mirror of
https://github.com/projecthorus/sondehub-infra.git
synced 2024-12-19 05:07:55 +00:00
81830c2d74
Co-authored-by: xss <michaela@michaela.lgbt>
898 lines
33 KiB
Python
898 lines
33 KiB
Python
import sys
|
|
sys.path.append("sns_to_mqtt/vendor")
|
|
import paho.mqtt.client as mqtt
|
|
import json
|
|
from datetime import datetime
|
|
import http.client
|
|
import math
|
|
import logging
|
|
from math import radians, degrees, sin, cos, atan2, sqrt, pi
|
|
import es
|
|
import asyncio
|
|
import functools
|
|
import os
|
|
import random
|
|
import time
|
|
import traceback
|
|
import config_handler
|
|
client = mqtt.Client(transport="websockets")
|
|
|
|
connected_flag = False
|
|
|
|
import socket
|
|
socket.setdefaulttimeout(1)
|
|
|
|
|
|
## MQTT functions
|
|
def connect():
|
|
client.on_connect = on_connect
|
|
client.on_disconnect = on_disconnect
|
|
client.on_publish = on_publish
|
|
#client.tls_set()
|
|
client.username_pw_set(username=config_handler.get("MQTT","USERNAME"), password=config_handler.get("MQTT","PASSWORD"))
|
|
HOSTS = config_handler.get("MQTT","HOST").split(",")
|
|
PORT = int(config_handler.get("MQTT","PORT", default="8080"))
|
|
if PORT == 443:
|
|
client.tls_set()
|
|
HOST = random.choice(HOSTS)
|
|
print(f"Connecting to {HOST}")
|
|
client.connect(HOST, PORT, 5)
|
|
client.loop_start()
|
|
print("loop started")
|
|
|
|
def on_disconnect(client, userdata, rc):
|
|
global connected_flag
|
|
print("disconnected")
|
|
connected_flag=False #set flag
|
|
|
|
def on_connect(client, userdata, flags, rc):
|
|
global connected_flag
|
|
if rc==0:
|
|
print("connected")
|
|
connected_flag=True #set flag
|
|
else:
|
|
print("Bad connection Returned code")
|
|
|
|
def on_publish(client, userdata, mid):
|
|
pass
|
|
|
|
# setup MQTT
|
|
connect()
|
|
|
|
# FLIGHT PROFILE DEFAULTS
|
|
#
|
|
|
|
# If we have no better estimates for flight profile, use these:
|
|
PREDICT_DEFAULTS = {'ascent_rate': 5.0, 'burst_altitude': 26000.0, 'descent_rate': 6.0}
|
|
|
|
# For some sonde types we can make better assumptions
|
|
SONDE_TYPE_PREDICT_DEFAULTS = {
|
|
'LMS6': {'ascent_rate': 5.0, 'burst_altitude': 32000.0, 'descent_rate': 3.0},
|
|
}
|
|
|
|
#
|
|
# LAUNCH SITE ALLOCATION SETTINGS
|
|
#
|
|
# Immediately allocate a launch site if it is within this distance (straight line)
|
|
# of a known launch site.
|
|
LAUNCH_ALLOCATE_RANGE_MIN = 4000 # metres
|
|
LAUNCH_ALLOCATE_RANGE_MAX = 30000 # metres
|
|
LAUNCH_ALLOCATE_RANGE_SCALING = 1.5 # Scaling factor - launch allocation range is min(current alt * this value , launch allocate range max)
|
|
|
|
# Do not run predictions if the ascent or descent rate is less than this value
|
|
ASCENT_RATE_THRESHOLD = 0.8
|
|
|
|
def flight_profile_by_type(sonde_type):
|
|
"""
|
|
Determine the appropriate flight profile based on radiosonde type
|
|
"""
|
|
|
|
for _def_type in SONDE_TYPE_PREDICT_DEFAULTS:
|
|
if _def_type in sonde_type:
|
|
return SONDE_TYPE_PREDICT_DEFAULTS[_def_type].copy()
|
|
|
|
return PREDICT_DEFAULTS.copy()
|
|
|
|
|
|
def getDensity(altitude):
|
|
"""
|
|
Calculate the atmospheric density for a given altitude in metres.
