serval-dna/config_test.c
Andrew Bettison 8c36b23417 Improve new config prototype code
Refactor to make opt_parsing() functions simpler for ATOM -- no need to check
for missing text or unsupported child nodes, or log parse failures.

Introduce NODE option which passes whole config_node struct to parsing
function.
2012-11-23 10:11:07 +10:30

755 lines
22 KiB
C

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <assert.h>
#include "str.h"
#include "strbuf_helpers.h"
#define NELS(a) (sizeof (a) / sizeof *(a))
#define DEBUGF(F,...) fprintf(stderr, "DEBUG: " F "\n", ##__VA_ARGS__)
#define WARNF(F,...) fprintf(stderr, "WARN: " F "\n", ##__VA_ARGS__)
#define WHYF(F,...) fprintf(stderr, "ERROR: " F "\n", ##__VA_ARGS__)
#define WHYF_perror(F,...) fprintf(stderr, "ERROR: " F ": %s [errno=%d]\n", ##__VA_ARGS__, strerror(errno), errno)
#define alloca_str(s) ((s) ? alloca_str_toprint(s) : "NULL")
#include "config.h"
const char *find_keyend(const char *const key, const char *const fullkeyend)
{
const char *s = key;
if (s < fullkeyend && (isalpha(*s) || *s == '_'))
++s;
while (s < fullkeyend && (isalnum(*s) || *s == '_'))
++s;
if (s == key || (s < fullkeyend && *s != '.'))
return NULL;
return s;
}
void *emalloc(size_t len)
{
char *new = malloc(len + 1);
if (!new) {
WHYF_perror("malloc(%lu)", (long)len);
return NULL;
}
return new;
}
char *strn_emalloc(const char *str, size_t len)
{
char *new = emalloc(len + 1);
if (new) {
strncpy(new, str, len);
new[len] = '\0';
}
return new;
}
char *str_emalloc(const char *str)
{
return strn_emalloc(str, strlen(str));
}
int make_child(struct config_node **const parentp, const char *const fullkey, const char *const key, const char *const keyend)
{
size_t keylen = keyend - key;
//DEBUGF("%s key=%s", __FUNCTION__, alloca_toprint(-1, key, keylen));
int i = 0;
struct config_node *child;
if ((*parentp)->nodc) {
// Binary search for matching child.
int m = 0;
int n = (*parentp)->nodc - 1;
int c;
do {
i = (m + n) / 2;
child = (*parentp)->nodv[i];
c = strncmp(key, child->key, keylen);
if (c == 0 && child->key[keylen])
c = -1;
//DEBUGF(" m=%d n=%d i=%d child->key=%s c=%d", m, n, i, alloca_str(child->key), c);
if (c == 0) {
//DEBUGF(" found i=%d", i);
return i;
}
if (c > 0)
m = ++i;
else
n = i - 1;
} while (m <= n);
}
// At this point, i is the index where a new child should be inserted.
