mirror of
https://github.com/projecthorus/sondehub-infra.git
synced 2024-12-18 20:57:56 +00:00
81830c2d74
Co-authored-by: xss <michaela@michaela.lgbt>
887 lines
32 KiB
Python
887 lines
32 KiB
Python
import sys
|
|
sys.path.append("sns_to_mqtt/vendor")
|
|
|
|
import paho.mqtt.client as mqtt
|
|
import json
|
|
from datetime import datetime
|
|
from datetime import timedelta
|
|
import http.client
|
|
import math
|
|
import logging
|
|
from math import radians, degrees, sin, cos, atan2, sqrt, pi
|
|
import es
|
|
import asyncio
|
|
import functools
|
|
import os
|
|
import random
|
|
import time
|
|
import config_handler
|
|
|
|
TAWHIRI_SERVER = "tawhiri.v2.sondehub.org"
|
|
|
|
# FLIGHT PROFILE DEFAULTS
|
|
#
|
|
|
|
# If we have no better estimates for flight profile, use these:
|
|
PREDICT_DEFAULTS = {'ascent_rate': 5.0, 'burst_altitude': 30000.0, 'descent_rate': 5.0}
|
|
|
|
# For some sonde types we can make better assumptions
|
|
SONDE_TYPE_PREDICT_DEFAULTS = {
|
|
}
|
|
|
|
#
|
|
# LAUNCH SITE ALLOCATION SETTINGS
|
|
#
|
|
# Immediately allocate a launch site if it is within this distance (straight line)
|
|
# of a known launch site.
|
|
LAUNCH_ALLOCATE_RANGE_MIN = 4000 # metres
|
|
LAUNCH_ALLOCATE_RANGE_MAX = 30000 # metres
|
|
LAUNCH_ALLOCATE_RANGE_SCALING = 1.5 # Scaling factor - launch allocation range is min(current alt * this value , launch allocate range max)
|
|
|
|
# Do not run predictions if the ascent or descent rate is less than this value
|
|
ASCENT_RATE_THRESHOLD = 0.6
|
|
|
|
# Do not run predictions if the payload is below this altitude AGL
|
|
# Currently not used.
|
|
ALTITUDE_AGL_THRESHOLD = 150.0
|
|
|
|
# Do not run predictions if the payload is below this altitude AMSL, and has an ascent rate below the above threshold.
|
|
ALTITUDE_AMSL_THRESHOLD = 1500.0
|
|
|
|
|
|
# Setup MQTT
|
|
client = mqtt.Client(transport="websockets")
|
|
|
|
connected_flag = False
|
|
setup = False
|
|
|
|
import socket
|
|
socket.setdefaulttimeout(1)
|
|
|
|
|
|
## MQTT functions
|
|
def connect():
|
|
client.on_connect = on_connect
|
|
client.on_disconnect = on_disconnect
|
|
client.on_publish = on_publish
|
|
#client.tls_set()
|
|
client.username_pw_set(config_handler.get("MQTT","USERNAME"), password=config_handler.get("MQTT","PASSWORD"))
|
|
HOSTS = config_handler.get("MQTT","HOST").split(",")
|
|
PORT = int(config_handler.get("MQTT","PORT", default="8080"))
|
|
if PORT == 443:
|
|
client.tls_set()
|
|
HOST = random.choice(HOSTS)
|
|
print(f"Connecting to {HOST}")
|
|
client.connect(HOST, PORT, 5)
|
|
client.loop_start()
|
|
print("loop started")
|
|
|
|
def on_disconnect(client, userdata, rc):
|
|
global connected_flag
|
|
print("disconnected")
|
|
connected_flag=False #set flag
|
|
|
|
def on_connect(client, userdata, flags, rc):
|
|
global connected_flag
|
|
if rc==0:
|
|
print("connected")
|
|
connected_flag=True #set flag
|
|
else:
|
|
print("Bad connection Returned code")
|
|
|
|
def on_publish(client, userdata, mid):
|
|
pass
|
|
|
|
def get_flight_docs():
|
|
path = "flight-doc/_search"
|
|
payload = {
|
|
"aggs": {
|
|
"payload_callsign": {
|
|
"terms": {
|
|
"field": "payload_callsign.keyword",
|
|
"order": {
|
|
"_key": "desc"
|
|
},
|
|
"size": 10000
|
|
},
|
|
"aggs": {
|
|
"flight_doc": {
|
|
"top_hits": {
|
|
"_source": True,
|
|
"size": 1,
|
|
"sort": [
|
|
{
|
|
"datetime": {
|
|
"order": "desc"
|
|
}
|
|
}
|
|
]
|
|
}
|
|
}
|
|
}
|
|
}
|
|
},
|
|
"size": 0
|
|
}
|
|
logging.debug("Start ES Request")
|
|
results = es.request(json.dumps(payload), path, "POST")
|
|
logging.debug("Finished ES Request")
|
|
return { x['key'] : x['flight_doc']['hits']['hits'][0]['_source'] for x in results['aggregations']['payload_callsign']['buckets']}
|
|
|
|
|
|
|
|
def getDensity(altitude):
|
|
"""
|
|
Calculate the atmospheric density for a given altitude in metres.
