serval-dna/rhizome_crypto.c
2016-06-06 22:52:02 +09:30

640 lines
21 KiB
C

/*
Serval DNA - Rhizome cryptographic operations
Copyright (C) 2014 Serval Project Inc.
Copyright (C) 2010 Paul Gardner-Stephen
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include <stdlib.h>
#include <ctype.h>
#include <assert.h>
#include "serval.h"
#include "conf.h"
#include "str.h"
#include "rhizome.h"
#include "crypto.h"
#include "keyring.h"
#include "dataformats.h"
int rhizome_manifest_createid(rhizome_manifest *m)
{
if (crypto_sign_keypair(m->cryptoSignPublic.binary, m->cryptoSignSecret))
return WHY("Failed to create keypair for manifest ID.");
rhizome_manifest_set_id(m, &m->cryptoSignPublic); // will remove any existing BK field
m->haveSecret = NEW_BUNDLE_ID;
return 0;
}
/* Generate a bundle id deterministically from the given seed.
* Then either fetch it from the database or initialise a new empty manifest */
int rhizome_get_bundle_from_seed(rhizome_manifest *m, const char *seed)
{
union {
unsigned char hash[crypto_hash_sha512_BYTES];
rhizome_bk_t bsk;
} u;
crypto_hash_sha512(u.hash, (unsigned char *)seed, strlen(seed));
// The first 256 bits (32 bytes) of the hash will be used as the private key of the BID.
return rhizome_get_bundle_from_secret(m, &u.bsk);
}
/* Generate a bundle id deterministically from the given bundle secret key.
* Then either fetch it from the database or initialise a new empty manifest
*/
int rhizome_get_bundle_from_secret(rhizome_manifest *m, const rhizome_bk_t *bsk)
{
uint8_t sk[crypto_sign_SECRETKEYBYTES];
rhizome_bid_t bid;
crypto_sign_seed_keypair(bid.binary, sk, bsk->binary);
switch (rhizome_retrieve_manifest(&bid, m)) {
case RHIZOME_BUNDLE_STATUS_NEW:
rhizome_manifest_set_id(m, &bid); // zerofills m->cryptoSignSecret
m->haveSecret = NEW_BUNDLE_ID;
break;
case RHIZOME_BUNDLE_STATUS_SAME:
m->haveSecret = EXISTING_BUNDLE_ID;
break;
default:
return -1;
}
bcopy(sk, m->cryptoSignSecret, sizeof m->cryptoSignSecret);
return 0;
}
/* Generate a bundle id deterministically from the given bundle secret key.
* Then initialise a new empty manifest.
*/
void rhizome_new_bundle_from_secret(rhizome_manifest *m, const rhizome_bk_t *bsk)
{
uint8_t sk[crypto_sign_SECRETKEYBYTES];
rhizome_bid_t bid;
crypto_sign_seed_keypair(bid.binary, sk, bsk->binary);
rhizome_manifest_set_id(m, &bid); // zerofills m->cryptoSignSecret
m->haveSecret = NEW_BUNDLE_ID;
bcopy(sk, m->cryptoSignSecret, sizeof m->cryptoSignSecret);
}
/* Given a Rhizome Secret (RS) and bundle ID (BID), XOR a bundle key 'bkin' (private or public) with
* RS##BID. This derives the first 32-bytes of the secret key. The BID itself as
* public key is also the last 32-bytes of the secret key.
*
* @author Andrew Bettison <andrew@servalproject.org>
* @author Paul Gardner-Stephen <paul@servalproject.org>
*/
static int rhizome_bk_xor_stream(
const rhizome_bid_t *bidp,
const unsigned char *rs,
const size_t rs_len,
unsigned char *xor_stream,
size_t xor_stream_byte_count)
{
IN();
if (rs_len<1||rs_len>65536) RETURN(WHY("rs_len invalid"));
if (xor_stream_byte_count<1||xor_stream_byte_count>crypto_hash_sha512_BYTES)
RETURN(WHY("xor_stream_byte_count invalid"));
int combined_len = rs_len + crypto_sign_PUBLICKEYBYTES;
unsigned char buffer[combined_len];
bcopy(&rs[0], &buffer[0], rs_len);
bcopy(&bidp->binary[0], &buffer[rs_len], crypto_sign_PUBLICKEYBYTES);
unsigned char hash[crypto_hash_sha512_BYTES];
crypto_hash_sha512(hash,buffer,combined_len);
bcopy(hash,xor_stream,xor_stream_byte_count);
OUT();
return 0;
}
/* CryptoSign Secret Keys in cupercop-20120525 onwards have the public key as the second half of the
* secret key. The public key is the BID, so this simplifies the BK<-->SECRET conversion processes.