|
|
This is a direct port of the oziplotter Atmosphere class
|
|
"""
|
|
|
|
# Constants
|
|
airMolWeight = 28.9644 # Molecular weight of air
|
|
densitySL = 1.225 # Density at sea level [kg/m3]
|
|
pressureSL = 101325 # Pressure at sea level [Pa]
|
|
temperatureSL = 288.15 # Temperature at sea level [deg K]
|
|
gamma = 1.4
|
|
gravity = 9.80665 # Acceleration of gravity [m/s2]
|
|
tempGrad = -0.0065 # Temperature gradient [deg K/m]
|
|
RGas = 8.31432 # Gas constant [kg/Mol/K]
|
|
R = 287.053
|
|
deltaTemperature = 0.0
|
|
|
|
# Lookup Tables
|
|
altitudes = [0, 11000, 20000, 32000, 47000, 51000, 71000, 84852]
|
|
pressureRels = [
|
|
1,
|
|
2.23361105092158e-1,
|
|
5.403295010784876e-2,
|
|
8.566678359291667e-3,
|
|
1.0945601337771144e-3,
|
|
6.606353132858367e-4,
|
|
3.904683373343926e-5,
|
|
3.6850095235747942e-6,
|
|
]
|
|
temperatures = [288.15, 216.65, 216.65, 228.65, 270.65, 270.65, 214.65, 186.946]
|
|
tempGrads = [-6.5, 0, 1, 2.8, 0, -2.8, -2, 0]
|
|
gMR = gravity * airMolWeight / RGas
|
|
|
|
# Pick a region to work in
|
|
i = 0
|
|
if altitude > 0:
|
|
while altitude > altitudes[i + 1]:
|
|
i = i + 1
|
|
|
|
# Lookup based on region
|
|
baseTemp = temperatures[i]
|
|
tempGrad = tempGrads[i] / 1000.0
|
|
pressureRelBase = pressureRels[i]
|
|
deltaAltitude = altitude - altitudes[i]
|
|
temperature = baseTemp + tempGrad * deltaAltitude
|
|
|
|
# Calculate relative pressure
|
|
if math.fabs(tempGrad) < 1e-10:
|
|
pressureRel = pressureRelBase * math.exp(
|
|
-1 * gMR * deltaAltitude / 1000.0 / baseTemp
|
|
)
|
|
else:
|
|
pressureRel = pressureRelBase * math.pow(
|
|
baseTemp / temperature, gMR / tempGrad / 1000.0
|
|
)
|
|
|
|
# Add temperature offset
|
|
temperature = temperature + deltaTemperature
|
|
|
|
# Finally, work out the density...
|
|
speedOfSound = math.sqrt(gamma * R * temperature)
|
|
pressure = pressureRel * pressureSL
|
|
density = densitySL * pressureRel * temperatureSL / temperature
|
|
|
|
return density
|
|
|
|
|
|
def seaLevelDescentRate(descent_rate, altitude):
|
|
""" Calculate the descent rate at sea level, for a given descent rate at altitude """
|
|
|
|
rho = getDensity(altitude)
|
|
return math.sqrt((rho / 1.225) * math.pow(descent_rate, 2))
|
|
|
|
|
|
# Earthmaths code by Daniel Richman (thanks!)
|
|
# Copyright 2012 (C) Daniel Richman; GNU GPL 3
|
|
def position_info(listener, balloon):
|
|
"""
|
|
Calculate and return information from 2 (lat, lon, alt) tuples
|
|
|
|
Returns a dict with:
|
|
|
|
- angle at centre
|
|
- great circle distance
|
|
- distance in a straight line
|
|
- bearing (azimuth or initial course)
|
|
- elevation (altitude)
|
|
|
|
Input and output latitudes, longitudes, angles, bearings and elevations are
|
|
in degrees, and input altitudes and output distances are in meters.
|
|
"""
|
|
|
|
# Earth:
|
|
radius = 6371000.0
|
|
|
|
(lat1, lon1, alt1) = listener
|
|
(lat2, lon2, alt2) = balloon
|
|
|
|
lat1 = radians(lat1)
|
|
lat2 = radians(lat2)
|
|
lon1 = radians(lon1)
|
|
lon2 = radians(lon2)
|
|
|
|
# Calculate the bearing, the angle at the centre, and the great circle
|
|
# distance using Vincenty's_formulae with f = 0 (a sphere). See
|
|
# http://en.wikipedia.org/wiki/Great_circle_distance#Formulas and
|
|
# http://en.wikipedia.org/wiki/Great-circle_navigation and
|
|
# http://en.wikipedia.org/wiki/Vincenty%27s_formulae
|
|
d_lon = lon2 - lon1
|
|
sa = cos(lat2) * sin(d_lon)
|
|
sb = (cos(lat1) * sin(lat2)) - (sin(lat1) * cos(lat2) * cos(d_lon))
|
|
bearing = atan2(sa, sb)
|
|
aa = sqrt((sa ** 2) + (sb ** 2))
|
|
ab = (sin(lat1) * sin(lat2)) + (cos(lat1) * cos(lat2) * cos(d_lon))
|
|
angle_at_centre = atan2(aa, ab)