|
|
This is a direct port of the oziplotter Atmosphere class
|
|
"""
|
|
|
|
# Constants
|
|
airMolWeight = 28.9644 # Molecular weight of air
|
|
densitySL = 1.225 # Density at sea level [kg/m3]
|
|
pressureSL = 101325 # Pressure at sea level [Pa]
|
|
temperatureSL = 288.15 # Temperature at sea level [deg K]
|
|
gamma = 1.4
|
|
gravity = 9.80665 # Acceleration of gravity [m/s2]
|
|
tempGrad = -0.0065 # Temperature gradient [deg K/m]
|
|
RGas = 8.31432 # Gas constant [kg/Mol/K]
|
|
R = 287.053
|
|
deltaTemperature = 0.0
|
|
|
|
# Lookup Tables
|
|
altitudes = [0, 11000, 20000, 32000, 47000, 51000, 71000, 84852]
|
|
pressureRels = [
|
|
1,
|
|
2.23361105092158e-1,
|
|
5.403295010784876e-2,
|
|
8.566678359291667e-3,
|
|
1.0945601337771144e-3,
|
|
6.606353132858367e-4,
|
|
3.904683373343926e-5,
|
|
3.6850095235747942e-6,
|
|
]
|
|
temperatures = [288.15, 216.65, 216.65, 228.65, 270.65, 270.65, 214.65, 186.946]
|
|
tempGrads = [-6.5, 0, 1, 2.8, 0, -2.8, -2, 0]
|
|
gMR = gravity * airMolWeight / RGas
|
|
|
|
# Pick a region to work in
|
|
i = 0
|
|
if altitude > 0:
|
|
while altitude > altitudes[i + 1]:
|
|
i = i + 1
|
|
|
|
# Lookup based on region
|
|
baseTemp = temperatures[i]
|
|
tempGrad = tempGrads[i] / 1000.0
|
|
pressureRelBase = pressureRels[i]
|
|
deltaAltitude = altitude - altitudes[i]
|
|
temperature = baseTemp + tempGrad * deltaAltitude
|
|
|
|
# Calculate relative pressure
|
|
if math.fabs(tempGrad) < 1e-10:
|
|
pressureRel = pressureRelBase * math.exp(
|
|
-1 * gMR * deltaAltitude / 1000.0 / baseTemp
|
|
)
|
|
else:
|
|
pressureRel = pressureRelBase * math.pow(
|
|
baseTemp / temperature, gMR / tempGrad / 1000.0
|
|
)
|
|
|
|
# Add temperature offset
|
|
temperature = temperature + deltaTemperature
|
|
|
|
# Finally, work out the density...
|
|
speedOfSound = math.sqrt(gamma * R * temperature)
|
|
pressure = pressureRel * pressureSL
|
|
density = densitySL * pressureRel * temperatureSL / temperature
|
|
|
|
return density
|
|
|
|
|
|
def seaLevelDescentRate(descent_rate, altitude):
|
|
""" Calculate the descent rate at sea level, for a given descent rate at altitude """
|
|
|
|
rho = getDensity(altitude)
|
|
return math.sqrt((rho / 1.225) * math.pow(descent_rate, 2))
|
|
|
|
|
|
# Earthmaths code by Daniel Richman (thanks!)
|
|
# Copyright 2012 (C) Daniel Richman; GNU GPL 3
|
|
def position_info(listener, balloon):
|
|
"""
|
|
Calculate and return information from 2 (lat, lon, alt) tuples
|
|
|
|
Returns a dict with:
|
|
|
|
- angle at centre
|
|
- great circle distance
|
|
- distance in a straight line
|
|
- bearing (azimuth or initial course)
|
|
- elevation (altitude)
|
|
|
|
Input and output latitudes, longitudes, angles, bearings and elevations are
|
|
in degrees, and input altitudes and output distances are in meters.