assert(i >= 0);
assert(i <= (*parentp)->nodc);
child = emalloc(sizeof *child);
if (child == NULL)
return -1;
memset(child, 0, sizeof *child);
++(*parentp)->nodc;
if ((*parentp)->nodc > NELS((*parentp)->nodv))
*parentp = realloc(*parentp, sizeof(**parentp) + sizeof((*parentp)->nodv[0]) * ((*parentp)->nodc - NELS((*parentp)->nodv)));
int j;
for (j = (*parentp)->nodc - 1; j > i; --j)
(*parentp)->nodv[j] = (*parentp)->nodv[j-1];
(*parentp)->nodv[i] = child;
if (!(child->fullkey = strn_emalloc(fullkey, keyend - fullkey))) {
free(child);
return -1;
}
child->key = child->fullkey + (key - fullkey);
//DEBUGF(" insert i=%d", i);
return i;
}
void free_config_node(struct config_node *node)
{
while (node->nodc)
free_config_node(node->nodv[--node->nodc]);
if (node->fullkey) {
free((char *)node->fullkey);
node->fullkey = node->key = NULL;
}
if (node->text) {
free((char *)node->text);
node->text = NULL;
}
free(node);
}
struct config_node *parse_config(const char *source, const char *buf, size_t len)
{
struct config_node *root = emalloc(sizeof(struct config_node));
if (root == NULL)
return NULL;
memset(root, 0, sizeof *root);
const char *end = buf + len;
const char *line = buf;
const char *nextline;
unsigned lineno = 1;
for (lineno = 1; line < end; line = nextline, ++lineno) {
const char *lend = line;
while (lend < end && *lend != '\n')
++lend;
nextline = lend + 1;
if (lend > line && lend[-1] == '\r')
--lend;
//DEBUGF("lineno=%u %s", lineno, alloca_toprint(-1, line, lend - line));
const char *p;
for (p = line; p < lend && isspace(*p); ++p)
;
if (p == lend)
continue; // skip empty and blank lines
for (p = line; p < lend && *p != '='; ++p)
;
if (p == line || p == lend) {
WARNF("%s:%u: malformed configuration line -- ignored", source, lineno);
continue;
}
struct config_node **nodep = &root;
const char *fullkey = line;
const char *fullkeyend = p;
const char *key = fullkey;
const char *keyend = NULL;
int nodi = -1;
while (key <= fullkeyend && (keyend = find_keyend(key, fullkeyend)) && (nodi = make_child(nodep, fullkey, key, keyend)) != -1) {
key = keyend + 1;
nodep = &(*nodep)->nodv[nodi];
}
if (keyend == NULL) {
WARNF("%s:%u: malformed configuration option %s -- ignored",
source, lineno, alloca_toprint(-1, fullkey, fullkeyend - fullkey)
);
continue;
}
if (nodi == -1)
goto error; // out of memory
struct config_node *node = *nodep;
if (node->text) {
WARNF("%s:%u: duplicate configuration option %s -- ignored (original is at %s:%u)",
source, lineno, alloca_toprint(-1, fullkey, fullkeyend - fullkey),
node->source, node->line_number
);
continue;
}
++p;
if (!(node->text = strn_emalloc(p, lend - p)))
break; // out of memory
node->source = source;
node->line_number = lineno;
}
return root;
error:
free_config_node(root);
return NULL;
}
void dump_config_node(const struct config_node *node, int indent)
{
if (node == NULL)
DEBUGF("%*sNULL", indent * 3, "");
else {
DEBUGF("%*s%s:%u fullkey=%s key=%s text=%s", indent * 3, "",
node->source ? node->source : "NULL",
node->line_number,
alloca_str(node->fullkey),
alloca_str(node->key),
alloca_str(node->text)
);
int i;
for (i = 0; i < node->nodc; ++i)
dump_config_node(node->nodv[i], indent + 1);
}
}
int get_child(const struct config_node *parent, const char *key)
{
int i;
for (i = 0; i < parent->nodc; ++i)
if (strcmp(parent->nodv[i]->key, key) == 0)
return i;
return -1;
}
void missing_node(const struct config_node *parent, const char *key)
{
WARNF("missing configuration option `%s.%s`", parent->fullkey, key);
}
