serval-dna/overlay_interface.c
Daniel O'Connor 8882515d03 Fix compilation on OSX.
- /proc/net/route is Linux only.
- lsif() will work anywhere SIOCGIFCONF is defined.
- Abstract namespace UNIX domain sockets are Linux only.
- Rework code to reduce indent levels.
2012-05-28 15:00:54 +09:30

1026 lines
33 KiB
C

/*
Serval Distributed Numbering Architecture (DNA)
Copyright (C) 2010 Paul Gardner-Stephen
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include <time.h>
#include "serval.h"
#ifdef HAVE_IFADDRS_H
#include <ifaddrs.h>
#endif
int overlay_ready=0;
int overlay_interface_count=0;
overlay_interface overlay_interfaces[OVERLAY_MAX_INTERFACES];
int overlay_last_interface_number=-1;
struct interface_rules {
char *namespec;
unsigned long long speed_in_bits;
int port;
char type;
char excludeP;
struct interface_rules *next;
};
struct interface_rules *interface_filter=NULL;
unsigned int overlay_sequence_number=0;
/* Do we need to repeat our abbreviation policy? */
int overlay_interface_repeat_abbreviation_policy[OVERLAY_MAX_INTERFACES]={1};
/* Return milliseconds since server started. First call will always return zero.
Must use long long, not time_t, as time_t can be 32bits, which is too small for
milli-seconds since 1970. */
long long overlay_sequence_start_time = 0;
long long overlay_gettime_ms()
{
long long now;
if (!overlay_sequence_start_time) {
overlay_sequence_start_time = gettime_ms();
now = 0;
} else
now= gettime_ms()-overlay_sequence_start_time;
return now;
}
int overlay_update_sequence_number()
{
long long now=overlay_gettime_ms();
overlay_sequence_number=now&0xffffffff;
return 0;
}
int overlay_interface_type(char *s)
{
if (!strcasecmp(s,"ethernet")) return OVERLAY_INTERFACE_ETHERNET;
if (!strcasecmp(s,"wifi")) return OVERLAY_INTERFACE_WIFI;
if (!strcasecmp(s,"other")) return OVERLAY_INTERFACE_UNKNOWN;
if (!strcasecmp(s,"catear")) return OVERLAY_INTERFACE_PACKETRADIO;
return WHY("Invalid interface type -- consider using 'wifi','ethernet' or 'other'");
}
int overlay_interface_arg(char *arg)
{
/* Parse an interface argument, of the form:
<+|->[interfacename][=type]
+interface tells DNA to sit on that interface
-interface tells DNA to not sit on that interface
+/- without an interface tells DNA to sit on all interfaces.
The first match rules, so -en0+ tells DNA to use all interfaces, excepting en0
The optional =type specifier tells DNA how to handle the interface in terms of
bandwidth:distance relationship for calculating tick times etc.
The special type =custom allows full specification:
XXX - Settle the custom specification now that we have changed the interface
management.
*/
char sign[80]="+";
char interface_name[80]="";
char speed[80]="1m";
char typestring[80]="wifi";
int port=PORT_DNA;
int type=OVERLAY_INTERFACE_UNKNOWN;
int n=0;
/* Too long */
if (strlen(arg)>79) return WHY("interface specification was >79 characters");
struct interface_rules *r=calloc(sizeof(struct interface_rules),1);
if (!r) return WHY("calloc(struct interface rules),1) failed");
if (sscanf(arg,"%[+-]%n%[^=+-]%n=%[^:]%n:%d%n:%[^:]%n",
sign,&n,interface_name,&n,typestring,&n,&port,&n,speed,&n)>=1)
{
if (n<strlen(arg)) { free(r); return WHY("Extra junk at end of interface specification"); }
if (strlen(sign)>1) { free(r); return WHY("Sign must be + or -"); }
switch(sign[0])
{
case '+': break;
case '-': r->excludeP=1; break;
default:
free(r);
return WHY("Invalid interface list item: Must begin with + or -");
}
long long speed_in_bits=parse_quantity(speed);
if (speed_in_bits<=1) {
free(r);
return WHY("Interfaces must be capable of at least 1 bit per second");
}
if (n<strlen(arg)) return WHY("Extra stuff at end of interface specification");
type=overlay_interface_type(typestring);
if (type<0) { free(r); return WHY("Invalid interface type in specification"); }
/* Okay, register the interface preference */
r->namespec=strdup(interface_name);
r->speed_in_bits=speed_in_bits;
r->port=port;
r->type=type;
r->next=interface_filter;
interface_filter=r;
return 0;
}