|
|
"""
|
|
|
|
# Earth:
|
|
radius = 6371000.0
|
|
|
|
(lat1, lon1, alt1) = listener
|
|
(lat2, lon2, alt2) = balloon
|
|
|
|
lat1 = radians(lat1)
|
|
lat2 = radians(lat2)
|
|
lon1 = radians(lon1)
|
|
lon2 = radians(lon2)
|
|
|
|
# Calculate the bearing, the angle at the centre, and the great circle
|
|
# distance using Vincenty's_formulae with f = 0 (a sphere). See
|
|
# http://en.wikipedia.org/wiki/Great_circle_distance#Formulas and
|
|
# http://en.wikipedia.org/wiki/Great-circle_navigation and
|
|
# http://en.wikipedia.org/wiki/Vincenty%27s_formulae
|
|
d_lon = lon2 - lon1
|
|
sa = cos(lat2) * sin(d_lon)
|
|
sb = (cos(lat1) * sin(lat2)) - (sin(lat1) * cos(lat2) * cos(d_lon))
|
|
bearing = atan2(sa, sb)
|
|
aa = sqrt((sa ** 2) + (sb ** 2))
|
|
ab = (sin(lat1) * sin(lat2)) + (cos(lat1) * cos(lat2) * cos(d_lon))
|
|
angle_at_centre = atan2(aa, ab)
|
|
great_circle_distance = angle_at_centre * radius
|
|
|
|
# Armed with the angle at the centre, calculating the remaining items
|
|
# is a simple 2D triangley circley problem:
|
|
|
|
# Use the triangle with sides (r + alt1), (r + alt2), distance in a
|
|
# straight line. The angle between (r + alt1) and (r + alt2) is the
|
|
# angle at the centre. The angle between distance in a straight line and
|
|
# (r + alt1) is the elevation plus pi/2.
|
|
|
|
# Use sum of angle in a triangle to express the third angle in terms
|
|
# of the other two. Use sine rule on sides (r + alt1) and (r + alt2),
|
|
# expand with compound angle formulae and solve for tan elevation by
|
|
# dividing both sides by cos elevation
|
|
ta = radius + alt1
|
|
tb = radius + alt2
|
|
ea = (cos(angle_at_centre) * tb) - ta
|
|
eb = sin(angle_at_centre) * tb
|
|
elevation = atan2(ea, eb)
|
|
|
|
# Use cosine rule to find unknown side.
|
|
distance = sqrt((ta ** 2) + (tb ** 2) - 2 * tb * ta * cos(angle_at_centre))
|
|
|
|
# Give a bearing in range 0 <= b < 2pi
|
|
if bearing < 0:
|
|
bearing += 2 * pi
|
|
|
|
return {
|
|
"listener": listener,
|
|
"balloon": balloon,
|
|
"listener_radians": (lat1, lon1, alt1),
|
|
"balloon_radians": (lat2, lon2, alt2),
|
|
"angle_at_centre": degrees(angle_at_centre),
|
|
"angle_at_centre_radians": angle_at_centre,
|
|
"bearing": degrees(bearing),
|
|
"bearing_radians": bearing,
|
|
"great_circle_distance": great_circle_distance,
|
|
"straight_distance": distance,
|
|
"elevation": degrees(elevation),
|
|
"elevation_radians": elevation,
|
|
}
|
|
|
|
def get_float_prediction(timestamp, latitude, longitude, altitude, current_rate=5.0, ascent_rate=PREDICT_DEFAULTS['ascent_rate'], burst_altitude=PREDICT_DEFAULTS['burst_altitude']):
|
|
"""
|
|
Request a float flight path prediction from Tawhiri.
|
|
Notes:
|
|
- The burst_altitude must be higher than the current altitude.
|
|
- Longitude is in the range 0-360.0
|
|
- All ascent/descent rates must be positive.