*
* Returns 0 if the BK decodes correctly to the bundle secret, 1 if not. Returns -1 if there is an
* error.
*/
int rhizome_bk2secret(
const rhizome_bid_t *bidp,
const unsigned char *rs, const size_t rs_len,
/* The BK need only be the length of the secret half of the secret key */
const unsigned char bkin[RHIZOME_BUNDLE_KEY_BYTES],
unsigned char secret[crypto_sign_SECRETKEYBYTES]
)
{
IN();
unsigned char xor_stream[RHIZOME_BUNDLE_KEY_BYTES];
if (rhizome_bk_xor_stream(bidp, rs, rs_len, xor_stream, RHIZOME_BUNDLE_KEY_BYTES))
RETURN(WHY("rhizome_bk_xor_stream() failed"));
/* XOR and store secret part of secret key */
unsigned i;
for (i = 0; i != RHIZOME_BUNDLE_KEY_BYTES; ++i)
secret[i] = bkin[i] ^ xor_stream[i];
bzero(xor_stream, sizeof xor_stream);
/* Copy BID as public-key part of secret key */
bcopy(bidp->binary, secret + RHIZOME_BUNDLE_KEY_BYTES, sizeof bidp->binary);
RETURN(rhizome_verify_bundle_privatekey(secret, bidp->binary) ? 0 : 1);
OUT();
}
int rhizome_secret2bk(
const rhizome_bid_t *bidp,
const unsigned char *rs, const size_t rs_len,
/* The BK need only be the length of the secret half of the secret key */
unsigned char bkout[RHIZOME_BUNDLE_KEY_BYTES],
const unsigned char secret[crypto_sign_SECRETKEYBYTES]
)
{
IN();
unsigned char xor_stream[RHIZOME_BUNDLE_KEY_BYTES];
if (rhizome_bk_xor_stream(bidp,rs,rs_len,xor_stream,RHIZOME_BUNDLE_KEY_BYTES))
RETURN(WHY("rhizome_bk_xor_stream() failed"));
int i;
/* XOR and store secret part of secret key */
for(i = 0; i != RHIZOME_BUNDLE_KEY_BYTES; i++)
bkout[i] = secret[i] ^ xor_stream[i];
bzero(xor_stream, sizeof xor_stream);
RETURN(0);
OUT();
}
static keypair *get_secret(const keyring_identity *id)
{
keypair *kp=keyring_identity_keytype(id, KEYTYPE_RHIZOME);
if (!kp) {
WARNF("Identity sid=%s has no Rhizome Secret", alloca_tohex_sid_t(*id->box_pk));
return NULL;
}
assert(kp->private_key_len >= 16);
assert(kp->private_key_len <= 1024);
return kp;
}
/*
* If this identity has permission to alter the bundle, then set;
* - the manifest 'authorship' field to AUTHOR_AUTHENTIC
* - the 'author' field to the SID of the identity
* - the manifest 'cryptoSignSecret' field to the bundle secret key
* - the 'haveSecret' field to EXISTING_BUNDLE_ID.
* and finally update the database with the result.
*/
static enum rhizome_bundle_authorship try_author(rhizome_manifest *m, const keyring_identity *id, const sid_t *sid){
if (!sid)
return AUTHOR_UNKNOWN;
if (!id){
id = keyring_find_identity(keyring, sid);
if (!id)
return AUTHOR_UNKNOWN;
}
if (m->has_bundle_key){
keypair *kp = get_secret(id);
if (!kp)
return AUTHENTICATION_ERROR;
uint8_t secret[crypto_sign_SECRETKEYBYTES];
uint8_t *s = m->haveSecret ? secret : m->cryptoSignSecret;
switch (rhizome_bk2secret(&m->cryptoSignPublic, kp->private_key, kp->private_key_len, m->bundle_key.binary, s)) {
case 0:
if (m->haveSecret && memcmp(secret, m->cryptoSignSecret, sizeof m->cryptoSignSecret) != 0)
FATALF("Bundle secret does not match derived secret");
break;
case -1:
return AUTHENTICATION_ERROR;
default:
return AUTHOR_IMPOSTOR;
}
}else{
if (memcmp(&m->cryptoSignPublic, id->sign_pk, crypto_sign_PUBLICKEYBYTES)==0){
bcopy(id->sign_sk, m->cryptoSignSecret, sizeof m->cryptoSignSecret);
}else{
DEBUGF(rhizome, " bundle has no BK field");
// TODO if cryptoSignPublic == id signing key...