else { free(r); return WHY("Bad interface specification"); }
}
int overlay_interface_args(const char *arg)
{
/* Parse series of comma-separated interface definitions from a single argument
*/
int i=0;
char interface[80];
int len=0;
for(i=0;arg[i];i++)
{
if (arg[i]==','||arg[i]=='\n') {
interface[len]=0;
if (overlay_interface_arg(interface)) return WHY("Could not add interface");
len=0;
} else {
if (len<79) {
interface[len++]=arg[i];
interface[len]=0;
} else
return WHY("Interface definition is too long (each must be <80 characters)");
}
}
if (len) if (overlay_interface_arg(interface)) return WHY("Could not add final interface");
return 0;
}
int overlay_interface_init_socket(int interface,struct sockaddr_in src_addr,struct sockaddr_in broadcast)
{
#define I(X) overlay_interfaces[interface].X
// I(local_address)=src_addr;
I(broadcast_address)=broadcast;
I(fileP)=0;
I(fd)=socket(PF_INET,SOCK_DGRAM,0);
if (I(fd)<0) {
return WHYF("Could not create UDP socket for interface: %s",strerror(errno));
} else
WHYF("interface #%d fd=%d",interface,I(fd));
int reuseP=1;
if(setsockopt( I(fd), SOL_SOCKET, SO_REUSEADDR, &reuseP, sizeof(reuseP)) < 0)
{
WHY("Could not mark socket to reuse addresses. Not necessarily a problem (yet)");
WHY_perror("setsockopt");
}
int broadcastP=1;
if(setsockopt(I(fd), SOL_SOCKET, SO_BROADCAST, &broadcastP, sizeof(broadcastP)) < 0) {
WHY("Could not enable broadcast reception for socket. This is really bad.");
WHY_perror("setsockopt");
close(I(fd)); I(fd)=0;
return WHY("setsockopt() failed");
} else
WHYF("Interface #%d broadcast flag = %d",interface,broadcastP);
/* Automatically close socket on calls to exec().
This makes life easier when we restart with an exec after receiving
a bad signal. */
fcntl(I(fd), F_SETFL,
fcntl(I(fd), F_GETFL, NULL)|O_CLOEXEC);
broadcast.sin_family = AF_INET;
broadcast.sin_port = htons( I(port) );
/* XXX Is this right? Are we really setting the local side address?
I was in a plane when at the time, so couldn't Google it.
*/
if (debug&DEBUG_PACKETRX) fprintf(stderr,"src_addr=%08x\n",(unsigned int)broadcast.sin_addr.s_addr);
if(bind(I(fd),(struct sockaddr *)&broadcast,sizeof(broadcast))) {
WHY_perror("bind");
close(I(fd));
I(fd)=-1;
return WHY("MP HLR server could not bind to requested UDP port (bind() failed)");
}
if (debug&(DEBUG_PACKETRX|DEBUG_IO)) fprintf(stderr,"Bound to port 0x%04x\n",broadcast.sin_port);
return 0;
#undef I
}
int overlay_interface_init(char *name,struct sockaddr_in src_addr,struct sockaddr_in broadcast,
int speed_in_bits,int port,int type)
{
/* Too many interfaces */
if (overlay_interface_count>=OVERLAY_MAX_INTERFACES) return WHY("Too many interfaces -- Increase OVERLAY_MAX_INTERFACES");
#define I(X) overlay_interfaces[overlay_interface_count].X
strcpy(I(name),name);
/* Pick a reasonable default MTU.
This will ultimately get tuned by the bandwidth and other properties of the interface */
I(mtu)=1200;
I(observed)=1;
I(bits_per_second)=speed_in_bits;
I(port)=port;
I(type)=type;
I(tick_ms)=500;
I(last_tick_ms)=0;
I(fd)=0;
switch(type) {
case OVERLAY_INTERFACE_PACKETRADIO: I(tick_ms)=15000; break;
case OVERLAY_INTERFACE_ETHERNET: I(tick_ms)=500; break;
case OVERLAY_INTERFACE_WIFI: I(tick_ms)=500; break;
}
if (name[0]=='>') {
I(fileP)=1;
char dummyfile[1024];
if (!FORM_SERVAL_INSTANCE_PATH(dummyfile, &name[1]) || (I(fd) = open(dummyfile,O_APPEND|O_RDWR)) < 1) {
return WHY("could not open dummy interface file for append");
}
/* Seek to end of file as initial reading point */
I(offset)=lseek(I(fd),0,SEEK_END); /* socket gets reused to hold file offset */
/* XXX later add pretend location information so that we can decide which "packets" to receive
based on closeness */
} else {
if (overlay_interface_init_socket(overlay_interface_count,src_addr,broadcast))
return WHY("overlay_interface_init_socket() failed");
}
overlay_interface_count++;
#undef I
return 0;
}
int overlay_rx_messages()
{
int i;
/* Grab packets, unpackage and dispatch frames to consumers */
/* XXX Okay, so how are we managing out-of-process consumers?
