tahoe-lafs/src/allmydata/codec.py

242 lines
9.0 KiB
Python
Raw Normal View History

# -*- test-case-name: allmydata.test.test_encode_share -*-
from zope.interface import implements
2006-12-03 00:31:26 +00:00
from twisted.internet import defer
import sha
from allmydata.util import idlib, mathutil
from allmydata.interfaces import ICodecEncoder, ICodecDecoder
from allmydata.py_ecc import rs_code
def netstring(s):
return "%d:%s," % (len(s), s)
2006-12-03 00:31:26 +00:00
class ReplicatingEncoder(object):
implements(ICodecEncoder)
2007-01-17 04:29:59 +00:00
ENCODER_TYPE = "rep"
def set_params(self, data_size, required_shares, max_shares):
self.data_size = data_size
self.required_shares = required_shares
self.max_shares = max_shares
def get_encoder_type(self):
return self.ENCODER_TYPE
def get_serialized_params(self):
return "%d" % self.required_shares
def get_share_size(self):
return self.data_size
def encode(self, data, num_shares=None):
if num_shares is None:
num_shares = self.max_shares
assert num_shares <= self.max_shares
shares = [(i,data) for i in range(num_shares)]
return defer.succeed(shares)
class ReplicatingDecoder(object):
implements(ICodecDecoder)
def set_serialized_params(self, params):
self.required_shares = int(params)
def get_required_shares(self):
return self.required_shares
def decode(self, some_shares):
assert len(some_shares) >= self.required_shares
data = some_shares[0][1]
return defer.succeed(data)
2006-12-03 00:31:26 +00:00
class Encoder(object):
def __init__(self, infile, m):
self.infile = infile
self.k = 2
self.m = m
def do_upload(self, landlords):
dl = []
2006-12-03 00:31:26 +00:00
data = self.infile.read()
for (peerid, bucket_num, remotebucket) in landlords:
dl.append(remotebucket.callRemote('write', data))
dl.append(remotebucket.callRemote('close'))
2006-12-03 00:31:26 +00:00
return defer.DeferredList(dl)
class Decoder(object):
def __init__(self, outfile, k, m, verifierid):
self.outfile = outfile
self.k = 2
self.m = m
self._verifierid = verifierid
def start(self, buckets):
assert len(buckets) >= self.k
dl = []
for bucketnum, bucket in buckets[:self.k]:
d = bucket.callRemote("read")
dl.append(d)
d2 = defer.DeferredList(dl)
d2.addCallback(self._got_all_data)
return d2
def _got_all_data(self, resultslist):
shares = [results for success,results in resultslist if success]
assert len(shares) >= self.k
# here's where the Reed-Solomon magic takes place
self.outfile.write(shares[0])
hasher = sha.new(netstring("allmydata_v1_verifierid"))
hasher.update(shares[0])
vid = hasher.digest()
if self._verifierid:
assert self._verifierid == vid, "%s != %s" % (idlib.b2a(self._verifierid), idlib.b2a(vid))
class PyRSEncoder(object):
implements(ICodecEncoder)
2007-01-17 04:29:59 +00:00
ENCODER_TYPE = "pyrs"