return ANONYMOUS;
}
}
if (m->rowid && m->authorship == ANONYMOUS){
// if this bundle is already in the database, update the author.
sqlite_exec_void_loglevel(LOG_LEVEL_WARN,
"UPDATE MANIFESTS SET author = ? WHERE rowid = ?;",
SID_T, sid,
INT64, m->rowid,
END);
}
m->authorship = AUTHOR_AUTHENTIC;
m->author = *sid;
m->author_identity = id;
if (!m->haveSecret)
m->haveSecret = EXISTING_BUNDLE_ID;
return m->authorship;
}
/* Attempt to authenticate the authorship of the given bundle, and set the 'authorship' element
* accordingly.
*
* If an author has already been set, confirm it is valid.
*
* If the bundle has a sender, try that identity first.
*
* Otherwise test each identity in the keyring to discover the author of the bundle.
*
* If the manifest has no BK field, then we can only test if the bundle ID is equal to the identities signing key.
*
* If no identity is found in the keyring that combines with the bundle key (BK) field to yield
* the bundle's secret key, then leaves the manifest 'authorship' field as ANONYMOUS.
*/
void rhizome_authenticate_author(rhizome_manifest *m)
{
IN();
DEBUGF(rhizome, "authenticate author for bid=%s", m->has_id ? alloca_tohex_rhizome_bid_t(m->cryptoSignPublic) : "(none)");
switch (m->authorship) {
case ANONYMOUS:
assert(is_sid_t_any(m->author));
// Optimisation: try 'sender' SID first, if present.
if (m->has_sender && try_author(m, NULL, &m->sender) == AUTHOR_AUTHENTIC)
RETURNVOID;
keyring_iterator it;
keyring_iterator_start(keyring, &it);
keyring_identity *id;
while((id = keyring_next_identity(&it))){
// skip the sender if we've already tried it.
if (m->has_sender && cmp_sid_t(&m->sender, id->box_pk)==0)
continue;
if (try_author(m, id, id->box_pk) == AUTHOR_AUTHENTIC)
RETURNVOID;
}
RETURNVOID;
case AUTHOR_NOT_CHECKED:
case AUTHOR_LOCAL:
m->authorship = try_author(m, m->author_identity, &m->author);
RETURNVOID;
case AUTHENTICATION_ERROR:
case AUTHOR_UNKNOWN:
case AUTHOR_IMPOSTOR:
case AUTHOR_AUTHENTIC:
// work has already been done, don't repeat it
RETURNVOID;
}
FATALF("m->authorship = %d", (int)m->authorship);
}
/* Sets the bundle key "BK" field of a manifest. Returns 1 if the field was set, 0 if not.
*
* This function must not be called unless the bundle secret is known.
*
* @author Andrew Bettison <andrew@servalproject.com>
*/
int rhizome_manifest_add_bundle_key(rhizome_manifest *m)
{
IN();
assert(m->haveSecret);
switch (m->authorship) {
case ANONYMOUS: // there can be no BK field without an author
case AUTHOR_UNKNOWN: // we already know the author is not in the keyring
case AUTHENTICATION_ERROR: // already tried and failed to get Rhizome Secret
break;
case AUTHOR_NOT_CHECKED:
case AUTHOR_LOCAL:
case AUTHOR_AUTHENTIC:
case AUTHOR_IMPOSTOR: {
/* Set the BK using the provided author. Serval Security Framework defines BK as being:
* BK = privateKey XOR sha512(RS##BID)
* where BID = cryptoSignPublic,
* RS is the rhizome secret for the specified author.
* The nice thing about this specification is that:
* privateKey = BK XOR sha512(RS##BID)
* so the same function can be used to encrypt and decrypt the BK field.
