - 1 ] = 1 ; /* this is in fact c[k] */
for ( i = k - 2 ; i > = 0 ; i - - ) {
b [ i ] = c [ i + 1 ] ^ gf_mul ( xx , b [ i + 1 ] ) ;
t = gf_mul ( xx , t ) ^ b [ i ] ;
}
for ( col = 0 ; col < k ; col + + )
src [ col * k + row ] = gf_mul ( inverse [ t ] , b [ col ] ) ;
}
free ( c ) ;
free ( b ) ;
free ( p ) ;
return 0 ;
}
static int fec_initialized = 0 ;
static void
init_fec ( void ) {
generate_gf ( ) ;
init_mul_table ( ) ;
fec_initialized = 1 ;
}
/*
* This section contains the proper FEC encoding / decoding routines .
* The encoding matrix is computed starting with a Vandermonde matrix ,
* and then transforming it into a systematic matrix .
*/
# define FEC_MAGIC 0xFECC0DEC
void
fec_free ( fec_t * p ) {
if ( p = = NULL | |
p - > magic ! = ( ( ( FEC_MAGIC ^ p - > k ) ^ p - > n ) ^ ( unsigned long ) ( p - > enc_matrix ) ) ) {
ERR ( " bad parameters to fec_free " ) ;
return ;
}
free ( p - > enc_matrix ) ;
free ( p ) ;
}
/*
* create a new encoder , returning a descriptor . This contains k , n and
* the encoding matrix .
*/
fec_t *
2007-01-24 22:17:51 +00:00
fec_new ( unsigned char k , unsigned char n ) {
unsigned char row , col ;
2007-01-23 00:17:31 +00:00
gf * p , * tmp_m ;
fec_t * retval ;
fec_error [ FEC_ERROR_SIZE ] = ' \0 ' ;
if ( fec_initialized = = 0 )
init_fec ( ) ;
retval = ( fec_t * ) my_malloc ( sizeof ( fec_t ) , " new_code " ) ;
retval - > k = k ;
retval - > n = n ;
retval - > enc_matrix = NEW_GF_MATRIX ( n , k ) ;
retval - > magic = ( ( FEC_MAGIC ^ k ) ^ n ) ^ ( unsigned long ) ( retval - > enc_matrix ) ;
tmp_m = NEW_GF_MATRIX ( n , k ) ;
/*
* fill the matrix with powers of field elements , starting from 0.
* The first row is special , cannot be computed with exp . table .
*/
tmp_m [ 0 ] = 1 ;
for ( col = 1 ; col < k ; col + + )
tmp_m [ col ] = 0 ;
2007-01-26 01:46:57 +00:00
for ( p = tmp_m + k , row = 0 ; row < n - 1 ; row + + , p + = k )
2007-01-23 00:17:31 +00:00
for ( col = 0 ; col < k ; col + + )
p [ col ] = gf_exp [ modnn ( row * col ) ] ;
/*
* quick code to build systematic matrix : invert the top
* k * k vandermonde matrix , multiply right the bottom n - k rows
* by the inverse , and construct the identity matrix at the top .
*/
invert_vdm ( tmp_m , k ) ; /* much faster than invert_mat */
matmul ( tmp_m + k * k , tmp_m , retval - > enc_matrix + k * k , n - k , k , k ) ;
/*
* the upper matrix is I so do not bother with a slow multiply
*/
memset ( retval - > enc_matrix , ' \0 ' , k * k * sizeof ( gf ) ) ;
for ( p = retval - > enc_matrix , col = 0 ; col < k ; col + + , p + = k + 1 )
* p = 1 ;
free ( tmp_m ) ;
return retval ;
}
void
2007-01-27 03:08:50 +00:00
fec_encode ( const fec_t * code , const gf * restrict const * restrict const src , gf * restrict const * restrict const fecs , const unsigned char * restrict const share_ids , unsigned char num_share_ids , size_t sz ) {
2007-01-23 00:17:31 +00:00
unsigned i , j ;
unsigned char fecnum ;
gf * p ;
unsigned fecs_ix = 0 ; /* index into the fecs array */
for ( i = 0 ; i < num_share_ids ; i + + ) {
fecnum = share_ids [ i ] ;
if ( fecnum > = code - > k ) {
memset ( fecs [ fecs_ix ] , 0 , sz ) ;
p = & ( code - > enc_matrix [ fecnum * code - > k ] ) ;
for ( j = 0 ; j < code - > k ; j + + )
addmul ( fecs [ fecs_ix ] , src [ j ] , p [ j ] , sz ) ;
fecs_ix + + ;
}
}
}
#if 0
2007-01-24 22:21:45 +00:00
/* By turning the nested loop inside out, we might incur different cache usage and therefore go slower or faster. However in practice I'm not able to detect a difference, since >90% of the time is spent in my Python test script anyway. :-) */
2007-01-23 00:17:31 +00:00
void
2007-01-27 03:08:50 +00:00
fec_encode ( const fec_t * code , const gf * restrict const * restrict const src , gf * restrict const * restrict const fecs , const unsigned char * restrict const share_ids , unsigned char num_share_ids , size_t sz ) {
2007-01-23 00:17:31 +00:00
for ( unsigned j = 0 ; j < code - > k ; j + + ) {
unsigned fecs_ix = 0 ; /* index into the fecs array */
for ( unsigned i = 0 ; i < num_share_ids ; i + + ) {
unsigned char fecnum = share_ids [ i ] ;
if ( fecnum > = code - > k ) {
if ( j = = 0 )
memset ( fecs [ fecs_ix ] , 0 , sz ) ;
gf * p = & ( code - > enc_matrix [ fecnum * code - > k ] ) ;
addmul ( fecs [ fecs_ix ] , src [ j ] , p [ j ] , sz ) ;
fecs_ix + + ;
}
}
}
}
# endif
/**
* Build decode matrix into some memory space .
*
* @ param matrix a space allocated for a k by k matrix
*/
void
2007-01-24 22:17:51 +00:00
build_decode_matrix_into_space ( const fec_t * restrict const code , const unsigned char * const restrict index , const unsigned char k , gf * restrict const matrix ) {
2007-01-23 00:17:31 +00:00
unsigned i ;
gf * p ;
for ( i = 0 , p = matrix ; i < k ; i + + , p + = k ) {
if ( index [ i ] < k ) {
memset ( p , 0 , k ) ;
p [ i ] = 1 ;
} else {
memcpy ( p , & ( code - > enc_matrix [ index [ i ] * code - > k ] ) , k ) ;
}
}
invert_mat ( matrix , k ) ;
}
void
2007-01-27 03:08:50 +00:00
fec_decode ( const fec_t * code , const gf * restrict const * restrict const inpkts , gf * restrict const * restrict const outpkts , const unsigned char * restrict const index , size_t sz ) {
2007-01-23 00:17:31 +00:00
gf m_dec [ code - > k * code - > k ] ;
build_decode_matrix_into_space ( code , index , code - > k , m_dec ) ;
unsigned outix = 0 ;
for ( unsigned row = 0 ; row < code - > k ; row + + ) {
if ( index [ row ] > = code - > k ) {
memset ( outpkts [ outix ] , 0 , sz ) ;
for ( unsigned col = 0 ; col < code - > k ; col + + )
addmul ( outpkts [ outix ] , inpkts [ col ] , m_dec [ row * code - > k + col ] , sz ) ;
outix + + ;
}
}
}