2021-02-22 06:13:30 +00:00
import boto3
import botocore . credentials
from botocore . awsrequest import AWSRequest
from botocore . endpoint import URLLib3Session
from botocore . auth import SigV4Auth
import json
import os
from datetime import datetime , timedelta , timezone
import sys , traceback
import http . client
2021-03-22 09:25:58 +00:00
import math
2021-02-22 06:13:30 +00:00
HOST = os . getenv ( " ES " )
2021-03-22 09:25:58 +00:00
def getDensity ( altitude ) :
"""
Calculate the atmospheric density for a given altitude in metres .
This is a direct port of the oziplotter Atmosphere class
"""
# Constants
airMolWeight = 28.9644 # Molecular weight of air
densitySL = 1.225 # Density at sea level [kg/m3]
pressureSL = 101325 # Pressure at sea level [Pa]
temperatureSL = 288.15 # Temperature at sea level [deg K]
gamma = 1.4
gravity = 9.80665 # Acceleration of gravity [m/s2]
tempGrad = - 0.0065 # Temperature gradient [deg K/m]
RGas = 8.31432 # Gas constant [kg/Mol/K]
R = 287.053
deltaTemperature = 0.0
# Lookup Tables
altitudes = [ 0 , 11000 , 20000 , 32000 , 47000 , 51000 , 71000 , 84852 ]
pressureRels = [
1 ,
2.23361105092158e-1 ,
5.403295010784876e-2 ,
8.566678359291667e-3 ,
1.0945601337771144e-3 ,
6.606353132858367e-4 ,
3.904683373343926e-5 ,
3.6850095235747942e-6 ,
]
temperatures = [ 288.15 , 216.65 , 216.65 , 228.65 , 270.65 , 270.65 , 214.65 , 186.946 ]
tempGrads = [ - 6.5 , 0 , 1 , 2.8 , 0 , - 2.8 , - 2 , 0 ]
gMR = gravity * airMolWeight / RGas
# Pick a region to work in
i = 0
if altitude > 0 :
while altitude > altitudes [ i + 1 ] :
i = i + 1
# Lookup based on region
baseTemp = temperatures [ i ]
tempGrad = tempGrads [ i ] / 1000.0
pressureRelBase = pressureRels [ i ]
deltaAltitude = altitude - altitudes [ i ]
temperature = baseTemp + tempGrad * deltaAltitude
# Calculate relative pressure
if math . fabs ( tempGrad ) < 1e-10 :
pressureRel = pressureRelBase * math . exp (
- 1 * gMR * deltaAltitude / 1000.0 / baseTemp
)
else :
pressureRel = pressureRelBase * math . pow (
baseTemp / temperature , gMR / tempGrad / 1000.0
)
# Add temperature offset
temperature = temperature + deltaTemperature
# Finally, work out the density...
speedOfSound = math . sqrt ( gamma * R * temperature )
pressure = pressureRel * pressureSL
density = densitySL * pressureRel * temperatureSL / temperature
return density
def seaLevelDescentRate ( descent_rate , altitude ) :
""" Calculate the descent rate at sea level, for a given descent rate at altitude """
rho = getDensity ( altitude )
return math . sqrt ( ( rho / 1.225 ) * math . pow ( descent_rate , 2 ) )
2021-02-22 06:13:30 +00:00
def predict ( event , context ) :
path = " telm-*/_search "
payload = {
" aggs " : {
" 2 " : {
" terms " : {
" field " : " serial.keyword " ,
" order " : {
" _key " : " desc "
} ,
" size " : 1000
} ,
" aggs " : {
" 3 " : {
" date_histogram " : {
" field " : " datetime " ,
2021-03-22 08:29:37 +00:00
" fixed_interval " : " 5s "
2021-02-22 06:13:30 +00:00
} ,
" aggs " : {
" 1 " : {
" top_hits " : {
" docvalue_fields " : [
{
" field " : " alt "
}
] ,
" _source " : " alt " ,
" size " : 1 ,
" sort " : [
{
" datetime " : {
" order " : " desc "
}
}
]
}
} ,
" 4 " : {
" serial_diff " : {
2021-03-22 08:29:37 +00:00