They need some way to register their interest in listening to a port.
*/
unsigned char packet[16384];
int plen=0;
int c[OVERLAY_MAX_INTERFACES];
int count=0;
/* Look at all interfaces */
for(i=0;i<overlay_interface_count;i++) { c[i]=(overlay_interfaces[i].observed>0); count+=c[i]; }
/* Grab packets from interfaces in round-robin fashion until all have been grabbed,
or until we have spent too long (maybe 10ms?) */
int now = overlay_gettime_ms();
while(count>0)
{
for(i=0;i<overlay_interface_count;i++)
{
struct sockaddr src_addr;
unsigned int addrlen=sizeof(src_addr);
unsigned char transaction_id[8];
overlay_last_interface_number=i;
/* Set socket non-blocking before we try to read from it */
fcntl(overlay_interfaces[i].fd, F_SETFL,
fcntl(overlay_interfaces[i].fd, F_GETFL, NULL)|O_NONBLOCK);
if (overlay_interfaces[i].fileP) {
/* Read from dummy interface file */
long long length=lseek(overlay_interfaces[i].fd,0,SEEK_END);
if (overlay_interfaces[i].offset>=length)
{
if (debug&DEBUG_OVERLAYINTERFACES)
fprintf(stderr,"At end of input on dummy interface #%d\n",i);
}
else
{
lseek(overlay_interfaces[i].fd,overlay_interfaces[i].offset,SEEK_SET);
if (debug&DEBUG_OVERLAYINTERFACES)
fprintf(stderr,"Reading from interface #%d log at offset %d, end of file at %lld.\n",i,
overlay_interfaces[i].offset,length);
if (read(overlay_interfaces[i].fd,&packet[0],2048)==2048)
{
overlay_interfaces[i].offset+=2048;
plen=2048-128;
plen=packet[110]+(packet[111]<<8);
if (plen>(2048-128)) plen=-1;
if (debug&DEBUG_PACKETRX) {
fflush(stdout);
serval_packetvisualise(stderr,
"Read from dummy interface",
&packet[128],plen);
fflush(stderr);
}
bzero(&transaction_id[0],8);
bzero(&src_addr,sizeof(src_addr));
if ((plen>=0)&&(packet[0]==0x01)&&!(packet[1]|packet[2]|packet[3])) {
{ if (packetOk(i,&packet[128],plen,transaction_id,
-1 /* fake TTL */,
&src_addr,addrlen,1))
WHY("Malformed or unsupported packet from dummy interface (packetOK() failed)"); } }
else WHY("Invalid packet version in dummy interface");
}
else {
if (debug&DEBUG_IO) fprintf(stderr,"Read NOTHING from dummy interface\n");
c[i]=0; count--;
}
}
} else {
/* Read from UDP socket */
int recvttl=1;
errno=0;
plen=recvwithttl(overlay_interfaces[i].fd,packet,sizeof(packet),
&recvttl,&src_addr,&addrlen);
if (plen<0) {
c[i]=0; count--;
} else {
/* We have a frame from this interface */
if (debug&DEBUG_PACKETRX) {
fflush(stdout);
serval_packetvisualise(stderr,"Read from real interface",
packet,plen);
fflush(stderr);
}
if (debug&DEBUG_OVERLAYINTERFACES)fprintf(stderr,"Received %d bytes on interface #%d (%s)\n",plen,i,overlay_interfaces[i].name);
if (packetOk(i,packet,plen,NULL,recvttl,&src_addr,addrlen,1)) {
WHY("Malformed packet");
serval_packetvisualise(stderr,"Malformed packet", packet,plen);
}
}
}
}
/* Don't sit here forever, or else we will never send any packets */
if (overlay_gettime_ms()>(now+10)) break;
}
return 0;
}
int overlay_tx_messages()
{
/* Check out the various queues, and add payloads to a new frame and send it out. */
/* XXX We may want to throttle the maximum packets/sec or KB/sec */
/* How are we going to pick and choose things from the various priority queues?
We could simply pick the top item from each queue in round-robin until the
frame is filled. That would be a start. We could certainly get more intelligent
and stuff lots of little frames from a high priority queue in if that makes sense,
especially if they look like getting delayed a bit. Perhaps we just reserve the first
n bytes for the first queue, the first n+k bytes for the first two queues and so on?