|
|
"""
|
|
|
|
|
|
# Shift longitude into the appropriate range for Tawhiri
|
|
if longitude < 0:
|
|
longitude += 360.0
|
|
|
|
# Generate the prediction URL
|
|
url = f"/api/v1/?launch_altitude={altitude}&launch_latitude={latitude}&launch_longitude={longitude}&launch_datetime={timestamp}&float_altitude={burst_altitude:.2f}&stop_datetime={(datetime.now() + timedelta(days=1)).isoformat()}Z&ascent_rate={ascent_rate:.2f}&profile=float_profile"
|
|
logging.debug(url)
|
|
conn = http.client.HTTPSConnection(TAWHIRI_SERVER)
|
|
conn.request("GET", url)
|
|
res = conn.getresponse()
|
|
data = res.read()
|
|
|
|
if res.code != 200:
|
|
logging.debug(data)
|
|
return None
|
|
|
|
pred_data = json.loads(data.decode("utf-8"))
|
|
|
|
path = []
|
|
|
|
if 'prediction' in pred_data:
|
|
for stage in pred_data['prediction']:
|
|
# Probably don't need to worry about this, it should only result in one or two points
|
|
# in 'ascent'.
|
|
if stage['stage'] == 'ascent' and current_rate < 0: # ignore ascent stage if we have already burst
|
|
continue
|
|
else:
|
|
for item in stage['trajectory']:
|
|
path.append({
|
|
"time": int(datetime.fromisoformat(item['datetime'].split(".")[0].replace("Z","")).timestamp()),
|
|
"lat": item['latitude'],
|
|
"lon": item['longitude'] - 360 if item['longitude'] > 180 else item['longitude'],
|
|
"alt": item['altitude'],
|
|
})
|
|
|
|
pred_data['path'] = path
|
|
return pred_data
|
|
else:
|
|
return None
|
|
|
|
def get_standard_prediction(timestamp, latitude, longitude, altitude, current_rate=5.0, ascent_rate=PREDICT_DEFAULTS['ascent_rate'], burst_altitude=PREDICT_DEFAULTS['burst_altitude'], descent_rate=PREDICT_DEFAULTS['descent_rate']):
|
|
"""
|
|
Request a standard flight path prediction from Tawhiri.
|
|
Notes:
|
|
- The burst_altitude must be higher than the current altitude.
|
|
- Longitude is in the range 0-360.0
|
|
- All ascent/descent rates must be positive.
|
|
"""
|
|
|
|
# # Bomb out if the rates are too low.
|
|
# if ascent_rate < ASCENT_RATE_THRESHOLD:
|
|
# return None
|
|
|
|
# if descent_rate < ASCENT_RATE_THRESHOLD:
|
|
# return None
|
|
|
|
|
|
# Shift longitude into the appropriate range for Tawhiri
|
|
if longitude < 0:
|
|
longitude += 360.0
|
|
|
|
# Generate the prediction URL
|
|
url = f"/api/v1/?launch_latitude={latitude}&launch_longitude={longitude}&launch_datetime={timestamp}&launch_altitude={altitude:.2f}&ascent_rate={ascent_rate:.2f}&burst_altitude={burst_altitude:.2f}&descent_rate={descent_rate:.2f}"
|
|
logging.debug(url)
|
|
conn = http.client.HTTPSConnection(TAWHIRI_SERVER)
|
|
conn.request("GET", url)
|
|
res = conn.getresponse()
|
|
data = res.read()
|
|
|
|
if res.code != 200:
|
|
logging.debug(data)
|
|
return None
|
|
|
|
pred_data = json.loads(data.decode("utf-8"))
|
|
|
|
path = []
|
|
|
|
if 'prediction' in pred_data:
|
|
for stage in pred_data['prediction']:
|
|
# Probably don't need to worry about this, it should only result in one or two points
|
|
# in 'ascent'.
|
|
if stage['stage'] == 'ascent' and current_rate < 0: # ignore ascent stage if we have already burst
|
|
continue
|
|
else:
|
|
for item in stage['trajectory']:
|
|
path.append({
|
|
"time": int(datetime.fromisoformat(item['datetime'].split(".")[0].replace("Z","")).timestamp()),
|
|
"lat": item['latitude'],
|
|
"lon": item['longitude'] - 360 if item['longitude'] > 180 else item['longitude'],
|
|
"alt": item['altitude'],
|
|
})
|
|
|
|
pred_data['path'] = path
|
|
return pred_data
|
|
else:
|
|
return None
|
|
|
|
|
|
# Need to mock this out if we ever use it again
|
|
#
|
|
# def get_ruaumoko(latitude, longitude):
|
|
# """
|
|
# Request the ground level from ruaumoko.
|
|
|
|
# Returns 0.0 if the ground level could not be determined, effectively
|
|
# defaulting to any checks based on this data being based on mean sea level.
|
|
# """
|
|
|
|
# # Shift longitude into the appropriate range for Tawhiri
|
|
# if longitude < 0:
|
|
# longitude += 360.0
|
|
|
|
# # Generate the prediction URL
|
|
# url = f"/api/ruaumoko/?latitude={latitude}&longitude={longitude}"
|
|
# logging.debug(url)
|
|
# conn = http.client.HTTPSConnection(TAWHIRI_SERVER)
|
|
# conn.request("GET", url)
|
|
# res = conn.getresponse()
|
|
# data = res.read()
|
|
|
|
# if res.code != 200:
|
|
# logging.debug(data)
|
|
# return None
|
|
|
|
# resp_data = json.loads(data.decode("utf-8"))
|
|
|
|
# if 'altitude' in resp_data:
|
|
# return resp_data['altitude']
|
|
# else:
|
|
# return 0.0
|
|
|
|
|
|
def bulk_upload_es(index_prefix,payloads):
|
|
body=""
|
|
for payload in payloads:
|
|
body += "{\"index\":{}}\n" + json.dumps(payload) + "\n"
|
|
body += "\n"
|
|
date_prefix = datetime.now().strftime("%Y-%m")
|
|
result = es.request(body, f"{index_prefix}-{date_prefix}/_bulk", "POST")
|
|
|
|
if 'errors' in result and result['errors'] == True:
|
|
error_types = [x['index']['error']['type'] for x in result['items'] if 'error' in x['index']] # get all the error types
|
|
error_types = [a for a in error_types if a != 'mapper_parsing_exception'] # filter out mapper failures since they will never succeed
|
|
if error_types:
|
|
print(result)
|
|
raise RuntimeError
|
|
|
|
def predict(event, context):
|
|
global setup
|
|
# Connect to MQTT
|
|
if not setup:
|
|
connect()
|
|
setup = True
|
|
# Use asyncio.run to synchronously "await" an async function
|
|
result = asyncio.run(predict_async(event, context))
|
|
time.sleep(0.5) # give paho mqtt 500ms to send messages this could be improved on but paho mqtt is a pain to interface with
|
|
return result
|
|
|
|
async def predict_async(event, context):
|
|
flight_docs = get_flight_docs()
|
|
|
|
sem = asyncio.Semaphore(5)
|
|
path = "ham-telm-*/_search"
|
|
interval = 60 # because some aprs balloons are only every minute
|
|
lag = 3 # how many samples to use
|
|
payload = {
|
|
"aggs": {
|
|
"2": {
|
|
"terms": {
|
|
"field": "payload_callsign.keyword",
|
|
"order": {
|
|
"_key": "desc"
|
|
},
|
|
"size": 1000
|
|
},
|
|
"aggs": {
|
|
"3": {
|
|
"date_histogram": {
|
|
"field": "datetime",
|
|
"fixed_interval": f"{interval}s"
|
|
},
|
|
"aggs": {
|
|
"1": {
|
|
"top_hits": {
|
|
"docvalue_fields": [
|
|
{
|
|
"field": "alt"
|
|
}
|
|
],
|
|
"_source": "alt",
|
|
"size": 1,
|
|
"sort": [
|
|
{
|
|
"datetime": {
|
|
"order": "desc"
|
|
}
|
|
}
|
|
]
|
|
}
|
|
},
|
|
"4": {
|
|
"serial_diff": {
|
|
"buckets_path": "4-metric",
|
|
"gap_policy": "skip",
|
|
"lag": lag
|
|
}
|
|
},
|
|
"5": {
|
|
"top_hits": {
|
|
"docvalue_fields": [
|
|
{
|
|
"field": "position"
|
|
}
|
|
],
|
|
"_source": {"includes": ["position", "type", "subtype"]},
|
|