|
|
great_circle_distance = angle_at_centre * radius
|
|
|
|
# Armed with the angle at the centre, calculating the remaining items
|
|
# is a simple 2D triangley circley problem:
|
|
|
|
# Use the triangle with sides (r + alt1), (r + alt2), distance in a
|
|
# straight line. The angle between (r + alt1) and (r + alt2) is the
|
|
# angle at the centre. The angle between distance in a straight line and
|
|
# (r + alt1) is the elevation plus pi/2.
|
|
|
|
# Use sum of angle in a triangle to express the third angle in terms
|
|
# of the other two. Use sine rule on sides (r + alt1) and (r + alt2),
|
|
# expand with compound angle formulae and solve for tan elevation by
|
|
# dividing both sides by cos elevation
|
|
ta = radius + alt1
|
|
tb = radius + alt2
|
|
ea = (cos(angle_at_centre) * tb) - ta
|
|
eb = sin(angle_at_centre) * tb
|
|
elevation = atan2(ea, eb)
|
|
|
|
# Use cosine rule to find unknown side.
|
|
distance = sqrt((ta ** 2) + (tb ** 2) - 2 * tb * ta * cos(angle_at_centre))
|
|
|
|
# Give a bearing in range 0 <= b < 2pi
|
|
if bearing < 0:
|
|
bearing += 2 * pi
|
|
|
|
return {
|
|
"listener": listener,
|
|
"balloon": balloon,
|
|
"listener_radians": (lat1, lon1, alt1),
|
|
"balloon_radians": (lat2, lon2, alt2),
|
|
"angle_at_centre": degrees(angle_at_centre),
|
|
"angle_at_centre_radians": angle_at_centre,
|
|
"bearing": degrees(bearing),
|
|
"bearing_radians": bearing,
|
|
"great_circle_distance": great_circle_distance,
|
|
"straight_distance": distance,
|
|
"elevation": degrees(elevation),
|
|
"elevation_radians": elevation,
|
|
}
|
|
|
|
|
|
def compare_launch_sites(sites, launch_estimate, altitude=0):
|
|
"""
|
|
Compare a provided launch position estimate with all known launch sites
|
|
|
|
If a launch site is within a threshold, return the launch site.
|
|
|
|
"""
|
|
|
|
launch_site = None
|
|
launch_site_range = 999999999999999
|
|
|
|
for _site in sites:
|
|
try:
|
|
_site_pos = [sites[_site]['position'][1], sites[_site]['position'][0], sites[_site]['alt']]
|
|
_pos_info = position_info(_site_pos, launch_estimate)
|
|
|
|
if _pos_info['straight_distance'] < launch_site_range:
|
|
launch_site = _site
|
|
launch_site_range = _pos_info['straight_distance']
|
|
except Exception as e:
|
|
logging.error(f"Error comparing launch site with estimate: {str(e)}")
|
|
print(_site_pos)
|
|
print(launch_estimate)
|
|
continue
|
|
|
|
|
|
# print(sites[launch_site])
|
|
# print(launch_site_range)
|
|
|
|
_allocate_range = min(LAUNCH_ALLOCATE_RANGE_MAX, max(LAUNCH_ALLOCATE_RANGE_MIN, altitude*LAUNCH_ALLOCATE_RANGE_SCALING))
|
|
|
|
if launch_site_range < _allocate_range:
|
|
return {'site':launch_site, 'range': launch_site_range}
|
|
else:
|
|
return None
|
|
|
|
|
|
def get_standard_prediction(timestamp, latitude, longitude, altitude, current_rate=5.0, ascent_rate=PREDICT_DEFAULTS['ascent_rate'], burst_altitude=PREDICT_DEFAULTS['burst_altitude'], descent_rate=PREDICT_DEFAULTS['descent_rate']):
|
|
"""
|
|
Request a standard flight path prediction from Tawhiri.
|
|
Notes:
|
|
- The burst_altitude must be higher than the current altitude.
|
|
- Longitude is in the range 0-360.0
|
|
- All ascent/descent rates must be positive.