void invalid_text(const struct config_node *node, int reason)
{
const char *adj = NULL;
const char *why = NULL;
switch (reason) {
case CFOK: adj = "valid"; why = "no good reason"; break;
case CFERROR: why = "unrecoverable error"; break;
case CFOVERFLOW: why = "overflow"; break;
case CFMISSING: why = "missing"; break;
case CFINVALID: adj = "invalid"; break;
default: why = "unknown reason"; break;
}
WARNF("%s:%u: ignoring configuration option %s with%s%s value %s%s%s",
node->source, node->line_number,
alloca_str(node->fullkey),
adj ? " " : "", adj ? adj : "",
alloca_str(node->text),
why ? " -- " : "", why ? why : ""
);
}
void ignore_node(const struct config_node *node, const char *msg)
{
if (node->source && node->line_number)
WARNF("%s:%u: ignoring configuration option %s%s%s",
node->source, node->line_number, alloca_str(node->fullkey),
msg && msg[0] ? " -- " : "", msg ? msg : ""
);
else
WARNF("ignoring configuration option %s%s%s",
alloca_str(node->fullkey),
msg && msg[0] ? " -- " : "", msg ? msg : ""
);
}
void ignore_tree(const struct config_node *node, const char *msg);
void ignore_children(const struct config_node *parent, const char *msg)
{
int i;
for (i = 0; i < parent->nodc; ++i)
ignore_tree(parent->nodv[i], msg);
}
void ignore_tree(const struct config_node *node, const char *msg)
{
if (node->text)
ignore_node(node, msg);
ignore_children(node, msg);
}
void unsupported_node(const struct config_node *node)
{
ignore_node(node, "not supported");
}
void list_overflow(const struct config_node *node)
{
ignore_children(node, "list overflow");
}
void list_omit_element(const struct config_node *node)
{
ignore_node(node, "omitted from list");
}
void spurious_children(const struct config_node *parent)
{
ignore_children(parent, "spurious");
}
void unsupported_children(const struct config_node *parent)
{
ignore_children(parent, "not supported");
}
void unsupported_tree(const struct config_node *node)
{
ignore_tree(node, "not supported");
}
int opt_boolean(int *booleanp, const char *text);
int opt_absolute_path(char *str, size_t len, const char *text);
int opt_debugflags(debugflags_t *flagsp, const struct config_node *node);
int opt_rhizome_peer(struct config_rhizomepeer *, const struct config_node *node);
int opt_str_nonempty(char *str, size_t len, const char *text);
int opt_uint64_scaled(uint64_t *intp, const char *text);
int opt_protocol(char *str, size_t len, const char *text);
int opt_port(unsigned short *portp, const char *text);
int opt_sid(sid_t *sidp, const char *text);
int opt_interface_type(short *typep, const char *text);
int opt_pattern_list(struct pattern_list *listp, const char *text);
int opt_interface_list(struct config_interface_list *listp, const struct config_node *node);
int opt_boolean(int *booleanp, const char *text)
{
if (!strcasecmp(text, "true") || !strcasecmp(text, "yes") || !strcasecmp(text, "on") || !strcasecmp(text, "1")) {
*booleanp = 1;
return CFOK;
}
else if (!strcasecmp(text, "false") || !strcasecmp(text, "no") || !strcasecmp(text, "off") || !strcasecmp(text, "0")) {
*booleanp = 0;
return CFOK;
}
//invalid_text(node, "expecting true|yes|on|1|false|no|off|0");
return CFINVALID;
}
int opt_absolute_path(char *str, size_t len, const char *text)
{
if (text[0] != '/') {
//invalid_text(node, "must start with '/'");
return CFINVALID;
}
if (strlen(text) >= len) {
//invalid_text(node, "string overflow");
return CFOVERFLOW;
}
strncpy(str, text, len);
assert(str[len - 1] == '\0');
return CFOK;
}
debugflags_t debugFlagMask(const char *flagname)