" buckets_path " : " 4-metric " ,
" gap_policy " : " skip " ,
" lag " : 5
2021-02-22 06:13:30 +00:00
}
} ,
" 5 " : {
" top_hits " : {
" docvalue_fields " : [
{
" field " : " position "
}
] ,
" _source " : " position " ,
" size " : 1 ,
" sort " : [
{
" datetime " : {
" order " : " desc "
}
}
]
}
} ,
" 4-metric " : {
" avg " : {
" field " : " alt "
}
}
}
}
}
}
} ,
" size " : 0 ,
" stored_fields " : [
" * "
] ,
" script_fields " : { } ,
" docvalue_fields " : [
{
" field " : " @timestamp " ,
" format " : " date_time "
} ,
{
" field " : " datetime " ,
" format " : " date_time "
} ,
{
" field " : " log_date " ,
" format " : " date_time "
} ,
{
" field " : " time_received " ,
" format " : " date_time "
} ,
{
" field " : " time_server " ,
" format " : " date_time "
} ,
{
" field " : " time_uploaded " ,
" format " : " date_time "
}
] ,
" _source " : {
" excludes " : [ ]
} ,
" query " : {
" bool " : {
" must " : [ ] ,
" filter " : [
{
" match_all " : { }
} ,
{
" range " : {
" datetime " : {
" gte " : " now-1h " ,
" lte " : " now " ,
" format " : " strict_date_optional_time "
}
}
}
] ,
" should " : [ ] ,
2021-03-22 08:29:37 +00:00
" must_not " : [
{
" match_phrase " : {
" software_name " : " SondehubV1 "
}
}
]
2021-02-22 06:13:30 +00:00
}
}
}
if " queryStringParameters " in event :
2021-03-13 11:19:52 +00:00
if " vehicles " in event [ " queryStringParameters " ] and event [ " queryStringParameters " ] [ " vehicles " ] != " RS_*;*chase " and event [ " queryStringParameters " ] [ " vehicles " ] != " " :
2021-02-22 06:13:30 +00:00
payload [ " query " ] [ " bool " ] [ " filter " ] . append (
{
" match_phrase " : {
" serial " : str ( event [ " queryStringParameters " ] [ " vehicles " ] )
}
}
)
results = es_request ( payload , path , " GET " )
serials = { }
for x in results [ ' aggregations ' ] [ ' 2 ' ] [ ' buckets ' ] :
try :
serials [ x [ ' key ' ] ] = {
" alt " : sorted ( x [ ' 3 ' ] [ ' buckets ' ] , key = lambda k : k [ ' key_as_string ' ] ) [ - 1 ] [ ' 1 ' ] [ ' hits ' ] [ ' hits ' ] [ 0 ] [ ' fields ' ] [ ' alt ' ] [ 0 ] ,
" position " : sorted ( x [ ' 3 ' ] [ ' buckets ' ] , key = lambda k : k [ ' key_as_string ' ] ) [ - 1 ] [ ' 5 ' ] [ ' hits ' ] [ ' hits ' ] [ 0 ] [ ' fields ' ] [ ' position ' ] [ 0 ] . split ( " , " ) ,
2021-03-22 08:29:37 +00:00
" rate " : sorted ( x [ ' 3 ' ] [ ' buckets ' ] , key = lambda k : k [ ' key_as_string ' ] ) [ - 1 ] [ ' 4 ' ] [ ' value ' ] / 25 , # as we bucket for every 5 seconds with a lag of 5
2021-02-22 06:13:30 +00:00
" time " : sorted ( x [ ' 3 ' ] [ ' buckets ' ] , key = lambda k : k [ ' key_as_string ' ] ) [ - 1 ] [ ' key_as_string ' ]
}
except :
pass
conn = http . client . HTTPSConnection ( " predict.cusf.co.uk " )
serial_data = { }
for serial in serials :
value = serials [ serial ]
ascent_rate = value [ ' rate ' ] if value [ ' rate ' ] > 0 else 5 # this shouldn't really be used but it makes the API happy
2021-03-22 09:25:58 +00:00
descent_rate = seaLevelDescentRate ( abs ( value [ ' rate ' ] ) , value [ ' alt ' ] ) if value [ ' rate ' ] < 0 else 6
2021-03-14 07:02:07 +00:00
if value [ ' rate ' ] < 0 :
burst_altitude = value [ ' alt ' ] + 0.05
else :
burst_altitude = ( value [ ' alt ' ] + 0.05 ) if value [ ' alt ' ] > 26000 else 26000