|
|
"""
|
|
try:
|
|
# Bomb out if the rates are too low.
|
|
if ascent_rate < ASCENT_RATE_THRESHOLD:
|
|
return None
|
|
|
|
if descent_rate < ASCENT_RATE_THRESHOLD:
|
|
return None
|
|
|
|
|
|
# Shift longitude into the appropriate range for Tawhiri
|
|
if longitude < 0:
|
|
longitude += 360.0
|
|
|
|
# Generate the prediction URL
|
|
url = f"/api/v1/?launch_latitude={latitude}&launch_longitude={longitude}&launch_datetime={timestamp}&launch_altitude={altitude:.2f}&ascent_rate={ascent_rate:.2f}&burst_altitude={burst_altitude:.2f}&descent_rate={descent_rate:.2f}"
|
|
logging.debug(url)
|
|
conn = http.client.HTTPSConnection("tawhiri.v2.sondehub.org")
|
|
conn.request("GET", url)
|
|
res = conn.getresponse()
|
|
data = res.read()
|
|
|
|
if res.code != 200:
|
|
logging.debug(data)
|
|
return None
|
|
|
|
pred_data = json.loads(data.decode("utf-8"))
|
|
|
|
path = []
|
|
|
|
if 'prediction' in pred_data:
|
|
for stage in pred_data['prediction']:
|
|
# Probably don't need to worry about this, it should only result in one or two points
|
|
# in 'ascent'.
|
|
if stage['stage'] == 'ascent' and current_rate < 0: # ignore ascent stage if we have already burst
|
|
continue
|
|
else:
|
|
for item in stage['trajectory']:
|
|
path.append({
|
|
"time": int(datetime.fromisoformat(item['datetime'].split(".")[0].replace("Z","")).timestamp()),
|
|
"lat": item['latitude'],
|
|
"lon": item['longitude'] - 360 if item['longitude'] > 180 else item['longitude'],
|
|
"alt": item['altitude'],
|
|
})
|
|
|
|
pred_data['path'] = path
|
|
return pred_data
|
|
else:
|
|
return None
|
|
except:
|
|
traceback.print_exc()
|
|
logging.error(f"Error turnning standard prediction for {url}")
|
|
return None
|
|
|
|
def get_launch_estimate(timestamp, latitude, longitude, altitude, ascent_rate=PREDICT_DEFAULTS['ascent_rate'], current_rate=5.0):
|
|
"""
|
|
Estimate the launch site of a sonde based on a current ascent position.
|
|
|
|
Notes:
|
|
- Longitude is in the range 0-360.0
|
|
- All ascent/descent rates must be positive.
|
|
|
|
UNTESTED
|
|
"""
|
|
|
|
# Bomb out if the rates are too low.
|
|
if ascent_rate < ASCENT_RATE_THRESHOLD:
|
|
return None
|
|
|
|
|
|
# Shift longitude into the appropriate range for Tawhiri
|
|
if longitude < 0:
|
|
longitude += 360.0
|
|
|
|
# Generate the prediction URL
|
|
url = f"/api/v1/?profile=reverse_profile&launch_latitude={latitude}&launch_longitude={longitude}&launch_datetime={timestamp}&launch_altitude={altitude:.2f}&ascent_rate={ascent_rate:.2f}"
|
|
logging.debug(url)
|
|
conn = http.client.HTTPSConnection("tawhiri.v2.sondehub.org")
|
|
conn.request("GET", url)
|
|
res = conn.getresponse()
|
|
data = res.read()
|
|
|
|
if res.code != 200:
|
|
logging.debug(data)
|
|
return None
|
|
|
|
pred_data = json.loads(data.decode("utf-8"))
|
|
|
|
path = []
|
|
|
|
if 'prediction' in pred_data:
|
|
for stage in pred_data['prediction']:
|
|
# Probably don't need to worry about this, it should only result in one or two points
|
|
# in 'ascent'.
|
|
if stage['stage'] == 'ascent' and current_rate < 0: # ignore ascent stage if we have already burst
|
|
continue
|
|
else:
|
|
for item in stage['trajectory']:
|
|
path.append({
|
|
"time": int(datetime.fromisoformat(item['datetime'].split(".")[0].replace("Z","")).timestamp()),
|
|
"lat": item['latitude'],
|
|
"lon": item['longitude'] - 360 if item['longitude'] > 180 else item['longitude'],
|
|
"alt": item['altitude'],
|
|
})
|
|
|
|
pred_data['path'] = path
|
|
|
|
return pred_data
|
|
|
|
else:
|
|
return None
|
|
|
|
# return a dict key'd by serial with reverse prediction data
|
|
def get_reverse_predictions():
|
|
path = "reverse-prediction-*/_search"
|
|
payload = {
|
|
"size": 1000,
|
|
"sort": [
|
|
{
|
|
"datetime": {
|
|
"order": "asc",
|
|
"unmapped_type": "boolean"
|
|
}
|
|
}
|
|
],
|
|
"query": {
|
|
"bool": {
|
|
"filter": [
|
|
{
|
|
"range": {
|
|
"datetime": {
|
|
"gte": "now-1d",
|
|
"lte": "now",
|
|
"format": "strict_date_optional_time"
|
|
}
|
|
}
|
|
}
|
|
]
|
|
}
|
|
}
|
|
}
|
|
logging.debug("Start ES Request")
|
|
results = es.request(json.dumps(payload), path, "POST")
|
|
logging.debug("Finished ES Request")
|
|
return { x['_source']['serial'] : x['_source'] for x in results['hits']['hits']}
|
|
|
|
|
|
# Example data structure from get_launch_sites
|
|
# {
|
|
# '01028': {'station': '01028', 'rs_types': ['23'], 'position': [19.0012, 74.5038], 'alt': 20, 'station_name': 'Bjornoya (Norway)', 'times': ['0:00:00', '0:06:00', '0:12:00', '0:18:00']},
|
|
# '-3': {'station': '-3', 'rs_types': ['17'], 'position': [-1.23813, 44.35714], 'alt': 15, 'station_name': 'DGA Essais de missiles (France)', 'burst_altitude': 20000},
|
|
# '-2': {'station': '-2', 'rs_types': ['63', '77'], 'position': [2.60012, 48.337861], 'alt': 118, 'station_name': 'METEOMODEM Headquarters (France)'},