*/
/* XXX Go through queue and separate into per-interface queues? */
return WHY("not implemented");
}
int overlay_broadcast_ensemble(int interface_number,
struct sockaddr_in *recipientaddr /* NULL == broadcast */,
unsigned char *bytes,int len)
{
struct sockaddr_in s;
if (debug&DEBUG_PACKETTX)
{
fprintf(stderr,"Sending this packet via interface #%d\n",interface_number);
serval_packetvisualise(stdout,NULL,bytes,len);
}
memset(&s, '\0', sizeof(struct sockaddr_in));
if (recipientaddr) {
bcopy(recipientaddr,&s,sizeof(struct sockaddr_in));
}
else {
s = overlay_interfaces[interface_number].broadcast_address;
s.sin_family = AF_INET;
if (debug&DEBUG_PACKETTX) fprintf(stderr,"Port=%d\n",overlay_interfaces[interface_number].port);
s.sin_port = htons( overlay_interfaces[interface_number].port );
}
if (overlay_interfaces[interface_number].fileP)
{
char buf[2048];
/* Version information */
buf[0]=1; buf[1]=0;
buf[2]=0; buf[3]=0;
/* bytes 4-5 = half-power beam height (uint16) */
/* bytes 6-7 = half-power beam width (uint16) */
/* bytes 8-11 = range in metres, centre beam (uint32) */
/* bytes 16-47 = sender */
/* bytes 48-79 = next hop */
/* bytes 80-83 = latitude (uint32) */
/* bytes 84-87 = longitude (uint32) */
/* bytes 88-89 = X/Z direction (uint16) */
/* bytes 90-91 = Y direction (uint16) */
/* bytes 92-93 = speed in metres per second (uint16) */
/* bytes 94-97 = TX frequency in Hz, uncorrected for doppler (which must be done at the receiving end to take into account
relative motion) */
/* bytes 98-109 = coding method (use for doppler response etc) null terminated string */
/* bytes 110-111 = length of packet body in bytes */
/* bytes 112-127 reserved for future use */
if (len>2048-128) {
WHY("Truncating long packet to fit within 1920 byte limit for dummy interface");
len=2048-128;
}
/* Record length of packet */
buf[110]=len&0xff;
buf[111]=(len>>8)&0xff;
bzero(&buf[128+len],2048-(128+len));
bcopy(bytes,&buf[128],len);
if (write(overlay_interfaces[interface_number].fd,buf,2048)!=2048)
{
WHY_perror("write");
return WHY("write() failed");
}
else
return 0;
}
else
{
if(sendto(overlay_interfaces[interface_number].fd, bytes, len, 0, (struct sockaddr *)&s, sizeof(struct sockaddr_in)) != len)
{
/* Failed to send */
WHY_perror("sendto(c)");
return WHY("sendto() failed");
}
else
/* Sent okay */
return 0;
}
}
/* This function is called to return old non-overlay requests back out the
interface they came in. */
int overlay_sendto(struct sockaddr_in *recipientaddr,unsigned char *bytes,int len)
{
if (debug&DEBUG_PACKETTX) fprintf(stderr,"Sending %d bytes.\n",len);
if(overlay_broadcast_ensemble(overlay_last_interface_number,recipientaddr,bytes,len))
return -1;
else
return len;
}
int overlay_interface_register(unsigned char *name,
struct sockaddr_in local,
struct sockaddr_in broadcast)
{
/* Now register the interface, or update the existing interface registration */
struct interface_rules *r=interface_filter,*me=NULL;
while(r) {
if (!strcasecmp((char *)name,r->namespec)) me=r;
if (!r->namespec[0]) me=r;
r=r->next;
}
if (me&&(!me->excludeP)) {
if (debug&DEBUG_OVERLAYINTERFACES)
fprintf(stderr,"Interface %s is interesting.\n",name);
/* We should register or update this interface. */
int i;
for(i=0;i<overlay_interface_count;i++) if (!strcasecmp(overlay_interfaces[i].name,(char *)name)) break;
if (i<overlay_interface_count) {
/* We already know about this interface, so just update it.
We actually only care about the broadcast address for the overlay mesh.
this is a good thing, because it turns out to be pretty hard to discover
your own IP address on Android. */
if ( /* ((overlay_interfaces[i].local_address.sin_addr.s_addr&0xffffffff)
==(local.sin_addr.s_addr&0xffffffff))&& */
((overlay_interfaces[i].broadcast_address.sin_addr.s_addr&0xffffffff)
==(broadcast.sin_addr.s_addr&0xffffffff)))
{
/* Mark it as being seen */
overlay_interfaces[i].observed=1;
return 0;
}
else
if (0)
{
/* Interface has changed.