{
if (!strcasecmp(flagname,"all")) return ~0;
else if (!strcasecmp(flagname,"interfaces")) return 1 << 0;
else if (!strcasecmp(flagname,"rx")) return 1 << 1;
else if (!strcasecmp(flagname,"tx")) return 1 << 2;
else if (!strcasecmp(flagname,"verbose")) return 1 << 3;
else if (!strcasecmp(flagname,"verbio")) return 1 << 4;
else if (!strcasecmp(flagname,"peers")) return 1 << 5;
else if (!strcasecmp(flagname,"dnaresponses")) return 1 << 6;
else if (!strcasecmp(flagname,"dnahelper")) return 1 << 7;
else if (!strcasecmp(flagname,"vomp")) return 1 << 8;
else if (!strcasecmp(flagname,"packetformats")) return 1 << 9;
else if (!strcasecmp(flagname,"packetconstruction")) return 1 << 10;
else if (!strcasecmp(flagname,"gateway")) return 1 << 11;
else if (!strcasecmp(flagname,"keyring")) return 1 << 12;
else if (!strcasecmp(flagname,"sockio")) return 1 << 13;
else if (!strcasecmp(flagname,"frames")) return 1 << 14;
else if (!strcasecmp(flagname,"abbreviations")) return 1 << 15;
else if (!strcasecmp(flagname,"routing")) return 1 << 16;
else if (!strcasecmp(flagname,"security")) return 1 << 17;
else if (!strcasecmp(flagname,"rhizome")) return 1 << 18;
else if (!strcasecmp(flagname,"rhizometx")) return 1 << 19;
else if (!strcasecmp(flagname,"rhizomerx")) return 1 << 20;
else if (!strcasecmp(flagname,"rhizomeads")) return 1 << 21;
else if (!strcasecmp(flagname,"monitorroutes")) return 1 << 22;
else if (!strcasecmp(flagname,"queues")) return 1 << 23;
else if (!strcasecmp(flagname,"broadcasts")) return 1 << 24;
else if (!strcasecmp(flagname,"manifests")) return 1 << 25;
else if (!strcasecmp(flagname,"mdprequests")) return 1 << 26;
else if (!strcasecmp(flagname,"timing")) return 1 << 27;
return 0;
}
int opt_debugflags(debugflags_t *flagsp, const struct config_node *node)
{
//DEBUGF("%s", __FUNCTION__);
//dump_config_node(node, 1);
debugflags_t setmask = 0;
debugflags_t clearmask = 0;
int setall = 0;
int clearall = 0;
int i;
for (i = 0; i < node->nodc; ++i) {
const struct config_node *child = node->nodv[i];
unsupported_children(child);
debugflags_t mask = debugFlagMask(child->key);
int flag = -1;
if (!mask)
unsupported_node(child);
else {
int result = child->text ? opt_boolean(&flag, child->text) : CFMISSING;
switch (result) {
case CFERROR: return CFERROR;
case CFOK:
if (mask == ~0) {
if (flag)
setall = 1;
else
clearall = 1;
} else {
if (flag)
setmask |= mask;
else
clearmask |= mask;
}
break;
default:
invalid_text(child, result);
break;
}
}
}
if (setall)
*flagsp = ~0;
else if (clearall)
*flagsp = 0;
*flagsp &= ~clearmask;
*flagsp |= setmask;
return CFOK;
}
int opt_protocol(char *str, size_t len, const char *text)
{
if (!str_is_uri_scheme(text)) {
//invalid_text(node, "contains invalid character");
return CFINVALID;
}
if (strlen(text) >= len) {
//invalid_text(node, "string overflow");
return CFOVERFLOW;
}
strncpy(str, text, len);
assert(str[len - 1] == '\0');
return CFOK;
}
int opt_rhizome_peer(struct config_rhizomepeer *rpeer, const struct config_node *node)
{
if (!node->text) {
dfl_config_rhizomepeer(rpeer);
return opt_config_rhizomepeer(rpeer, node);
}
spurious_children(node);
const char *protocol;
size_t protolen;
const char *auth;
if (str_is_uri(node->text)) {
const char *hier;
if (!( str_uri_scheme(node->text, &protocol, &protolen)
&& str_uri_hierarchical(node->text, &hier, NULL)
&& str_uri_hierarchical_authority(hier, &auth, NULL))
)
goto invalid;
} else {
auth = node->text;
protocol = "http";
protolen = strlen(protocol);
}