|
|
# ...
|
|
# }
|
|
|
|
def get_launch_sites():
|
|
path = "sites/_search"
|
|
payload = {
|
|
"size": 10000
|
|
}
|
|
logging.debug("Start ES Request")
|
|
results = es.request(json.dumps(payload), path, "POST")
|
|
logging.debug("Finished ES Request")
|
|
return {x['_source']['station']: x['_source'] for x in results['hits']['hits']}
|
|
|
|
|
|
def bulk_upload_es(index_prefix,payloads):
|
|
body=""
|
|
for payload in payloads:
|
|
body += "{\"index\":{}}\n" + json.dumps(payload) + "\n"
|
|
body += "\n"
|
|
date_prefix = datetime.now().strftime("%Y-%m")
|
|
result = es.request(body, f"{index_prefix}-{date_prefix}/_bulk", "POST")
|
|
|
|
if 'errors' in result and result['errors'] == True:
|
|
error_types = [x['index']['error']['type'] for x in result['items'] if 'error' in x['index']] # get all the error types
|
|
error_types = [a for a in error_types if a != 'mapper_parsing_exception'] # filter out mapper failures since they will never succeed
|
|
if error_types:
|
|
print(result)
|
|
raise RuntimeError
|
|
|
|
def predict(event, context):
|
|
client.loop(timeout=0.05, max_packets=1) # make sure MQTT reconnects
|
|
# Use asyncio.run to synchronously "await" an async function
|
|
result = asyncio.run(predict_async(event, context))
|
|
time.sleep(0.5) # give paho mqtt 500ms to send messages this could be improved on but paho mqtt is a pain to interface with
|
|
return result
|
|
|
|
async def predict_async(event, context):
|
|
sem = asyncio.Semaphore(5)
|
|
path = "telm-*/_search"
|
|
interval = 10
|
|
lag = 3 # how many samples to use
|
|
payload = {
|
|
"aggs": {
|
|
"2": {
|
|
"terms": {
|
|
"field": "serial.keyword",
|
|
"order": {
|
|
"_key": "desc"
|
|
},
|
|
"size": 1000
|
|
},
|
|
"aggs": {
|
|
"3": {
|
|
"date_histogram": {
|
|
"field": "datetime",
|
|
"fixed_interval": f"{interval}s"
|
|
},
|
|
"aggs": {
|
|
"1": {
|
|
"top_hits": {
|
|
"docvalue_fields": [
|
|
{
|
|
"field": "alt"
|
|
}
|
|
],
|
|
"_source": "alt",
|
|
"size": 1,
|
|
"sort": [
|
|
{
|
|
"datetime": {
|
|
"order": "desc"
|
|
}
|
|
}
|
|
]
|
|
}
|
|
},
|
|
"4": {
|
|
"serial_diff": {
|
|
"buckets_path": "4-metric",
|
|
"gap_policy": "skip",
|
|
"lag": lag
|
|
}
|
|
},
|
|
"5": {
|
|
"top_hits": {
|
|
"docvalue_fields": [
|
|
{
|
|
"field": "position"
|
|
}
|
|
],
|
|
"_source": {"includes": ["position", "type", "subtype"]},
|
|
"size": 1,
|
|
"sort": [
|
|
{
|
|
"datetime": {
|
|
"order": "desc"
|
|
}
|
|
}
|
|
]
|
|
}
|
|
},
|
|
"4-metric": {
|
|
"avg": {
|
|
"field": "alt"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
},
|
|
"size": 0,
|
|
"stored_fields": [
|
|
"*"
|
|
],
|
|
"script_fields": {},
|
|
"docvalue_fields": [
|
|
{
|
|
"field": "@timestamp",
|
|
"format": "date_time"
|
|
},
|
|
{
|
|
"field": "datetime",
|
|
"format": "date_time"
|
|
},
|
|
{
|
|
"field": "log_date",
|
|
"format": "date_time"
|
|
},
|
|
{
|
|
"field": "time_received",
|
|
"format": "date_time"
|
|
},
|
|
{
|
|
"field": "time_server",
|
|
"format": "date_time"
|
|
},
|
|
{
|
|