"size": 1,
|
|
"sort": [
|
|
{
|
|
"datetime": {
|
|
"order": "desc"
|
|
}
|
|
}
|
|
]
|
|
}
|
|
},
|
|
"4-metric": {
|
|
"avg": {
|
|
"field": "alt"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
},
|
|
"size": 0,
|
|
"stored_fields": [
|
|
"*"
|
|
],
|
|
"script_fields": {},
|
|
"docvalue_fields": [
|
|
{
|
|
"field": "@timestamp",
|
|
"format": "date_time"
|
|
},
|
|
{
|
|
"field": "datetime",
|
|
"format": "date_time"
|
|
},
|
|
{
|
|
"field": "log_date",
|
|
"format": "date_time"
|
|
},
|
|
{
|
|
"field": "time_received",
|
|
"format": "date_time"
|
|
},
|
|
{
|
|
"field": "time_server",
|
|
"format": "date_time"
|
|
},
|
|
{
|
|
"field": "time_uploaded",
|
|
"format": "date_time"
|
|
}
|
|
],
|
|
"_source": {
|
|
"excludes": []
|
|
},
|
|
"query": {
|
|
"bool": {
|
|
"must": [],
|
|
"filter": [
|
|
{
|
|
"match_all": {}
|
|
},
|
|
{
|
|
"range": {
|
|
"datetime": {
|
|
"gte": "now-10m",
|
|
"lte": "now",
|
|
"format": "strict_date_optional_time"
|
|
}
|
|
}
|
|
}
|
|
],
|
|
"should": []
|
|
}
|
|
},
|
|
"size": 0
|
|
}
|
|
logging.debug("Start ES Request")
|
|
results = es.request(json.dumps(payload), path, "GET")
|
|
logging.debug("Finished ES Request")
|
|
|
|
|
|
|
|
serials = { }
|
|
for x in results['aggregations']['2']['buckets']:
|
|
try:
|
|
serials[x['key']] = {
|
|
"alt": sorted(x['3']['buckets'], key=lambda k: k['key_as_string'])[-1]['1']['hits']['hits'][0]['fields']['alt'][0],
|
|
"position": sorted(x['3']['buckets'], key=lambda k: k['key_as_string'])[-1]['5']['hits']['hits'][0]['fields']['position'][0].split(","),
|
|
"rate": sorted(x['3']['buckets'], key=lambda k: k['key_as_string'])[-1]['4']['value']/(lag*interval), # as we bucket for every 5 seconds with a lag of 5
|
|
"time": sorted(x['3']['buckets'], key=lambda k: k['key_as_string'])[-1]['key_as_string']
|
|
|
|
}
|
|
except:
|
|
pass
|
|
|
|
|
|
|
|
|
|
serial_data={}
|
|
logging.debug("Start Predict")
|
|
jobs=[]
|
|
for serial in serials:
|
|
jobs.append(run_predictions_for_serial(sem, flight_docs, serial, serials[serial]))
|
|
output = await asyncio.gather(*jobs)
|
|
for data in output:
|
|
if data:
|
|
serial_data[data[0]] = data[1]
|
|
|
|
|
|
|
|
|
|
logging.debug("Stop Predict")
|
|
|
|
# Collate and upload forward predictions
|
|
output = []
|
|
for serial in serial_data:
|
|
value = serial_data[serial]
|
|
|
|
if value is not None:
|
|
output.append(
|
|
{
|
|
"payload_callsign": serial,
|
|
"datetime": value['request']['launch_datetime'],
|
|
"position": [
|
|
value['request']['launch_longitude'] - 360 if value['request']['launch_longitude'] > 180 else value['request']['launch_longitude'],
|
|
value['request']['launch_latitude']
|
|
],
|
|
"altitude": value['request']['launch_altitude'],
|
|
"ascent_rate": value['request']['ascent_rate'],
|
|
"descent_rate": value['request']['descent_rate'] if 'descent_rate' in value['request'] else None,
|
|
"burst_altitude": value['request']['burst_altitude'] if 'burst_altitude' in value['request'] else None,
|
|
"descending": True if serials[serial]['rate'] < 0 else False,
|
|
"landed": False, # I don't think this gets used anywhere?
