OS1.2 upgrade, ham_predictor

This commit is contained in:
xss 2022-04-09 15:10:06 +10:00
parent da74494bd8
commit 9f7641e327
7 changed files with 915 additions and 4 deletions

22
es.tf
View File

@ -2,7 +2,7 @@
resource "aws_elasticsearch_domain" "ElasticsearchDomain" {
domain_name = "sondes-v2-7-9"
elasticsearch_version = "7.9"
elasticsearch_version = "OpenSearch_1.2"
cluster_config {
dedicated_master_count = 3
dedicated_master_enabled = false
@ -76,6 +76,9 @@ EOF
enabled = true
log_type = "SEARCH_SLOW_LOGS"
}
lifecycle {
prevent_destroy = true
}
}
data "aws_kms_key" "es" {
key_id = "alias/aws/es"
@ -105,6 +108,11 @@ resource "aws_cognito_identity_pool" "CognitoIdentityPool" {
server_side_token_check = false
}
cognito_identity_providers {
client_id = "u3ggvo1spp1e6cffbietq7fbm"
provider_name = "cognito-idp.us-east-1.amazonaws.com/us-east-1_G4H7NMniM"
}
}
resource "aws_cognito_identity_pool_roles_attachment" "CognitoIdentityPoolRoleAttachment" {
@ -119,10 +127,16 @@ resource "aws_cognito_identity_pool_roles_attachment" "CognitoIdentityPoolRoleAt
type = "Token"
}
role_mapping {
ambiguous_role_resolution = "AuthenticatedRole"
identity_provider = "cognito-idp.us-east-1.amazonaws.com/us-east-1_G4H7NMniM:62uut02s5ts991uhpf4fbuvrtj"
type = "Token"
ambiguous_role_resolution = "AuthenticatedRole"
identity_provider = "cognito-idp.us-east-1.amazonaws.com/us-east-1_G4H7NMniM:227g2bbcb2tqjfii1ipt2tj5m6"
type = "Token"
}
role_mapping {
ambiguous_role_resolution = "AuthenticatedRole"
identity_provider = "cognito-idp.us-east-1.amazonaws.com/us-east-1_G4H7NMniM:u3ggvo1spp1e6cffbietq7fbm"
type = "Token"
}
role_mapping {
ambiguous_role_resolution = "AuthenticatedRole"
identity_provider = "cognito-idp.us-east-1.amazonaws.com/us-east-1_G4H7NMniM:7v892rnrta8ms785pl0aaqo8ke"

154
ham_predictor.tf Normal file
View File

@ -0,0 +1,154 @@
resource "aws_iam_role" "ham_predict_updater" {
path = "/service-role/"
name = "ham-predict-updater"
assume_role_policy = <<EOF
{
"Version": "2012-10-17",
"Statement": [{
"Effect": "Allow",
"Principal": {
"Service": "lambda.amazonaws.com"
},
"Action": "sts:AssumeRole"
}]
}
EOF
max_session_duration = 3600
}
resource "aws_iam_role_policy" "ham_predict_updater" {
name = "ham_predict_updater"
role = aws_iam_role.ham_predict_updater.name
policy = <<EOF
{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": "logs:CreateLogGroup",
"Resource": "arn:aws:logs:us-east-1:${data.aws_caller_identity.current.account_id}:*"
},
{
"Effect": "Allow",
"Action": [
"logs:CreateLogStream",
"logs:PutLogEvents"
],
"Resource": [
"arn:aws:logs:us-east-1:${data.aws_caller_identity.current.account_id}:log-group:/aws/lambda/*"
]
},
{
"Effect": "Allow",
"Action": "es:*",
"Resource": "*"
},
{
"Effect": "Allow",
"Action": "sqs:*",
"Resource": "*"
},
{
"Effect": "Allow",
"Action": "s3:*",
"Resource": "*"
}
]
}
EOF
}
resource "aws_lambda_function" "ham_predict_updater" {
function_name = "ham_predict_updater"
handler = "ham_predict_updater.predict"
s3_bucket = aws_s3_bucket_object.lambda.bucket
s3_key = aws_s3_bucket_object.lambda.key
source_code_hash = data.archive_file.lambda.output_base64sha256
publish = true
memory_size = 512
