mirror of
https://github.com/servalproject/serval-dna.git
synced 2024-12-27 00:31:09 +00:00
bf9710fd5a
This only affects build_android, if nacl-gcc-prep is run then build/`uname -s` will be created.
117 lines
3.7 KiB
C
117 lines
3.7 KiB
C
/*
|
|
* crypto_core/try.c version 20090118
|
|
* D. J. Bernstein
|
|
* Public domain.
|
|
*/
|
|
|
|
#include <stdlib.h>
|
|
#include "crypto_core.h"
|
|
|
|
extern unsigned char *alignedcalloc(unsigned long long);
|
|
|
|
const char *primitiveimplementation = crypto_core_IMPLEMENTATION;
|
|
|
|
static unsigned char *h;
|
|
static unsigned char *n;
|
|
static unsigned char *k;
|
|
static unsigned char *c;
|
|
static unsigned char *h2;
|
|
static unsigned char *n2;
|
|
static unsigned char *k2;
|
|
static unsigned char *c2;
|
|
|
|
#define hlen crypto_core_OUTPUTBYTES
|
|
#define nlen crypto_core_INPUTBYTES
|
|
#define klen crypto_core_KEYBYTES
|
|
#define clen crypto_core_CONSTBYTES
|
|
|
|
void preallocate(void)
|
|
{
|
|
}
|
|
|
|
void allocate(void)
|
|
{
|
|
h = alignedcalloc(hlen);
|
|
n = alignedcalloc(nlen);
|
|
k = alignedcalloc(klen);
|
|
c = alignedcalloc(clen);
|
|
h2 = alignedcalloc(hlen);
|
|
n2 = alignedcalloc(nlen + crypto_core_OUTPUTBYTES);
|
|
k2 = alignedcalloc(klen + crypto_core_OUTPUTBYTES);
|
|
c2 = alignedcalloc(clen + crypto_core_OUTPUTBYTES);
|
|
}
|
|
|
|
void predoit(void)
|
|
{
|
|
}
|
|
|
|
void doit(void)
|
|
{
|
|
crypto_core(h,n,k,c);
|
|
}
|
|
|
|
static unsigned char newbyte(void)
|
|
{
|
|
unsigned long long x;
|
|
long long j;
|
|
x = 8675309;
|
|
for (j = 0;j < hlen;++j) { x += h[j]; x *= x; x += (x >> 31); }
|
|
for (j = 0;j < nlen;++j) { x += n[j]; x *= x; x += (x >> 31); }
|
|
for (j = 0;j < klen;++j) { x += k[j]; x *= x; x += (x >> 31); }
|
|
for (j = 0;j < clen;++j) { x += c[j]; x *= x; x += (x >> 31); }
|
|
for (j = 0;j < 100;++j) { x += j ; x *= x; x += (x >> 31); }
|
|
return x;
|
|
}
|
|
|
|
char checksum[hlen * 2 + 1];
|
|
|
|
const char *checksum_compute(void)
|
|
{
|
|
long long i;
|
|
long long j;
|
|
|
|
for (i = 0;i < 100;++i) {
|
|
for (j = -16;j < 0;++j) h[j] = random();
|
|
for (j = hlen;j < hlen + 16;++j) h[j] = random();
|
|
for (j = -16;j < hlen + 16;++j) h2[j] = h[j];
|
|
for (j = -16;j < 0;++j) n[j] = random();
|
|
for (j = nlen;j < nlen + 16;++j) n[j] = random();
|
|
for (j = -16;j < nlen + 16;++j) n2[j] = n[j];
|
|
for (j = -16;j < 0;++j) k[j] = random();
|
|
for (j = klen;j < klen + 16;++j) k[j] = random();
|
|
for (j = -16;j < klen + 16;++j) k2[j] = k[j];
|
|
for (j = -16;j < 0;++j) c[j] = random();
|
|
for (j = clen;j < clen + 16;++j) c[j] = random();
|
|
for (j = -16;j < clen + 16;++j) c2[j] = c[j];
|
|
if (crypto_core(h,n,k,c) != 0) return "crypto_core returns nonzero";
|
|
for (j = -16;j < 0;++j) if (h2[j] != h[j]) return "crypto_core writes before output";
|
|
for (j = hlen;j < hlen + 16;++j) if (h2[j] != h[j]) return "crypto_core writes after output";
|
|
for (j = -16;j < klen + 16;++j) if (k2[j] != k[j]) return "crypto_core writes to k";
|
|
for (j = -16;j < nlen + 16;++j) if (n2[j] != n[j]) return "crypto_core writes to n";
|
|
for (j = -16;j < clen + 16;++j) if (c2[j] != c[j]) return "crypto_core writes to c";
|
|
|
|
if (crypto_core(n2,n2,k,c) != 0) return "crypto_core returns nonzero";
|
|
for (j = 0;j < hlen;++j) if (h[j] != n2[j]) return "crypto_core does not handle n overlap";
|
|
for (j = 0;j < hlen;++j) n2[j] = n[j];
|
|
if (crypto_core(k2,n2,k2,c) != 0) return "crypto_core returns nonzero";
|
|
for (j = 0;j < hlen;++j) if (h[j] != k2[j]) return "crypto_core does not handle k overlap";
|
|
for (j = 0;j < hlen;++j) k2[j] = k[j];
|
|
if (crypto_core(c2,n2,k2,c2) != 0) return "crypto_core returns nonzero";
|
|
for (j = 0;j < hlen;++j) if (h[j] != c2[j]) return "crypto_core does not handle c overlap";
|
|
for (j = 0;j < hlen;++j) c2[j] = c[j];
|
|
|
|
for (j = 0;j < nlen;++j) n[j] = newbyte();
|
|
if (crypto_core(h,n,k,c) != 0) return "crypto_core returns nonzero";
|
|
for (j = 0;j < klen;++j) k[j] = newbyte();
|
|
if (crypto_core(h,n,k,c) != 0) return "crypto_core returns nonzero";
|
|
for (j = 0;j < clen;++j) c[j] = newbyte();
|
|
}
|
|
|
|
for (i = 0;i < hlen;++i) {
|
|
checksum[2 * i] = "0123456789abcdef"[15 & (h[i] >> 4)];
|
|
checksum[2 * i + 1] = "0123456789abcdef"[15 & h[i]];
|
|
}
|
|
checksum[2 * i] = 0;
|
|
return 0;
|
|
}
|