"field": "time_uploaded",
|
|
"format": "date_time"
|
|
}
|
|
],
|
|
"_source": {
|
|
"excludes": []
|
|
},
|
|
"query": {
|
|
"bool": {
|
|
"must": [],
|
|
"filter": [
|
|
{
|
|
"match_all": {}
|
|
},
|
|
{
|
|
"range": {
|
|
"datetime": {
|
|
"gte": "now-10m",
|
|
"lte": "now",
|
|
"format": "strict_date_optional_time"
|
|
}
|
|
}
|
|
}
|
|
],
|
|
"should": []
|
|
}
|
|
},
|
|
"size": 0
|
|
}
|
|
logging.debug("Start ES Request")
|
|
results = es.request(json.dumps(payload), path, "GET")
|
|
logging.debug("Finished ES Request")
|
|
|
|
|
|
|
|
serials = { }
|
|
for x in results['aggregations']['2']['buckets']:
|
|
try:
|
|
serials[x['key']] = {
|
|
"alt": sorted(x['3']['buckets'], key=lambda k: k['key_as_string'])[-1]['1']['hits']['hits'][0]['fields']['alt'][0],
|
|
"position": sorted(x['3']['buckets'], key=lambda k: k['key_as_string'])[-1]['5']['hits']['hits'][0]['fields']['position'][0].split(","),
|
|
"rate": sorted(x['3']['buckets'], key=lambda k: k['key_as_string'])[-1]['4']['value']/(lag*interval), # as we bucket for every 5 seconds with a lag of 5
|
|
"time": sorted(x['3']['buckets'], key=lambda k: k['key_as_string'])[-1]['key_as_string'],
|
|
"type": sorted(x['3']['buckets'], key=lambda k: k['key_as_string'])[-1]['5']['hits']['hits'][0]["_source"]["type"],
|
|
"subtype": sorted(x['3']['buckets'], key=lambda k: k['key_as_string'])[-1]['5']['hits']['hits'][0]["_source"]["subtype"] if "subtype" in sorted(x['3']['buckets'], key=lambda k: k['key_as_string'])[-1]['5']['hits']['hits'][0]["_source"] else None
|
|
}
|
|
except:
|
|
pass
|
|
|
|
|
|
launch_sites = get_launch_sites()
|
|
reverse_predictions = get_reverse_predictions()
|
|
|
|
|
|
serial_data={}
|
|
reverse_serial_data = {}
|
|
logging.debug("Start Predict")
|
|
jobs=[]
|
|
for serial in serials:
|
|
jobs.append(run_predictions_for_serial(sem, serial, serials[serial], reverse_predictions, launch_sites))
|
|
output = await asyncio.gather(*jobs)
|
|
for data in output:
|
|
if data:
|
|
serial_data[data[0]] = data[1]
|
|
if data[2]:
|
|
reverse_serial_data[data[0]] = data[2]
|
|
|
|
|
|
|
|
|
|
logging.debug("Stop Predict")
|
|
|
|
# Collate and upload forward predictions
|
|
output = []
|
|
for serial in serial_data:
|
|
value = serial_data[serial]
|
|
|
|
if value is not None:
|
|
output.append(
|
|
{
|
|
"serial": serial,
|
|
"type": serials[serial]['type'],
|
|
"subtype": serials[serial]['subtype'],
|
|
"datetime": value['request']['launch_datetime'],
|
|
"position": [
|
|
value['request']['launch_longitude'] - 360 if value['request']['launch_longitude'] > 180 else value['request']['launch_longitude'],
|
|
value['request']['launch_latitude']
|
|
],
|
|
"altitude": value['request']['launch_altitude'],
|
|
"ascent_rate": value['request']['ascent_rate'],
|
|
"descent_rate": value['request']['descent_rate'],
|
|
"burst_altitude": value['request']['burst_altitude'],
|
|
"descending": True if serials[serial]['rate'] < 0 else False,
|
|
"landed": False, # I don't think this gets used anywhere?