role = aws_iam_role.ham_predict_updater.arn
runtime = "python3.9"
architectures = ["arm64"]
timeout = 300
reserved_concurrent_executions = 1
environment {
variables = {
"ES" = aws_route53_record.es.fqdn
}
}
tags = {
Name = "ham_predict_updater"
}
}
resource "aws_cloudwatch_event_rule" "ham_predict_updater" {
name = "ham_predict_updater"
description = "ham_predict_updater"
schedule_expression = "rate(1 minute)"
}
resource "aws_cloudwatch_event_target" "ham_predict_updater" {
rule = aws_cloudwatch_event_rule.ham_predict_updater.name
target_id = "SendToLambda"
arn = aws_lambda_function.ham_predict_updater.arn
}
resource "aws_lambda_permission" "ham_predict_updater" {
action = "lambda:InvokeFunction"
function_name = aws_lambda_function.ham_predict_updater.function_name
principal = "events.amazonaws.com"
source_arn = aws_cloudwatch_event_rule.ham_predict_updater.arn
}
resource "aws_apigatewayv2_route" "ham_predictions" {
api_id = aws_apigatewayv2_api.main.id
api_key_required = false
authorization_type = "NONE"
route_key = "GET /amateur/predictions"
target = "integrations/${aws_apigatewayv2_integration.ham_predictions.id}"
}
resource "aws_apigatewayv2_integration" "ham_predictions" {
api_id = aws_apigatewayv2_api.main.id
connection_type = "INTERNET"
integration_method = "POST"
integration_type = "AWS_PROXY"
integration_uri = aws_lambda_function.ham_predictions.arn
timeout_milliseconds = 30000
payload_format_version = "2.0"
}
resource "aws_lambda_function" "ham_predictions" {
function_name = "ham_predictions"
handler = "ham_predict.predict"
s3_bucket = aws_s3_bucket_object.lambda.bucket
s3_key = aws_s3_bucket_object.lambda.key
source_code_hash = data.archive_file.lambda.output_base64sha256
publish = true
memory_size = 128
role = aws_iam_role.basic_lambda_role.arn
runtime = "python3.9"
timeout = 30
architectures = ["arm64"]
environment {
variables = {
"ES" = "es.${local.domain_name}"
}
}
tags = {
Name = "ham_predictions"
}
}
resource "aws_lambda_permission" "ham_predictions" {
action = "lambda:InvokeFunction"
function_name = aws_lambda_function.ham_predictions.arn
principal = "apigateway.amazonaws.com"
source_arn = "arn:aws:execute-api:us-east-1:${data.aws_caller_identity.current.account_id}:${aws_apigatewayv2_api.main.id}/*/*/amateur/predictions"
}

View File

@ -0,0 +1,123 @@
import json
import logging
import gzip
from io import BytesIO
import base64
import es
def predict(event, context):
path = "ham-predictions-*/_search"
payload = {
"aggs": {
"2": {
"terms": {
"field": "payload_callsign.keyword",
"order": {
"_key": "desc"
},
"size": 1000
},
"aggs": {
"1": {
"top_hits": {
"_source": True,
"size": 1,
"sort": [
{
"datetime": {
"order": "desc"
}
}
]
}
}
}
}
},
"size": 0,
"stored_fields": [
"*"
],
"script_fields": {},
"docvalue_fields": [
{
"field": "datetime",
"format": "date_time"
}
],
"_source": {
"excludes": []
},
"query": {
"bool": {
"must": [],
"filter": [
{
"range": {
"datetime": {
"gte": "now-6h",
"lte": "now",
"format": "strict_date_optional_time"
}
}
}
],
"should": [
],
"must_not": []
}
}
}
if "queryStringParameters" in event:
if "vehicles" in event["queryStringParameters"] and event["queryStringParameters"]["vehicles"] != "RS_*;*chase" and event["queryStringParameters"]["vehicles"] != "":