*/
if (!m->author_identity){
m->author_identity = keyring_find_identity(keyring, &m->author);
if (!m->author_identity){
m->authorship = AUTHOR_UNKNOWN;
break;
}
}
keypair *kp = get_secret(m->author_identity);
if (!kp){
m->authorship = AUTHENTICATION_ERROR;
break;
}
rhizome_bk_t bkey;
if (rhizome_secret2bk(&m->cryptoSignPublic, kp->private_key, kp->private_key_len, bkey.binary, m->cryptoSignSecret) != 0) {
m->authorship = AUTHENTICATION_ERROR;
break;
}
rhizome_manifest_set_bundle_key(m, &bkey);
m->authorship = AUTHOR_AUTHENTIC;
RETURN(1);
}
break;
default:
FATALF("m->authorship = %d", (int)m->authorship);
}
rhizome_manifest_del_bundle_key(m);
switch (m->authorship) {
case AUTHOR_UNKNOWN:
INFOF("Cannot set BK because author=%s is not in keyring", alloca_tohex_sid_t(m->author));
break;
case AUTHENTICATION_ERROR:
WHY("Cannot set BK due to error");
break;
default:
break;
}
RETURN(0);
}
/* If the given bundle secret key corresponds to the bundle's ID (public key) then store it in the
* manifest structure and mark the secret key as known. Return 1 if the secret key was assigned,
* 0 if not.
*
* This function should only be called on a manifest that already has a public key (ID) and does
* not have a known secret key.
*
* @author Andrew Bettison <andrew@servalproject.com>
*/
int rhizome_apply_bundle_secret(rhizome_manifest *m, const rhizome_bk_t *bsk)
{
IN();
DEBUGF(rhizome, "manifest %p bsk=%s", m, bsk ? alloca_tohex_rhizome_bk_t(*bsk) : "NULL");
assert(m->haveSecret == SECRET_UNKNOWN);
assert(is_all_matching(m->cryptoSignSecret, sizeof m->cryptoSignSecret, 0));
assert(m->has_id);
assert(bsk != NULL);
assert(!rhizome_is_bk_none(bsk));
// no shortcut here, since bsk does not include a copy of the PK bytes
uint8_t sk[crypto_sign_SECRETKEYBYTES];
uint8_t pk[crypto_sign_PUBLICKEYBYTES];
crypto_sign_seed_keypair(pk, sk, bsk->binary);
if (bcmp(pk, m->cryptoSignPublic.binary, crypto_sign_PUBLICKEYBYTES) == 0){
DEBUG(rhizome, "bundle secret verifies ok");
bcopy(sk, m->cryptoSignSecret, crypto_sign_SECRETKEYBYTES);
m->haveSecret = EXISTING_BUNDLE_ID;
RETURN(1);
}
RETURN(0);
OUT();
}
/* Verify the validity of a given secret manifest key. Return 1 if valid, 0 if not.
*/
int rhizome_verify_bundle_privatekey(const unsigned char *sk, const unsigned char *pkin)
{
// first check that the public key half matches
if (bcmp(pkin, &sk[crypto_sign_SECRETKEYBYTES - crypto_sign_PUBLICKEYBYTES], crypto_sign_PUBLICKEYBYTES)!=0)
return 0;
// generate a new key from the private key bytes
uint8_t tsk[crypto_sign_SECRETKEYBYTES];
uint8_t tpk[crypto_sign_PUBLICKEYBYTES];
crypto_sign_seed_keypair(tpk, tsk, sk);
// and verify the generated public key again
return bcmp(pkin, tpk, sizeof tpk) == 0;
}
typedef struct manifest_signature_block_cache {
unsigned char manifest_hash[crypto_hash_sha512_BYTES];
unsigned char signature_bytes[256];
size_t signature_length;
int signature_valid;
} manifest_signature_block_cache;
#define SIG_CACHE_SIZE 1024
manifest_signature_block_cache sig_cache[SIG_CACHE_SIZE];
static int rhizome_manifest_lookup_signature_validity(const unsigned char *hash, const unsigned char *sig, size_t sig_len)
{
IN();
unsigned slot=0;
unsigned i;
for(i=0;i<crypto_hash_sha512_BYTES;i++) {
slot=(slot<<1)+(slot&0x80000000?1:0);
slot+=hash[i];
}
for(i=0;i<sig_len;i++) {
slot=(slot<<1)+(slot&0x80000000?1:0);
slot+=sig[i];
}
slot%=SIG_CACHE_SIZE;
if (sig_cache[slot].signature_length!=sig_len ||
memcmp(hash, sig_cache[slot].manifest_hash, crypto_hash_sha512_BYTES) ||