|
|
"data": value['path']
|
|
}
|
|
)
|
|
|
|
# Collate and upload reverse predictions
|
|
output_reverse = []
|
|
for serial in reverse_serial_data:
|
|
value = reverse_serial_data[serial]
|
|
|
|
if value is not None:
|
|
|
|
_tmp = {
|
|
"serial": serial,
|
|
"type": serials[serial]['type'],
|
|
"subtype": serials[serial]['subtype'],
|
|
"datetime": value['request']['launch_datetime'],
|
|
"position": [
|
|
value['request']['launch_longitude'] - 360 if value['request']['launch_longitude'] > 180 else value['request']['launch_longitude'],
|
|
value['request']['launch_latitude']
|
|
],
|
|
"altitude": value['request']['launch_altitude'],
|
|
"ascent_rate": value['request']['ascent_rate'],
|
|
"data": value['path']
|
|
}
|
|
if 'launch_site' in value:
|
|
_tmp['launch_site'] = value['launch_site']
|
|
|
|
if 'launch_site_range_estimate' in value:
|
|
_tmp['launch_site_range_estimate'] = value['launch_site_range_estimate']
|
|
|
|
output_reverse.append(_tmp)
|
|
|
|
|
|
if len(output) > 0:
|
|
bulk_upload_es("predictions", output)
|
|
|
|
if len(output_reverse) > 0:
|
|
bulk_upload_es("reverse-prediction", output_reverse)
|
|
|
|
# upload to mqtt
|
|
while not connected_flag:
|
|
time.sleep(0.01) # wait until connected
|
|
for prediction in output:
|
|
logging.debug(f'Publishing prediction for {prediction["serial"]} to MQTT')
|
|
client.publish(
|
|
topic=f'prediction/{prediction["serial"]}',
|
|
payload=json.dumps(prediction),
|
|
qos=0,
|
|
retain=False
|
|
)
|
|
logging.debug(f'Published prediction for {prediction["serial"]} to MQTT')
|
|
for prediction in output_reverse:
|
|
logging.debug(f'Publishing reverse prediction for {prediction["serial"]} to MQTT')
|
|
client.publish(
|
|
topic=f'reverse-prediction/{prediction["serial"]}',
|
|
payload=json.dumps(prediction),
|
|
qos=0,
|
|
retain=False
|
|
)
|
|
logging.debug(f'Published reverse prediction for {prediction["serial"]} to MQTT')
|
|
logging.debug("Finished")
|
|
return
|
|
|
|
|
|
|
|
async def run_predictions_for_serial(sem, serial, value, reverse_predictions, launch_sites):
|
|
async with sem:
|
|
loop = asyncio.get_event_loop()
|
|
#
|
|
# Flight Profile selection
|
|
#
|
|
# Fallback Option - use flight profile data based on sonde type.
|
|
_flight_profile = flight_profile_by_type(value['type'])
|
|
|
|
reverse_serial_data = None
|
|
|
|
# Check if we have already run a reverse prediction on this serial
|
|
if serial in reverse_predictions:
|
|
logging.debug(f"Found reverse prediction for {serial}.")
|
|
_rev_pred = reverse_predictions[serial]
|
|
|
|
#print(_rev_pred)
|
|
|
|
if 'launch_site' in _rev_pred:
|
|
# This serial number has been assigned to a launch site!
|
|
# Grab the launch site information
|
|
try:
|
|
_site_info = launch_sites[_rev_pred['launch_site']]
|
|
|
|
# If we have flight profile data, update the default flight profile
|
|
if 'ascent_rate' in _site_info:
|
|
_flight_profile['ascent_rate'] = _site_info['ascent_rate']
|
|
|
|
if 'burst_altitude' in _site_info:
|
|
_flight_profile['burst_altitude'] = _site_info['burst_altitude']
|
|
|
|
if 'descent_rate' in _site_info:
|
|
_flight_profile['descent_rate'] = _site_info['descent_rate']
|
|
logging.debug(f"{serial} - Using Flight Profile data for Launch site: {_site_info['station_name']}")
|
|
except KeyError:
|
|
logging.info(f"Possible missing launch site {_rev_pred['launch_site'] } for sonde {serial}")
|
|
|
|
else:
|
|
# No launch site was allocated...
|
|
# TODO - Try again?
|
|
pass
|
|
|
|
else:
|
|
# No reverse prediction data!
|
|
# We can only run a reverse prediction with a sonde on ascent.
|
|
#print(f"{serial}: {value['rate']}")
|
|
if value['rate'] > ASCENT_RATE_THRESHOLD:
|
|
|
|
# Try and run a reverse prediction
|
|
logging.info(f"Running reverse predict for {serial}")
|
|
|
|
longitude = float(value['position'][1].strip())
|
|
latitude = float(value['position'][0].strip())
|
|
|
|
|
|
|
|
_rev_pred = get_launch_estimate(
|
|
value['time'],
|
|
latitude,
|
|
longitude,
|
|
value['alt'],
|
|
current_rate=value['rate'],
|
|
ascent_rate=value['rate']
|
|
)
|
|
|
|
if _rev_pred:
|
|
|
|
# Attempt to find a launch site near to the launch estimate.
|
|
_launch_estimate = [_rev_pred['launch_estimate']['latitude'], _rev_pred['launch_estimate']['longitude'], _rev_pred['launch_estimate']['altitude']]
|
|
_alloc_site = compare_launch_sites(launch_sites, _launch_estimate, value['alt'])
|
|
|
|
if _alloc_site:
|
|
# We have found the launch site!
|
|
# {'site':_site, 'range': launch_site_range}
|
|
logging.info(f"Allocated {serial} to launch site {launch_sites[_alloc_site['site']]['station_name']} ({_alloc_site['site']}) with range {_alloc_site['range']:.1f}.")
|
|
|
|
# Add launch site into the prediction data
|
|
_rev_pred['launch_site'] = _alloc_site['site']
|
|
_rev_pred['launch_site_range_estimate'] = _alloc_site['range']
|
|
|
|
# If we have flight profile data, update the default flight profile
|
|
_site_info = launch_sites[_alloc_site['site']]
|
|
if 'ascent_rate' in _site_info:
|
|
_flight_profile['ascent_rate'] = _site_info['ascent_rate']
|
|
|
|
if 'burst_altitude' in _site_info:
|
|
_flight_profile['burst_altitude'] = _site_info['burst_altitude']
|
|
|
|
if 'descent_rate' in _site_info:
|
|
_flight_profile['descent_rate'] = _site_info['descent_rate']
|
|
|
|
|
|
# Add to dict for upload later.
|
|
reverse_serial_data = _rev_pred
|
|
|
|
else:
|
|
# Launch estimate prediction failed.
|
|
pass
|
|
|
|
|
|
|
|
#print(value)
|
|
#print(_flight_profile)
|
|
logging.debug(f"Running prediction for {serial} using flight profile {str(_flight_profile)}.")
|
|
|
|
# skip when close to 0.
|
|
if value['rate'] < ASCENT_RATE_THRESHOLD and value['rate'] > -ASCENT_RATE_THRESHOLD:
|
|
logging.debug(f"Skipping {serial} due to ascent rate limiting.")
|
|
return False
|
|
|
|
# Determine current ascent rate
|
|
# If the value is < 0.5 (e.g. we are on descent, or not moving), we just use a default value.
|
|
ascent_rate=value['rate'] if value['rate'] > ASCENT_RATE_THRESHOLD else _flight_profile['ascent_rate']
|
|
|
|
# If we are on descent, estimate the sea-level descent rate from the current descent rate
|
|
# Otherwise, use the flight profile descent rate
|
|
descent_rate= seaLevelDescentRate(abs(value['rate']),value['alt']) if value['rate'] < 0 else _flight_profile['descent_rate']
|
|
|
|
# If the resultant sea-level descent rate is very small, it means we're probably landed
|
|
# so dont run a prediction for this sonde.
|
|
if descent_rate < ASCENT_RATE_THRESHOLD:
|
|
return False
|
|
|
|
# Now to determine the burst altitude
|
|
if value['rate'] < 0:
|
|
# On descent (rate < 0), we need to set the burst altitude just higher than our current altitude for
|
|
# the predictor to be happy
|
|
burst_altitude = value['alt']+0.05
|
|
else:
|
|
# Otherwise, on ascent we either use the expected burst altitude, or we
|
|
# add a little bit on to our current altitude.
|
|
burst_altitude = (value['alt']+0.05) if value['alt'] > _flight_profile['burst_altitude'] else _flight_profile['burst_altitude']
|
|
|
|
longitude = float(value['position'][1].strip())
|
|
latitude = float(value['position'][0].strip())
|
|
|
|
#print(f"Prediction Parameters for {serial} at {latitude}, {longitude}, {value['alt']}: {ascent_rate}/{burst_altitude}/{descent_rate}")
|
|
|
|
# Run prediction! This will return None if there is an error
|
|
return [serial, await loop.run_in_executor(None, functools.partial(get_standard_prediction,
|
|
value['time'],
|
|
latitude,
|
|
longitude,
|
|
value['alt'],
|
|
current_rate=value['rate'],
|
|
ascent_rate=ascent_rate,
|
|
burst_altitude=burst_altitude,
|
|
descent_rate=descent_rate
|
|
)), reverse_serial_data]
|