for payload_callsign in event["queryStringParameters"]["vehicles"].split(","):
payload["query"]["bool"]["should"].append(
{
"match_phrase": {
"payload_callsign.keyword": payload_callsign
}
}
)
# for single sonde allow longer predictions
payload['query']['bool']['filter'].pop(0)
logging.debug("Start ES Request")
results = es.request(json.dumps(payload), path, "GET")
logging.debug("Finished ES Request")
output = []
for sonde in results['aggregations']['2']['buckets']:
data = sonde['1']['hits']['hits'][0]['_source']
output.append({
"vehicle": data["payload_callsign"],
"time": data['datetime'],
"latitude": data['position'][1],
"longitude": data['position'][0],
"altitude": data['altitude'],
"ascent_rate": data['ascent_rate'],
"descent_rate": data['descent_rate'],
"burst_altitude": data['burst_altitude'],
"descending": 1 if data['descending'] == True else 0,
"landed": 1 if data['landed'] == True else 0,
"data": json.dumps(data['data'])
})
compressed = BytesIO()
with gzip.GzipFile(fileobj=compressed, mode='w') as f:
json_response = json.dumps(output)
f.write(json_response.encode('utf-8'))
gzippedResponse = compressed.getvalue()
return {
"body": base64.b64encode(gzippedResponse).decode(),
"isBase64Encoded": True,
"statusCode": 200,
"headers": {
"Content-Encoding": "gzip",
"content-type": "application/json"
}
}

View File

@ -0,0 +1,7 @@
from . import *
print(predict(
{"queryStringParameters": {
"vehicles": ""
}}, {}
))

View File

@ -0,0 +1,23 @@
This Lambda function will execute every minute to update the predictions in the ElasticSearch database.
Dev notes
--
```
index : predict-YYYY-MM
fields :
serial
type
subtype
datetime
position
altitude
ascent_rate
descent_rate
burst_altitude
descending: bool
landed: bool
data: object
``

View File

@ -0,0 +1,547 @@
import json
from datetime import datetime
import http.client
import math
import logging
from math import radians, degrees, sin, cos, atan2, sqrt, pi
import es
import asyncio
import functools
# FLIGHT PROFILE DEFAULTS
#
# If we have no better estimates for flight profile, use these:
PREDICT_DEFAULTS = {'ascent_rate': 5.0, 'burst_altitude': 26000.0, 'descent_rate': 6.0}
# For some sonde types we can make better assumptions
SONDE_TYPE_PREDICT_DEFAULTS = {
}
#
# LAUNCH SITE ALLOCATION SETTINGS
#
# Immediately allocate a launch site if it is within this distance (straight line)
# of a known launch site.
LAUNCH_ALLOCATE_RANGE_MIN = 4000 # metres
LAUNCH_ALLOCATE_RANGE_MAX = 30000 # metres
LAUNCH_ALLOCATE_RANGE_SCALING = 1.5 # Scaling factor - launch allocation range is min(current alt * this value , launch allocate range max)
# Do not run predictions if the ascent or descent rate is less than this value
ASCENT_RATE_THRESHOLD = 0.8
def flight_profile_by_type(sonde_type):
"""
Determine the appropriate flight profile based on radiosonde type
"""
for _def_type in SONDE_TYPE_PREDICT_DEFAULTS:
if _def_type in sonde_type:
return SONDE_TYPE_PREDICT_DEFAULTS[_def_type].copy()
return PREDICT_DEFAULTS.copy()
def getDensity(altitude):
"""
Calculate the atmospheric density for a given altitude in metres.
