mirror of
https://github.com/servalproject/serval-dna.git
synced 2025-01-18 10:46:23 +00:00
260 lines
6.6 KiB
C
260 lines
6.6 KiB
C
/*
|
|
Serval Distributed Numbering Architecture (DNA)
|
|
Copyright (C) 2010 Paul Gardner-Stephen
|
|
|
|
This program is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU General Public License
|
|
as published by the Free Software Foundation; either version 2
|
|
of the License, or (at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
*/
|
|
|
|
#include "serval.h"
|
|
#include <ctype.h>
|
|
|
|
char hexdigit[16] = {'0','1','2','3','4','5','6','7','8','9','A','B','C','D','E','F'};
|
|
|
|
char *tohex(char *dstHex, const unsigned char *srcBinary, size_t bytes)
|
|
{
|
|
char *p;
|
|
for (p = dstHex; bytes--; ++srcBinary) {
|
|
*p++ = hexdigit[*srcBinary >> 4];
|
|
*p++ = hexdigit[*srcBinary & 0xf];
|
|
}
|
|
*p = '\0';
|
|
return dstHex;
|
|
}
|
|
|
|
size_t fromhex(unsigned char *dstBinary, const char *srcHex, size_t bytes)
|
|
{
|
|
size_t count = 0;
|
|
while (count != bytes) {
|
|
unsigned char high = hexvalue(*srcHex++);
|
|
if (high & 0xf0) return -1;
|
|
unsigned char low = hexvalue(*srcHex++);
|
|
if (low & 0xf0) return -1;
|
|
dstBinary[count++] = (high << 4) + low;
|
|
}
|
|
return count;
|
|
}
|
|
|
|
int fromhexstr(unsigned char *dstBinary, const char *srcHex, size_t bytes)
|
|
{
|
|
return (fromhex(dstBinary, srcHex, bytes) == bytes && srcHex[bytes * 2] == '\0') ? 0 : -1;
|
|
}
|
|
|
|
int extractDid(unsigned char *packet,int *ofs,char *did)
|
|
{
|
|
int d=0;
|
|
int highP=1;
|
|
int nybl;
|
|
|
|
nybl=0;
|
|
while(nybl!=0xf&&(*ofs<(OFS_SIDDIDFIELD+SIDDIDFIELD_LEN))&&(d<64))
|
|
{
|
|
if (highP) nybl=packet[*ofs]>>4; else nybl=packet[*ofs]&0xf;
|
|
if (nybl<0xa) did[d++]='0'+nybl;
|
|
else
|
|
switch(nybl) {
|
|
case 0xa: did[d++]='*'; break;
|
|
case 0xb: did[d++]='#'; break;
|
|
case 0xc: did[d++]='+'; break;
|
|
}
|
|
if (highP) highP=0; else { (*ofs)++; highP=1; }
|
|
}
|
|
if (d>63) return WHY("DID too long");
|
|
did[d]=0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int stowDid(unsigned char *packet,int *ofs,char *did)
|
|
{
|
|
int highP=1;
|
|
int nybl;
|
|
int d=0;
|
|
int len=0;
|
|
if (debug&DEBUG_PACKETFORMATS) printf("Packing DID \"%s\"\n",did);
|
|
|
|
while(did[d]&&(d<DID_MAXSIZE))
|
|
{
|
|
switch(did[d])
|
|
{
|
|
case '0': case '1': case '2': case '3': case '4':
|
|
case '5': case '6': case '7': case '8': case '9':
|
|
nybl=did[d]-'0'; break;
|
|
case '*': nybl=0xa; break;
|
|
case '#': nybl=0xb; break;
|
|
case '+': nybl=0xc; break;
|
|
default:
|
|
WHY("Illegal digits in DID number");
|
|
return -1;
|
|
}
|
|
if (highP) { packet[*ofs]=nybl<<4; highP=0; }
|
|
else {
|
|
packet[(*ofs)++]|=nybl; highP=1;
|
|
len++;
|
|
}
|
|
d++;
|
|
}
|
|
if (d>=DID_MAXSIZE)
|
|
{
|
|
WHY("DID number too long");
|
|
return -1;
|
|
}
|
|
/* Append end of number code, filling the whole byte for fast and easy comparison */
|
|
if (highP) packet[(*ofs)++]=0xff;
|
|
else packet[(*ofs)++]|=0x0f;
|
|
len++;
|
|
|
|
/* Fill remainder of field with randomness to protect any encryption */
|
|
for(;len<SID_SIZE;len++) packet[(*ofs)++]=random()&0xff;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int extractSid(unsigned char *packet, int *ofs,char *sid)
|
|
{
|
|
(void) tohex(sid, packet + *ofs, SID_SIZE);
|
|
*ofs += SID_SIZE;
|
|
return 0;
|
|
}
|
|
|
|
int validateSid(const char *sid)
|
|
{
|
|
if (!sid) {
|
|
WHY("invalid SID == NULL");