2021-03-28 04:53:03 +00:00
url = f " /api/v1/?launch_latitude= { value [ ' position ' ] [ 0 ] . strip ( ) } &launch_longitude= { float ( value [ ' position ' ] [ 1 ] . strip ( ) ) + 180 } &launch_datetime= { value [ ' time ' ] } &launch_altitude= { value [ ' alt ' ] } &ascent_rate= { ascent_rate } &burst_altitude= { burst_altitude } &descent_rate= { descent_rate } "
print ( url )
conn . request ( " GET " , url
2021-02-22 06:13:30 +00:00
)
res = conn . getresponse ( )
data = res . read ( )
serial_data [ serial ] = json . loads ( data . decode ( " utf-8 " ) )
output = [ ]
for serial in serial_data :
value = serial_data [ serial ]
data = [ ]
for stage in value [ ' prediction ' ] :
if stage [ ' stage ' ] == ' ascent ' and serials [ serial ] [ ' rate ' ] < 0 : # ignore ascent stage if we have already burst
continue
else :
for item in stage [ ' trajectory ' ] :
data . append ( {
2021-03-13 11:19:52 +00:00
" time " : int ( datetime . fromisoformat ( item [ ' datetime ' ] . split ( " . " ) [ 0 ] . replace ( " Z " , " " ) ) . timestamp ( ) ) ,
2021-02-22 06:13:30 +00:00
" lat " : item [ ' latitude ' ] ,
2021-03-22 08:29:37 +00:00
" lon " : item [ ' longitude ' ] - 180 ,
2021-02-22 06:13:30 +00:00
" alt " : item [ ' altitude ' ] ,
} )
output . append ( {
" vehicle " : serial ,
" time " : value [ ' request ' ] [ ' launch_datetime ' ] ,
" latitude " : value [ ' request ' ] [ ' launch_latitude ' ] ,
2021-03-22 08:29:37 +00:00
" longitude " : value [ ' request ' ] [ ' launch_longitude ' ] ,
2021-02-22 06:13:30 +00:00
" altitude " : value [ ' request ' ] [ ' launch_altitude ' ] ,
" ascent_rate " : value [ ' request ' ] [ ' ascent_rate ' ] ,
" descent_rate " : value [ ' request ' ] [ ' descent_rate ' ] ,
" burst_altitude " : value [ ' request ' ] [ ' burst_altitude ' ] ,
" landed " : 0 ,
" data " : json . dumps ( data )
} )
return json . dumps ( output )
def es_request ( payload , path , method ) :
# get aws creds
session = boto3 . Session ( )
params = json . dumps ( payload )
headers = { " Host " : HOST , " Content-Type " : " application/json " }
request = AWSRequest (
method = " POST " , url = f " https:// { HOST } / { path } " , data = params , headers = headers
)
SigV4Auth ( boto3 . Session ( ) . get_credentials ( ) , " es " , " us-east-1 " ) . add_auth ( request )
session = URLLib3Session ( )
r = session . send ( request . prepare ( ) )
return json . loads ( r . text )
if __name__ == " __main__ " :
# print(get_sondes({"queryStringParameters":{"lat":"-28.22717","lon":"153.82996","distance":"50000"}}, {}))
# mode: 6hours
# type: positions
# format: json
# max_positions: 0
# position_id: 0
# vehicles: RS_*;*chase
print (
2021-03-22 08:29:37 +00:00
predict (
{ " queryStringParameters " : {
2021-03-28 04:53:03 +00:00
" vehicles " : " P4930339 "
2021-03-22 08:29:37 +00:00
} } , { }
2021-02-22 06:13:30 +00:00
)
)
# get list of sondes, serial, lat,lon, alt
# and current rate
# for each one, request http://predict.cusf.co.uk/api/v1/?launch_latitude=-37.8136&launch_longitude=144.9631&launch_datetime=2021-02-22T00:15:18.513413Z&launch_altitude=30000&ascent_rate=5&burst_altitude=30000.1&descent_rate=5
# have to set the burst alt slightly higher than the launch