const char *host;
size_t hostlen;
unsigned short port = 4110;
if (!str_uri_authority_hostname(auth, &host, &hostlen))
goto invalid;
str_uri_authority_port(auth, &port);
if (protolen >= sizeof rpeer->protocol) {
//invalid_text(node, "protocol string overflow");
return CFOVERFLOW;
}
if (hostlen >= sizeof rpeer->host) {
//invalid_text(node, "hostname string overflow");
return CFOVERFLOW;
}
strncpy(rpeer->protocol, protocol, protolen)[protolen] = '\0';
strncpy(rpeer->host, host, hostlen)[hostlen] = '\0';
rpeer->port = port;
return CFOK;
invalid:
//invalid_text(node, "malformed URL");
return CFINVALID;
}
int opt_str_nonempty(char *str, size_t len, const char *text)
{
if (!text[0]) {
//invalid_text(node, "empty string");
return CFINVALID;
}
if (strlen(text) >= len) {
//invalid_text(node, "string overflow");
return CFOVERFLOW;
}
strncpy(str, text, len);
assert(str[len - 1] == '\0');
return CFOK;
}
int opt_uint64_scaled(uint64_t *intp, const char *text)
{
uint64_t result;
const char *end;
if (!str_to_uint64_scaled(text, 10, &result, &end)) {
//invalid_text(node, "invalid scaled unsigned integer");
return CFINVALID;
}
*intp = result;
return CFOK;
}
int opt_port(unsigned short *portp, const char *text)
{
unsigned short port = 0;
const char *p;
for (p = text; isdigit(*p); ++p) {
unsigned oport = port;
port = port * 10 + *p - '0';
if (port / 10 != oport)
break;
}
if (*p || port == 0) {
//invalid_text(node, "invalid port number");
return CFINVALID;
}
*portp = port;
return CFOK;
}
int opt_sid(sid_t *sidp, const char *text)
{
sid_t sid;
if (!str_is_subscriber_id(text)) {
//invalid_text(node, "invalid subscriber ID");
return CFINVALID;
}
size_t n = fromhex(sidp->binary, text, SID_SIZE);
assert(n == SID_SIZE);
return CFOK;
}
int opt_interface_type(short *typep, const char *text)
{
if (strcasecmp(text, "ethernet") == 0) {
*typep = OVERLAY_INTERFACE_ETHERNET;
return CFOK;
}
if (strcasecmp(text, "wifi") == 0) {
*typep = OVERLAY_INTERFACE_WIFI;
return CFOK;
}
if (strcasecmp(text, "catear") == 0) {
*typep = OVERLAY_INTERFACE_PACKETRADIO;
return CFOK;
}
if (strcasecmp(text, "other") == 0) {
*typep = OVERLAY_INTERFACE_UNKNOWN;
return CFOK;
}
//invalid_text(node, "invalid network interface type");
return CFINVALID;
}
int opt_pattern_list(struct pattern_list *listp, const char *text)
{
struct pattern_list list;
memset(&list, 0, sizeof list);
const char *word = NULL;
const char *p;
for (p = text; ; ++p) {
if (!*p || isspace(*p) || *p == ',') {
if (word) {
size_t len = p - word;
if (list.patc >= NELS(list.patv) || len >= sizeof(list.patv[list.patc])) {
//invalid_text(node, "string overflow");
return CFOVERFLOW;
}
strncpy(list.patv[list.patc++], word, len)[len] = '\0';
word = NULL;
}
if (!*p)
break;
} else if (!word)
word = p;
}
assert(word == NULL);
*listp = list;
return CFOK;
}
int opt_interface_list(struct config_interface_list *listp, const struct config_node *node)
{
if (!node->text) {
dfl_config_interface_list(listp);
return opt_config_interface_list(listp, node);
}
spurious_children(node);
return CFINVALID;
}
void missing_node(const struct config_node *parent, const char *key);
void unsupported_node(const struct config_node *node);
void unsupported_tree(const struct config_node *node);
void list_overflow(const struct config_node *node);
void list_omit_element(const struct config_node *node);
// Schema item flags.
#define __MANDATORY (1<<0)
#define __NO_TEXT (1<<1)
#define __NO_CHILDREN (1<<2)
// Schema flag symbols, to be used in the '__flags' macro arguments.