This is a direct port of the oziplotter Atmosphere class
"""
# Constants
airMolWeight = 28.9644 # Molecular weight of air
densitySL = 1.225 # Density at sea level [kg/m3]
pressureSL = 101325 # Pressure at sea level [Pa]
temperatureSL = 288.15 # Temperature at sea level [deg K]
gamma = 1.4
gravity = 9.80665 # Acceleration of gravity [m/s2]
tempGrad = -0.0065 # Temperature gradient [deg K/m]
RGas = 8.31432 # Gas constant [kg/Mol/K]
R = 287.053
deltaTemperature = 0.0
# Lookup Tables
altitudes = [0, 11000, 20000, 32000, 47000, 51000, 71000, 84852]
pressureRels = [
1,
2.23361105092158e-1,
5.403295010784876e-2,
8.566678359291667e-3,
1.0945601337771144e-3,
6.606353132858367e-4,
3.904683373343926e-5,
3.6850095235747942e-6,
]
temperatures = [288.15, 216.65, 216.65, 228.65, 270.65, 270.65, 214.65, 186.946]
tempGrads = [-6.5, 0, 1, 2.8, 0, -2.8, -2, 0]
gMR = gravity * airMolWeight / RGas
# Pick a region to work in
i = 0
if altitude > 0:
while altitude > altitudes[i + 1]:
i = i + 1
# Lookup based on region
baseTemp = temperatures[i]
tempGrad = tempGrads[i] / 1000.0
pressureRelBase = pressureRels[i]
deltaAltitude = altitude - altitudes[i]
temperature = baseTemp + tempGrad * deltaAltitude
# Calculate relative pressure
if math.fabs(tempGrad) < 1e-10:
pressureRel = pressureRelBase * math.exp(
-1 * gMR * deltaAltitude / 1000.0 / baseTemp
)
else:
pressureRel = pressureRelBase * math.pow(
baseTemp / temperature, gMR / tempGrad / 1000.0
)
# Add temperature offset
temperature = temperature + deltaTemperature
# Finally, work out the density...
speedOfSound = math.sqrt(gamma * R * temperature)
pressure = pressureRel * pressureSL
density = densitySL * pressureRel * temperatureSL / temperature
return density
def seaLevelDescentRate(descent_rate, altitude):
""" Calculate the descent rate at sea level, for a given descent rate at altitude """
rho = getDensity(altitude)
return math.sqrt((rho / 1.225) * math.pow(descent_rate, 2))
# Earthmaths code by Daniel Richman (thanks!)
# Copyright 2012 (C) Daniel Richman; GNU GPL 3
def position_info(listener, balloon):
"""
Calculate and return information from 2 (lat, lon, alt) tuples
Returns a dict with:
- angle at centre
- great circle distance
- distance in a straight line
- bearing (azimuth or initial course)
- elevation (altitude)
Input and output latitudes, longitudes, angles, bearings and elevations are
in degrees, and input altitudes and output distances are in meters.
"""
# Earth:
radius = 6371000.0
(lat1, lon1, alt1) = listener
(lat2, lon2, alt2) = balloon
lat1 = radians(lat1)
lat2 = radians(lat2)
lon1 = radians(lon1)
lon2 = radians(lon2)
# Calculate the bearing, the angle at the centre, and the great circle
# distance using Vincenty's_formulae with f = 0 (a sphere). See
# http://en.wikipedia.org/wiki/Great_circle_distance#Formulas and
# http://en.wikipedia.org/wiki/Great-circle_navigation and
# http://en.wikipedia.org/wiki/Vincenty%27s_formulae
d_lon = lon2 - lon1
sa = cos(lat2) * sin(d_lon)
sb = (cos(lat1) * sin(lat2)) - (sin(lat1) * cos(lat2) * cos(d_lon))
bearing = atan2(sa, sb)
aa = sqrt((sa ** 2) + (sb ** 2))
ab = (sin(lat1) * sin(lat2)) + (cos(lat1) * cos(lat2) * cos(d_lon))
angle_at_centre = atan2(aa, ab)