memcmp(sig, sig_cache[slot].signature_bytes, sig_len)){
bcopy(hash, sig_cache[slot].manifest_hash, crypto_hash_sha512_BYTES);
bcopy(sig, sig_cache[slot].signature_bytes, sig_len);
sig_cache[slot].signature_length=sig_len;
sig_cache[slot].signature_valid=
crypto_sign_verify_detached(sig, hash, crypto_hash_sha512_BYTES, &sig[crypto_sign_BYTES])
? -1 : 0;
}
RETURN(sig_cache[slot].signature_valid);
OUT();
}
int rhizome_manifest_extract_signature(rhizome_manifest *m, unsigned *ofs)
{
IN();
DEBUGF(rhizome_manifest, "*ofs=%u m->manifest_all_bytes=%zu", *ofs, m->manifest_all_bytes);
assert((*ofs) < m->manifest_all_bytes);
const unsigned char *sig = m->manifestdata + *ofs;
uint8_t sigType = m->manifestdata[*ofs];
uint8_t len = (sigType << 2) + 4 + 1;
if (*ofs + len > m->manifest_all_bytes) {
WARNF("Invalid signature at offset %u: type=%#02x gives len=%u that overruns manifest size",
*ofs, sigType, len);
*ofs = m->manifest_all_bytes;
RETURN(1);
}
*ofs += len;
assert (m->sig_count <= NELS(m->signatories));
if (m->sig_count == NELS(m->signatories)) {
WARN("Too many signature blocks in manifest");
RETURN(2);
}
switch (sigType) {
case 0x17: // crypto_sign_edwards25519sha512batch()
{
assert(len == 97);
/* Reconstitute signature block */
int r = rhizome_manifest_lookup_signature_validity(m->manifesthash.binary, sig + 1, 96);
if (r) {
WARN("Signature verification failed");
RETURN(4);
}
m->signatureTypes[m->sig_count] = len;
if ((m->signatories[m->sig_count] = emalloc(crypto_sign_PUBLICKEYBYTES)) == NULL)
RETURN(-1);
bcopy(sig + 1 + 64, m->signatories[m->sig_count], crypto_sign_PUBLICKEYBYTES);
m->sig_count++;
DEBUG(rhizome, "Signature verified");
RETURN(0);
}
}
WARNF("Unsupported signature at ofs=%u: type=%#02x", (unsigned)(sig - m->manifestdata), sigType);
RETURN(3);
}
// add value to nonce, with the same result regardless of CPU endian order
// allowing for any carry value up to the size of the whole nonce
static void add_nonce(unsigned char *nonce, uint64_t value)
{
int i=crypto_box_NONCEBYTES -1;
while(i>=0 && value>0){
int x = nonce[i]+(value & 0xFF);
nonce[i]=x&0xFF;
value = (value>>8)+(x>>8);
i--;
}
}
/* Encrypt a block of a stream in-place, allowing for offsets that don't align perfectly to block
* boundaries for efficiency the caller should use a buffer size of (n*RHIZOME_CRYPT_PAGE_SIZE).
*/
int rhizome_crypt_xor_block(unsigned char *buffer, size_t buffer_size, uint64_t stream_offset,
const unsigned char *key, const unsigned char *nonce)
{
uint64_t nonce_offset = stream_offset & ~(RHIZOME_CRYPT_PAGE_SIZE -1);
size_t offset=0;
unsigned char block_nonce[crypto_box_NONCEBYTES];
bcopy(nonce, block_nonce, sizeof(block_nonce));
add_nonce(block_nonce, nonce_offset);
if (nonce_offset < stream_offset){
size_t padding = stream_offset & (RHIZOME_CRYPT_PAGE_SIZE -1);
size_t size = RHIZOME_CRYPT_PAGE_SIZE - padding;
if (size>buffer_size)
size=buffer_size;
unsigned char temp[RHIZOME_CRYPT_PAGE_SIZE];
bcopy(buffer, temp + padding, size);
crypto_stream_xsalsa20_xor(temp, temp, size+padding, block_nonce, key);
bcopy(temp + padding, buffer, size);
add_nonce(block_nonce, RHIZOME_CRYPT_PAGE_SIZE);
offset+=size;
}
while(offset < buffer_size){
size_t size = buffer_size - offset;
if (size>RHIZOME_CRYPT_PAGE_SIZE)
size=RHIZOME_CRYPT_PAGE_SIZE;
crypto_stream_xsalsa20_xor(buffer+offset, buffer+offset, (unsigned long long) size, block_nonce, key);
add_nonce(block_nonce, RHIZOME_CRYPT_PAGE_SIZE);
offset+=size;
}
return 0;
}
/* If payload key is known, sets m->payloadKey and m->payloadNonce and returns 1.