|
|
return 0;
|
|
}
|
|
if (strcasecmp(sid, "broadcast") == 0)
|
|
return 1;
|
|
const char *s = sid;
|
|
const char *e = sid + SID_STRLEN;
|
|
while (s != e && isxdigit(*s))
|
|
++s;
|
|
if (s != e) {
|
|
if (*s)
|
|
WHYF("invalid SID, contains non-hex character 0x%02x at offset %d", *s, s - sid);
|
|
else
|
|
WHYF("invalid SID, too short (strlen %d)", s - sid);
|
|
return 0;
|
|
}
|
|
if (*s) {
|
|
WHYF("invalid SID, too long");
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
int stowSid(unsigned char *packet, int ofs, const char *sid)
|
|
{
|
|
if (debug & DEBUG_PACKETFORMATS)
|
|
printf("stowing SID \"%s\"\n", sid);
|
|
if (strcasecmp(sid,"broadcast") == 0)
|
|
memset(packet + ofs, 0xff, SID_SIZE);
|
|
else if (fromhex(packet + ofs, sid, SID_SIZE) != SID_SIZE || sid[SID_STRLEN] != '\0')
|
|
return WHY("invalid SID");
|
|
return 0;
|
|
}
|
|
|
|
char *str_toupper_inplace(char *str)
|
|
{
|
|
register char *s;
|
|
for (s = str; *s; ++s)
|
|
*s = toupper(*s);
|
|
return str;
|
|
}
|
|
|
|
int hexvalue(unsigned char c)
|
|
{
|
|
if (c >= '0' && c <= '9') return c - '0';
|
|
if (c >= 'A' && c <= 'F') return c - 'A' + 10;
|
|
if (c >= 'a' && c <= 'f') return c - 'a' + 10;
|
|
return -1;
|
|
}
|
|
|
|
int packetGetID(unsigned char *packet,int len,char *did,char *sid)
|
|
{
|
|
int ofs=HEADERFIELDS_LEN;
|
|
|
|
switch(packet[ofs])
|
|
{
|
|
case 0: /* DID */
|
|
ofs++;
|
|
if (extractDid(packet,&ofs,did)) return WHY("Could not decode DID");
|
|
if (debug&DEBUG_PACKETFORMATS) fprintf(stderr,"Decoded DID as %s\n",did);
|
|
return 0;
|
|
break;
|
|
case 1: /* SID */
|
|
ofs++;
|
|
if (len<(OFS_SIDDIDFIELD+SID_SIZE)) return WHY("Packet too short");
|
|
if (extractSid(packet,&ofs,sid)) return WHY("Could not decode SID");
|
|
return 0;
|
|
break;
|
|
default: /* no idea */
|
|
return WHY("Unknown ID key");
|
|
break;
|
|
}
|
|
|
|
return WHY("Impossible event #1 just occurred");
|
|
}
|
|
|
|
/*
|
|
One of the goals of our packet format is to make it very difficult to mount a known plain-text
|
|
attack against the ciphered part of the packet.
|
|
One defence is to make sure that no fixed fields are actually left zero.
|
|
We accomplish this by filling "zero" fields with randomised data that meets a simple test condition.
|
|
We have chosen to use the condition that if the modulo 256 sum of the bytes equals zero, then the packet
|
|
is assumed to be zero/empty.
|
|
The following two functions allow us to test this, and also to fill a field with safe "zero" data.
|
|
*/
|
|
|
|
int isFieldZeroP(unsigned char *packet,int start,int count)
|
|
{
|
|
int mod=0;
|
|
int i;
|
|
|
|
for(i=start;i<start+count;i++)
|
|
{
|
|
mod+=packet[i];
|
|
mod&=0xff;
|
|
}
|
|
|
|
if (debug&DEBUG_PACKETFORMATS) {
|
|
if (mod) fprintf(stderr,"Field [%d,%d) is non-zero (mod=0x%02x)\n",start,start+count,mod);
|
|
else fprintf(stderr,"Field [%d,%d) is zero\n",start,start+count);
|
|
}
|
|
|
|
if (mod) return 0; else return 1;
|
|
}
|
|
|
|
int safeZeroField(unsigned char *packet,int start,int count)
|
|
{
|
|
int mod=0;
|
|
int i;
|
|
|
|
if (debug&DEBUG_PACKETFORMATS)
|
|
fprintf(stderr,"Known plain-text counter-measure: safe-zeroing [%d,%d)\n",
|
|
start,start+count);
|
|
|
|
for(i=start;i<(start+count-1);i++)
|
|
{
|
|
packet[i]=random()&0xff;
|
|
mod+=packet[i];
|
|
mod&=0xff;
|
|
}
|
|
/* set final byte so that modulo sum is zero */
|
|
packet[i]=(0x100-mod)&0xff;
|
|
|
|
return 0;
|
|
}
|
|
|