great_circle_distance = angle_at_centre * radius
# Armed with the angle at the centre, calculating the remaining items
# is a simple 2D triangley circley problem:
# Use the triangle with sides (r + alt1), (r + alt2), distance in a
# straight line. The angle between (r + alt1) and (r + alt2) is the
# angle at the centre. The angle between distance in a straight line and
# (r + alt1) is the elevation plus pi/2.
# Use sum of angle in a triangle to express the third angle in terms
# of the other two. Use sine rule on sides (r + alt1) and (r + alt2),
# expand with compound angle formulae and solve for tan elevation by
# dividing both sides by cos elevation
ta = radius + alt1
tb = radius + alt2
ea = (cos(angle_at_centre) * tb) - ta
eb = sin(angle_at_centre) * tb
elevation = atan2(ea, eb)
# Use cosine rule to find unknown side.
distance = sqrt((ta ** 2) + (tb ** 2) - 2 * tb * ta * cos(angle_at_centre))
# Give a bearing in range 0 <= b < 2pi
if bearing < 0:
bearing += 2 * pi
return {
"listener": listener,
"balloon": balloon,
"listener_radians": (lat1, lon1, alt1),
"balloon_radians": (lat2, lon2, alt2),
"angle_at_centre": degrees(angle_at_centre),
"angle_at_centre_radians": angle_at_centre,
"bearing": degrees(bearing),
"bearing_radians": bearing,
"great_circle_distance": great_circle_distance,
"straight_distance": distance,
"elevation": degrees(elevation),
"elevation_radians": elevation,
}
def get_standard_prediction(timestamp, latitude, longitude, altitude, current_rate=5.0, ascent_rate=PREDICT_DEFAULTS['ascent_rate'], burst_altitude=PREDICT_DEFAULTS['burst_altitude'], descent_rate=PREDICT_DEFAULTS['descent_rate']):
"""
Request a standard flight path prediction from Tawhiri.
Notes:
- The burst_altitude must be higher than the current altitude.
- Longitude is in the range 0-360.0
- All ascent/descent rates must be positive.
"""
# Bomb out if the rates are too low.
if ascent_rate < ASCENT_RATE_THRESHOLD:
return None
if descent_rate < ASCENT_RATE_THRESHOLD:
return None
# Shift longitude into the appropriate range for Tawhiri
if longitude < 0:
longitude += 360.0
# Generate the prediction URL
url = f"/api/v1/?launch_latitude={latitude}&launch_longitude={longitude}&launch_datetime={timestamp}&launch_altitude={altitude:.2f}&ascent_rate={ascent_rate:.2f}&burst_altitude={burst_altitude:.2f}&descent_rate={descent_rate:.2f}"
logging.debug(url)
conn = http.client.HTTPSConnection("tawhiri.v2.sondehub.org")
conn.request("GET", url)
res = conn.getresponse()
data = res.read()
if res.code != 200:
logging.debug(data)
return None
pred_data = json.loads(data.decode("utf-8"))
path = []
if 'prediction' in pred_data:
for stage in pred_data['prediction']:
# Probably don't need to worry about this, it should only result in one or two points
# in 'ascent'.
if stage['stage'] == 'ascent' and current_rate < 0: # ignore ascent stage if we have already burst
continue
else:
for item in stage['trajectory']:
path.append({
"time": int(datetime.fromisoformat(item['datetime'].split(".")[0].replace("Z","")).timestamp()),
"lat": item['latitude'],
"lon": item['longitude'] - 360 if item['longitude'] > 180 else item['longitude'],
"alt": item['altitude'],
})
pred_data['path'] = path
return pred_data
else:
return None
def bulk_upload_es(index_prefix,payloads):
body=""
for payload in payloads:
body += "{\"index\":{}}\n" + json.dumps(payload) + "\n"
body += "\n"
date_prefix = datetime.now().strftime("%Y-%m")
result = es.request(body, f"{index_prefix}-{date_prefix}/_doc/_bulk", "POST")
if 'errors' in result and result['errors'] == True:
error_types = [x['index']['error']['type'] for x in result['items'] if 'error' in x['index']] # get all the error types
error_types = [a for a in error_types if a != 'mapper_parsing_exception'] # filter out mapper failures since they will never succeed
if error_types:
print(result)
raise RuntimeError
def predict(event, context):
# Use asyncio.run to synchronously "await" an async function
result = asyncio.run(predict_async(event, context))
return result
async def predict_async(event, context):
sem = asyncio.Semaphore(5)
path = "ham-telm-*/_search"
payload = {
"aggs": {
"2": {
"terms": {
"field": "payload_callsign.keyword",
"order": {
"_key": "desc"
},
"size": 1000
},
"aggs": {
"3": {
"date_histogram": {
"field": "datetime",
"fixed_interval": "5s"
},
"aggs": {
"1": {
"top_hits": {
"docvalue_fields": [
{
"field": "alt"
}
],
"_source": "alt",
"size": 1,
"sort": [
{
"datetime": {
"order": "desc"
}
}
]
}
},
"4": {
"serial_diff": {
"buckets_path": "4-metric",
"gap_policy": "skip",
"lag": 5
}
},
"5": {
"top_hits": {
"docvalue_fields": [
{
"field": "position"
}
],
"_source": {"includes": ["position", "type", "subtype"]},
"size": 1,
"sort": [
{
"datetime": {
"order": "desc"
}
}
]
}
},
"4-metric": {
"avg": {
"field": "alt"
}
}
}
}
}
}
},
"size": 0,
"stored_fields": [
"*"
],
"script_fields": {},
"docvalue_fields": [
{
"field": "@timestamp",
"format": "date_time"
},
{
"field": "datetime",
"format": "date_time"
},
{
"field": "log_date",
"format": "date_time"
},
{
"field": "time_received",
"format": "date_time"
},
{
"field": "time_server",
"format": "date_time"
},
{
"field": "time_uploaded",
"format": "date_time"
}
],
"_source": {
"excludes": []
},
"query": {
"bool": {
"must": [],
"filter": [
{
"match_all": {}
},
{
"range": {
"datetime": {
"gte": "now-10m",
"lte": "now",
"format": "strict_date_optional_time"
}
}
}
],
"should": [],
"must_not": [
{
"match_phrase": {
"software_name": "SondehubV1"
}
}
]
}
},
"size": 0
}
logging.debug("Start ES Request")
results = es.request(json.dumps(payload), path, "GET")
logging.debug("Finished ES Request")
serials = { }
for x in results['aggregations']['2']['buckets']:
try:
serials[x['key']] = {
"alt": sorted(x['3']['buckets'], key=lambda k: k['key_as_string'])[-1]['1']['hits']['hits'][0]['fields']['alt'][0],
"position": sorted(x['3']['buckets'], key=lambda k: k['key_as_string'])[-1]['5']['hits']['hits'][0]['fields']['position'][0].split(","),
"rate": sorted(x['3']['buckets'], key=lambda k: k['key_as_string'])[-1]['4']['value']/25, # as we bucket for every 5 seconds with a lag of 5
"time": sorted(x['3']['buckets'], key=lambda k: k['key_as_string'])[-1]['key_as_string']
}
except:
pass
serial_data={}
logging.debug("Start Predict")
jobs=[]
for serial in serials:
jobs.append(run_predictions_for_serial(sem, serial, serials[serial]))
output = await asyncio.gather(*jobs)
for data in output:
if data:
serial_data[data[0]] = data[1]
logging.debug("Stop Predict")
# Collate and upload forward predictions
output = []
for serial in serial_data:
value = serial_data[serial]
if value is not None:
output.append(
{
"payload_callsign": serial,
"datetime": value['request']['launch_datetime'],
"position": [
value['request']['launch_longitude'] - 360 if value['request']['launch_longitude'] > 180 else value['request']['launch_longitude'],
value['request']['launch_latitude']
],
"altitude": value['request']['launch_altitude'],
"ascent_rate": value['request']['ascent_rate'],
"descent_rate": value['request']['descent_rate'],
"burst_altitude": value['request']['burst_altitude'],
"descending": True if serials[serial]['rate'] < 0 else False,
"landed": False, # I don't think this gets used anywhere?