* Otherwise, returns 0;
*/
int rhizome_derive_payload_key(rhizome_manifest *m)
{
assert(m->payloadEncryption == PAYLOAD_ENCRYPTED);
unsigned char hash[crypto_hash_sha512_BYTES];
if(m->has_recipient){
sid_t scratch;
const sid_t *other_pk = &m->recipient;
const sid_t *box_pk = NULL;
const uint8_t *box_sk = NULL;
{
const keyring_identity *id=NULL;
id = keyring_find_identity(keyring, &m->recipient);
if (id){
if (m->has_sender){
other_pk = &m->sender;
}else{
// derive other_pk from BID
other_pk = &scratch;
if (crypto_sign_ed25519_pk_to_curve25519(scratch.binary, m->cryptoSignPublic.binary))
other_pk = NULL;
}
} else if (m->has_sender){
id = keyring_find_identity(keyring, &m->sender);
// TODO error if sender != author?
} else if (m->haveSecret){
id = m->author_identity;
}
if (id){
box_pk = id->box_pk;
box_sk = id->box_sk;
}
}
if (!box_sk || !other_pk){
WARNF("Could not find known crypto secret for bundle");
return 0;
}
unsigned char *nm_bytes=NULL;
nm_bytes = keyring_get_nm_bytes(box_sk, box_pk, other_pk);
DEBUGF(rhizome, "derived payload key from known=%s*, unknown=%s*",
alloca_tohex_sid_t_trunc(*box_pk, 7),
alloca_tohex_sid_t_trunc(*other_pk, 7)
);
assert(nm_bytes != NULL);
crypto_hash_sha512(hash, nm_bytes, crypto_box_BEFORENMBYTES);
}else{
if (!m->haveSecret) {
WHY("Cannot derive payload key because bundle secret is unknown");
return 0;
}
DEBUGF(rhizome, "derived payload key from bundle secret bsk=%s", alloca_tohex(m->cryptoSignSecret, sizeof m->cryptoSignSecret));
unsigned char raw_key[9+crypto_sign_SECRETKEYBYTES]="sasquatch";
bcopy(m->cryptoSignSecret, &raw_key[9], crypto_sign_SECRETKEYBYTES);
crypto_hash_sha512(hash, raw_key, sizeof(raw_key));
}
bcopy(hash, m->payloadKey, RHIZOME_CRYPT_KEY_BYTES);
DEBUGF(rhizome_manifest, "SET manifest %p payloadKey = %s", m, alloca_tohex(m->payloadKey, sizeof m->payloadKey));
// journal bundles must always have the same nonce, regardless of version.
// otherwise, generate nonce from version#bundle id#version;
unsigned char raw_nonce[8 + 8 + sizeof m->cryptoSignPublic.binary];
uint64_t nonce_version = m->is_journal ? 0 : m->version;
write_uint64(&raw_nonce[0], nonce_version);
bcopy(m->cryptoSignPublic.binary, &raw_nonce[8], sizeof m->cryptoSignPublic.binary);
write_uint64(&raw_nonce[8 + sizeof m->cryptoSignPublic.binary], nonce_version);
DEBUGF(rhizome, "derived payload nonce from bid=%s version=%"PRIu64, alloca_tohex_sid_t(m->cryptoSignPublic), nonce_version);
crypto_hash_sha512(hash, raw_nonce, sizeof(raw_nonce));
bcopy(hash, m->payloadNonce, sizeof(m->payloadNonce));
DEBUGF(rhizome_manifest, "SET manifest %p payloadNonce = %s", m, alloca_tohex(m->payloadNonce, sizeof m->payloadNonce));
return 1;
}