# we will break the data into vectors in which each element is a single
# byte (i.e. a single number from 0 to 255), and the length of the vector
# is equal to the number of required_shares. We use padding to make the
# last chunk of data long enough to match, and we record the data_size in
# the serialized parameters to strip this padding out on the receiving
# end.
# TODO: this will write a 733kB file called 'ffield.lut.8' in the current
# directory the first time it is run, to cache the lookup table for later
# use. It appears to take about 15 seconds to create this the first time,
# and about 0.5s to load it in each time afterwards. Make sure this file
# winds up somewhere reasonable.
# TODO: the encoder/decoder RSCode object depends upon the number of
# required/total shares, but not upon the data. We could probably save a
# lot of initialization time by caching a single instance and using it
# any time we use the same required/total share numbers (which will
# probably be always).
# on my workstation (fluxx, a 3.5GHz Athlon), this encodes data at a rate
2007-01-05 07:48:42 +00:00
# of 6.7kBps. Zooko's mom's 1.8GHz G5 got 2.2kBps . slave3 took 40s to
# construct the LUT and encodes at 1.5kBps, and for some reason took more
# than 20 minutes to run the test_encode_share tests, so I disabled most
# of them. (uh, hello, it's running figleaf)
def set_params(self, data_size, required_shares, max_shares):
assert required_shares <= max_shares
self.data_size = data_size
self.required_shares = required_shares
self.max_shares = max_shares
self.chunk_size = required_shares
self.num_chunks = mathutil.div_ceil(data_size, self.chunk_size)
self.last_chunk_padding = mathutil.pad_size(data_size, required_shares)
self.share_size = self.num_chunks
self.encoder = rs_code.RSCode(max_shares, required_shares, 8)
def get_encoder_type(self):
return self.ENCODER_TYPE
def get_serialized_params(self):
2007-01-17 04:29:59 +00:00
return "%d-%d-%d" % (self.data_size, self.required_shares,
self.max_shares)
def get_share_size(self):
return self.share_size
def encode(self, data, num_shares=None):
if num_shares is None:
num_shares = self.max_shares
assert num_shares <= self.max_shares
# we create self.max_shares shares, then throw out any extra ones
# so that we always return exactly num_shares shares.
share_data = [ [] for i in range(self.max_shares)]
for i in range(self.num_chunks):
# we take self.chunk_size bytes from the input string, and
# turn it into self.max_shares bytes.
offset = i*self.chunk_size
# Note string slices aren't an efficient way to use memory, so
# when we upgrade from the unusably slow py_ecc prototype to a
# fast ECC we should also fix up this memory usage (by using the
# array module).
chunk = data[offset:offset+self.chunk_size]
if i == self.num_chunks-1:
chunk = chunk + "\x00"*self.last_chunk_padding
assert len(chunk) == self.chunk_size
input_vector = [ord(x) for x in chunk]
assert len(input_vector) == self.required_shares
output_vector = self.encoder.Encode(input_vector)
assert len(output_vector) == self.max_shares
for i2,out in enumerate(output_vector):
share_data[i2].append(chr(out))
shares = [ (i, "".join(share_data[i]))
for i in range(num_shares) ]
return defer.succeed(shares)
class PyRSDecoder(object):
implements(ICodecDecoder)
def set_serialized_params(self, params):
2007-01-17 04:29:59 +00:00
pieces = params.split("-")
self.data_size = int(pieces[0])
self.required_shares = int(pieces[1])
self.max_shares = int(pieces[2])
self.chunk_size = self.required_shares
self.num_chunks = mathutil.div_ceil(self.data_size, self.chunk_size)
self.last_chunk_padding = mathutil.pad_size(self.data_size,
self.required_shares)
self.share_size = self.num_chunks
self.encoder = rs_code.RSCode(self.max_shares, self.required_shares,
8)
if False:
print "chunk_size: %d" % self.chunk_size
print "num_chunks: %d" % self.num_chunks
print "last_chunk_padding: %d" % self.last_chunk_padding
print "share_size: %d" % self.share_size
print "max_shares: %d" % self.max_shares
print "required_shares: %d" % self.required_shares
def get_required_shares(self):
return self.required_shares
def decode(self, some_shares):
chunk_size = self.chunk_size
assert len(some_shares) >= self.required_shares
chunks = []
have_shares = {}
for share_num, share_data in some_shares:
have_shares[share_num] = share_data
for i in range(self.share_size):
# this takes one byte from each share, and turns the combination
# into a single chunk
received_vector = []
for j in range(self.max_shares):
share = have_shares.get(j)
if share is not None:
received_vector.append(ord(share[i]))
else:
received_vector.append(None)
decoded_vector = self.encoder.DecodeImmediate(received_vector)
assert len(decoded_vector) == self.chunk_size
chunk = "".join([chr(x) for x in decoded_vector])
chunks.append(chunk)
data = "".join(chunks)
if self.last_chunk_padding:
data = data[:-self.last_chunk_padding]
assert len(data) == self.data_size
return defer.succeed(data)
all_encoders = {
ReplicatingEncoder.ENCODER_TYPE: (ReplicatingEncoder, ReplicatingDecoder),
PyRSEncoder.ENCODER_TYPE: (PyRSEncoder, PyRSDecoder),
}
2007-01-17 04:29:59 +00:00
def get_decoder_by_name(name):
decoder_class = all_encoders[name][1]
return decoder_class()