"data": value['path']
}
)
if len(output) > 0:
bulk_upload_es("ham-predictions", output)
logging.debug("Finished")
return
async def run_predictions_for_serial(sem, serial, value):
async with sem:
loop = asyncio.get_event_loop()
#
# Flight Profile selection
#
# Fallback Option - use flight profile data based on sonde type.
_flight_profile = flight_profile_by_type("")
#print(value)
#print(_flight_profile)
logging.debug(f"Running prediction for {serial} using flight profile {str(_flight_profile)}.")
# skip when close to 0.
if value['rate'] < ASCENT_RATE_THRESHOLD and value['rate'] > -ASCENT_RATE_THRESHOLD:
logging.debug(f"Skipping {serial} due to ascent rate limiting.")
return False
# Determine current ascent rate
# If the value is < 0.5 (e.g. we are on descent, or not moving), we just use a default value.
ascent_rate=value['rate'] if value['rate'] > ASCENT_RATE_THRESHOLD else _flight_profile['ascent_rate']
# If we are on descent, estimate the sea-level descent rate from the current descent rate
# Otherwise, use the flight profile descent rate
descent_rate= seaLevelDescentRate(abs(value['rate']),value['alt']) if value['rate'] < 0 else _flight_profile['descent_rate']
# If the resultant sea-level descent rate is very small, it means we're probably landed
# so dont run a prediction for this sonde.
if descent_rate < ASCENT_RATE_THRESHOLD:
return False
# Now to determine the burst altitude
if value['rate'] < 0:
# On descent (rate < 0), we need to set the burst altitude just higher than our current altitude for
# the predictor to be happy
burst_altitude = value['alt']+0.05
else:
# Otherwise, on ascent we either use the expected burst altitude, or we
# add a little bit on to our current altitude.
burst_altitude = (value['alt']+0.05) if value['alt'] > _flight_profile['burst_altitude'] else _flight_profile['burst_altitude']
longitude = float(value['position'][1].strip())
latitude = float(value['position'][0].strip())
#print(f"Prediction Parameters for {serial} at {latitude}, {longitude}, {value['alt']}: {ascent_rate}/{burst_altitude}/{descent_rate}")
# Run prediction! This will return None if there is an error
return [serial, await loop.run_in_executor(None, functools.partial(get_standard_prediction,
value['time'],
latitude,
longitude,
value['alt'],
current_rate=value['rate'],
ascent_rate=ascent_rate,
burst_altitude=burst_altitude,
descent_rate=descent_rate
))]

View File

@ -0,0 +1,43 @@
from . import *
# Predictor test
# conn = http.client.HTTPSConnection("tawhiri.v2.sondehub.org")
# _now = datetime.utcnow().isoformat() + "Z"
# _ascent = get_standard_prediction(conn, _now, -34.0, 138.0, 10.0, burst_altitude=26000)
# print(f"Got {len(_ascent)} data points for ascent prediction.")
# _descent = get_standard_prediction(conn, _now, -34.0, 138.0, 24000.0, burst_altitude=24000.5)
# print(f"Got {len(_descent)} data points for descent prediction.")
# test = predict(
# {},{}
# )
#print(get_launch_sites())
#print(get_reverse_predictions())
# for _serial in test:
# print(f"{_serial['serial']}: {len(_serial['data'])}")
logging.basicConfig(
format="%(asctime)s %(levelname)s:%(message)s", level=logging.DEBUG
)
print(predict(
{},{}
))
# bulk_upload_es("reverse-prediction",[{
# "datetime" : "2021-10-04",
# "data" : { },
# "serial" : "R12341234",
# "station" : "-2",
# "subtype" : "RS41-SGM",
# "ascent_rate" : "5",
# "alt" : 1000,
# "position" : [
# 1,
# 2
# ],
# "type" : "RS41"
# }]
# )