#define MANDATORY |__MANDATORY
#define NO_TEXT |__NO_TEXT
#define NO_CHILDREN |__NO_CHILDREN
// Generate parsing functions, opt_config_SECTION()
#define STRUCT(__sect) \
int opt_config_##__sect(struct config_##__sect *s, const struct config_node *node) { \
if (node->text) unsupported_node(node); \
int result = CFOK; \
char used[node->nodc]; \
memset(used, 0, node->nodc);
#define __ITEM(__name, __flags, __parseexpr) \
{ \
int i = get_child(node, #__name); \
const struct config_node *child = (i != -1) ? node->nodv[i] : NULL; \
int ret = CFMISSING; \
if (child) { \
used[i] = 1; \
if (((0 __flags) & __NO_TEXT) && child->text) \
unsupported_node(child); \
if (((0 __flags) & __NO_CHILDREN) && child->nodc) \
unsupported_children(child); \
ret = (__parseexpr); \
} \
switch (ret) { \
case CFOK: break; \
case CFERROR: \
return CFERROR; \
case CFMISSING: \
if ((0 __flags) & __MANDATORY) { \
missing_node(node, #__name); \
if (result < CFMISSING) \
result = CFMISSING; \
} \
break; \
default: \
assert(child != NULL); \
if (child->text) \
invalid_text(child, ret); \
if (result < ret) \
result = ret; \
break; \
} \
}
#define NODE(__type, __name, __default, __parser, __flags, __comment) \
__ITEM(__name, __flags, __parser(&s->__name, child))
#define ATOM(__type, __name, __default, __parser, __flags, __comment) \
__ITEM(__name, __flags NO_CHILDREN, child->text ? __parser(&s->__name, child->text) : CFMISSING)
#define STRING(__size, __name, __default, __parser, __flags, __comment) \
__ITEM(__name, __flags NO_CHILDREN, child->text ? __parser(s->__name, (__size) + 1, child->text) : CFMISSING)
#define SUBP(__sect, __name, __parser, __flags) \
__ITEM(__name, __flags NO_TEXT, __parser(&s->__name, child))
#define END_STRUCT \
{ \
int i; \
for (i = 0; i < node->nodc; ++i) \
if (!used[i]) \
unsupported_tree(node->nodv[i]); \
} \
return result; \
}
#define ARRAY(__sect, __type, __size, __parser, __comment) \
int opt_config_##__sect(struct config_##__sect *s, const struct config_node *node) { \
if (node->text) unsupported_node(node); \
int result = CFOK; \
int i; \
for (i = 0; i < node->nodc && s->ac < NELS(s->av); ++i) { \
const struct config_node *elt = node->nodv[i]; \
int ret = __parser(&s->av[s->ac].value, elt); \
switch (ret) { \
case CFERROR: return CFERROR; \
case CFOK: \
strncpy(s->av[s->ac].label, elt->key, sizeof s->av[s->ac].label - 1)\
[sizeof s->av[s->ac].label - 1] = '\0'; \
++s->ac; \
break; \
default: \
list_omit_element(elt); \
break; \
} \
} \
for (; i < node->nodc; ++i) { \
if (result < CFOVERFLOW) result = CFOVERFLOW; \
list_overflow(node->nodv[i]); \
} \
return result; \
}
#include "config_schema.h"
#undef STRUCT
#undef NODE
#undef ATOM
#undef STRING
#undef SUBP
#undef END_STRUCT
#undef ARRAY
int main(int argc, char **argv)
{
int i;
for (i = 1; i < argc; ++i) {
int fd = open(argv[i], O_RDONLY);
if (fd == -1) {
perror("open");
exit(1);
}
struct stat st;
fstat(fd, &st);
char *buf = malloc(st.st_size);
if (!buf) {
perror("malloc");
exit(1);
}
if (read(fd, buf, st.st_size) != st.st_size) {
perror("read");
exit(1);
}
struct config_node *root = parse_config(argv[i], buf, st.st_size);
close(fd);
//dump_config_node(root, 0);
struct config_main config;
memset(&config, 0, sizeof config);
dfl_config_main(&config);
opt_config_main(&config, root);
free_config_node(root);
free(buf);
DEBUGF("config.log.file = %s", alloca_str(config.log.file));
DEBUGF("config.log.show_pid = %d", config.log.show_pid);
DEBUGF("config.log.show_time = %d", config.log.show_time);
DEBUGF("config.debug = %llx", (unsigned long long) config.debug);
DEBUGF("config.directory.service = %s", alloca_tohex(config.directory.service.binary, SID_SIZE));
int j;
for (j = 0; j < config.rhizome.direct.peer.ac; ++j) {
DEBUGF("config.rhizome.direct.peer.%s", config.rhizome.direct.peer.av[j].label);
DEBUGF(" .protocol = %s", alloca_str(config.rhizome.direct.peer.av[j].value.protocol));
DEBUGF(" .host = %s", alloca_str(config.rhizome.direct.peer.av[j].value.host));
DEBUGF(" .port = %u", config.rhizome.direct.peer.av[j].value.port);
}
}
exit(0);
}