|
|
"data": value['path']
|
|
}
|
|
)
|
|
|
|
if len(output) > 0:
|
|
bulk_upload_es("ham-predictions", output)
|
|
|
|
# upload to mqtt
|
|
while not connected_flag:
|
|
time.sleep(0.01) # wait until connected
|
|
for prediction in output:
|
|
logging.debug(f'Publishing prediction for {prediction["payload_callsign"]} to MQTT')
|
|
client.publish(
|
|
topic=f'amateur-prediction/{prediction["payload_callsign"]}',
|
|
payload=json.dumps(prediction),
|
|
qos=0,
|
|
retain=False
|
|
)
|
|
logging.debug(f'Published prediction for {prediction["payload_callsign"]} to MQTT')
|
|
|
|
logging.debug("Finished")
|
|
return
|
|
|
|
|
|
|
|
async def run_predictions_for_serial(sem, flight_docs, serial, value):
|
|
async with sem:
|
|
loop = asyncio.get_event_loop()
|
|
logging.debug(f"Starting prediction for {serial}")
|
|
try:
|
|
_flight_doc = flight_docs[serial]
|
|
logging.debug(f"Found flight doc for {serial}")
|
|
except:
|
|
logging.debug(f"Using default flight doc for {serial}")
|
|
# Some default parameters, including a flag to indicate there is no flight doc available.
|
|
_flight_doc = {
|
|
"no_flight_doc": True,
|
|
"float_expected": False,
|
|
"peak_altitude": 30000,
|
|
"descent_rate": 5
|
|
}
|
|
|
|
longitude = float(value['position'][1].strip())
|
|
latitude = float(value['position'][0].strip())
|
|
|
|
|
|
#
|
|
# AGL Threshold check - currently not used due to the ruamoko request blocking
|
|
#
|
|
# # Attempt to get the ground level.
|
|
# try:
|
|
# ground_level = get_ruaumoko(latitude, longitude)
|
|
# except:
|
|
# ground_level = 0.0
|
|
|
|
# # Don't run a prediction if the altitude is less than our AGL threshold.
|
|
# if (value['alt'] - ground_level) < ALTITUDE_AGL_THRESHOLD:
|
|
# return None
|
|
|
|
#
|
|
# AMSL + Float check.
|
|
#
|
|
if (abs(value['rate']) <= ASCENT_RATE_THRESHOLD) and (value['alt'] < ALTITUDE_AMSL_THRESHOLD):
|
|
# Payload is 'floating' (e.g. is probably on the ground), and is below 1500m AMSL.
|
|
# Don't run a prediction in this case. It probably just hasn't been launched yet.
|
|
logging.debug(f"{serial} is floating and alt is low so not running prediction")
|
|
return None
|
|
|
|
|
|
# Now to determine the burst altitude
|
|
if value['rate'] > 0:
|
|
if value['alt'] > _flight_doc['peak_altitude']:
|
|
burst_altitude = value['alt']+0.05 # balloon past the prediction - use just a little bit higher
|
|
else:
|
|
burst_altitude = _flight_doc['peak_altitude']
|
|
else: #descending
|
|
burst_altitude = value['alt']+0.05
|
|
|
|
logging.debug(f"Burst alt for {serial} is {burst_altitude}")
|
|
|
|
# Balloon is on Descent. Doesn't matter what the flight document says at this point,
|
|
# we just run a descent prediction using the current descent rate.
|
|
if value['rate'] < -ASCENT_RATE_THRESHOLD:
|
|
logging.debug(f"{serial} running normal descent profile")
|
|
descent_rate= seaLevelDescentRate(abs(value['rate']),value['alt'])
|
|
return [
|
|
serial,
|
|
await loop.run_in_executor(
|
|
None,
|
|
functools.partial(
|
|
get_standard_prediction,
|
|
value['time'],
|
|
latitude,
|
|
longitude,
|
|
value['alt'],
|
|
current_rate=value['rate'],
|
|
ascent_rate=5, # this doesn't matter because we are burst
|
|
burst_altitude=burst_altitude,
|
|
descent_rate=descent_rate
|
|
)
|
|
)
|
|
]
|
|
|
|
# The balloon is either floating, or ascending.
|
|
|
|
if ("no_flight_doc" in _flight_doc) and (_flight_doc["no_flight_doc"] == True) :
|
|
# We don't have any information provided, so we need to make some assumptions.
|
|
|
|
# First up - are we floating?
|
|
if abs(value['rate']) <= ASCENT_RATE_THRESHOLD:
|
|
# If we are, run a float prediction, based off the current altitude.
|
|
logging.debug(f"{serial} - no flight doc, running float profile")
|
|
return [
|
|
serial,
|
|
await loop.run_in_executor(
|
|
None,
|
|
functools.partial(
|
|
get_float_prediction,
|
|
value['time'],
|
|
latitude,
|
|
longitude,
|
|
value['alt'],
|
|
current_rate=value['rate'],
|
|
ascent_rate=1, # this doesn't matter because we are floating
|
|
burst_altitude=value['alt']+1,
|
|
)
|
|
)
|
|
]
|
|
else:
|
|
# We are ascending, run an ascent prediction using the standard parameters.
|
|
logging.debug(f"{serial} - no flight doc, running default ascent profile")
|
|
return [
|
|
serial,
|
|
await loop.run_in_executor(
|
|
None,
|
|
functools.partial(
|
|
get_standard_prediction,
|
|
value['time'],
|
|
latitude,
|
|
longitude,
|
|
value['alt'],
|
|
current_rate=value['rate'],
|
|
ascent_rate=value['rate'],
|
|
burst_altitude=burst_altitude,
|
|
descent_rate=_flight_doc['descent_rate']
|
|
)
|
|
)
|
|
]
|
|
|
|
else:
|
|
# We have a flight document specified!
|
|
if _flight_doc["float_expected"]:
|
|
# The flight document has specified that we are expecting a float.
|
|
if abs(value['rate']) <= ASCENT_RATE_THRESHOLD:
|
|
# We are in float - run a float prediction based on the current altitude.
|
|
logging.debug(f"{serial} running float profile")
|
|
return [
|
|
serial,
|
|
await loop.run_in_executor(
|
|
None,
|
|
functools.partial(
|
|
get_float_prediction,
|
|
value['time'],
|
|
latitude,
|
|
longitude,
|
|
value['alt'],
|
|
current_rate=value['rate'],
|
|
ascent_rate=1, # this doesn't matter because we are floating
|
|
burst_altitude=value['alt']+1,
|
|
)
|
|
)
|
|
]
|
|
else:
|
|
# We are still ascending, on the way to an expected float
|
|
# Run a float prediction using the specified expected float altitude.
|
|
logging.debug(f"{serial} running ascending float profile")
|
|
if abs(value['rate']) > ASCENT_RATE_THRESHOLD:
|
|
return [
|
|
serial,
|
|
await loop.run_in_executor(
|
|
None,
|
|
functools.partial(
|
|
get_float_prediction,
|
|
value['time'],
|
|
latitude,
|
|
longitude,
|
|
value['alt'],
|
|
current_rate=value['rate'],
|
|
ascent_rate=value['rate'],
|
|
burst_altitude=burst_altitude,
|
|
)
|
|
)
|
|
]
|
|
else:
|
|
# The flight document has not specified that a float is expected.
|
|
if abs(value['rate']) <= ASCENT_RATE_THRESHOLD:
|
|
# We didn't expect a float, but we are in one anyway.
|
|
# Run an ascent prediction, but with with an imminent burst.
|
|
logging.debug(f"{serial} - flight doc available but in float, near-burst ascent prediction")
|
|
return [
|
|
serial,
|
|
await loop.run_in_executor(
|
|
None,
|
|
functools.partial(
|
|
get_standard_prediction,
|
|
value['time'],
|
|
latitude,
|
|
longitude,
|
|
value['alt'],
|
|
current_rate=value['rate'],
|
|
ascent_rate=1,
|
|
burst_altitude=value['alt']+1,
|
|
descent_rate=_flight_doc['descent_rate']
|
|
)
|
|
)
|
|
]
|
|
else:
|
|
# We are on ascent, run a normal ascent prediction.
|
|
logging.debug(f"{serial} - flight doc available, running standard ascent profile")
|
|
return [
|
|
serial,
|
|
await loop.run_in_executor(
|
|
None,
|
|
functools.partial(
|
|
get_standard_prediction,
|
|
value['time'],
|
|
latitude,
|
|
longitude,
|
|
value['alt'],
|
|
current_rate=value['rate'],
|
|
ascent_rate=value['rate'],
|
|
burst_altitude=burst_altitude,
|
|
descent_rate=_flight_doc['descent_rate']
|
|
)
|
|
)
|
|
]
|
|
|
|
|