This old approach has problems for machines with multiple IP
addresses on a given interface, so now we allow multiple
interfaces on the same underlying network adaptor. */
WHYF("Interface changed %08llx.%08llx vs %08llx.%08llx",
/* overlay_interfaces[i].local_address.sin_addr.s_addr */0,
overlay_interfaces[i].broadcast_address.sin_addr.s_addr,
local.sin_addr.s_addr,
broadcast.sin_addr.s_addr);
close(overlay_interfaces[i].fd);
overlay_interfaces[i].fd=-1;
if (overlay_interface_init_socket(i,local,broadcast))
WHY("Could not reinitialise changed interface");
}
}
else {
/* New interface, so register it */
if (overlay_interface_init((char *)name,local,broadcast,
me->speed_in_bits,me->port,me->type))
WHY("Could not initialise newly seen interface");
else
if (debug&DEBUG_OVERLAYINTERFACES) fprintf(stderr,"Registered interface %s\n",name);
}
}
return 0;
}
time_t overlay_last_interface_discover_time=0;
int overlay_interface_discover()
{
/* Don't waste too much time and effort on interface discovery,
especially if we can't attach to a given interface for some reason. */
if (overlay_last_interface_discover_time>time(0))
overlay_last_interface_discover_time=time(0);
if ((time(0)-overlay_last_interface_discover_time)<2) return 0;
overlay_last_interface_discover_time=time(0);
/* The Android ndk doesn't have ifaddrs.h, so we have to use the netlink interface.
However, netlink is only available on Linux, so for BSD systems, e.g., Mac, we
need to use the ifaddrs method.
Also, ifaddrs will work on non-linux systems which is considered critical.
*/
/* Mark all interfaces as not observed, so that we know if we need to cull any */
int i;
for(i=0;i<overlay_interface_count;i++) overlay_interfaces[i].observed--;
/* Check through for any virtual dummy interfaces */
struct interface_rules *r=interface_filter;
while(r) {
if (r->namespec[0]=='>') {
for(i=0;i<overlay_interface_count;i++) if (!strcasecmp(overlay_interfaces[i].name,r->namespec)) break;
if (i<overlay_interface_count)
/* We already know about this interface, so just update it */
overlay_interfaces[i].observed=1;
else {
/* New interface, so register it */
struct sockaddr_in dummyaddr;
if (overlay_interface_init(r->namespec,dummyaddr,dummyaddr,
1000000,PORT_DNA,OVERLAY_INTERFACE_WIFI))
{ if (debug&DEBUG_OVERLAYINTERFACES)
WHY("Could not initialise newly seen interface"); }
else
if (debug&DEBUG_OVERLAYINTERFACES) fprintf(stderr,"Registered interface %s\n",r->namespec);
}
}
r=r->next;
}
#ifdef SIOCGIFCONF
lsif();
#endif
#ifdef linux
scrapeProcNetRoute();
#endif
#ifdef HAVE_IFADDRS_H
struct ifaddrs *ifaddr,*ifa;
int family;
if (getifaddrs(&ifaddr) == -1) {
WHY_perror("getifaddr()");
return WHY("getifaddrs() failed");
}
/* Check through actual network interfaces */
for (ifa=ifaddr;ifa!=NULL;ifa=ifa->ifa_next) {
family=ifa->ifa_addr->sa_family;
switch(family) {
case AF_INET:
{
unsigned char *name=(unsigned char *)ifa->ifa_name;
struct sockaddr_in local=*(struct sockaddr_in *)ifa->ifa_addr;
struct sockaddr_in netmask=*(struct sockaddr_in *)ifa->ifa_netmask;
struct sockaddr_in broadcast=local;
broadcast.sin_addr.s_addr|=(~netmask.sin_addr.s_addr);
if (debug&DEBUG_OVERLAYINTERFACES) printf("%s: %08x %08x %08x\n",name,local.sin_addr.s_addr,netmask.sin_addr.s_addr,broadcast.sin_addr.s_addr);
overlay_interface_register(name,local,broadcast);
break;
}
}
}
freeifaddrs(ifaddr);
#endif
return 0;
}
int overlay_stuff_packet_from_queue(int i,overlay_buffer *e,int q,long long now,overlay_frame *pax[],int *frame_pax,int frame_max_pax)
{
if (0) printf("Stuffing from queue #%d on interface #%d\n",q,i);
overlay_frame **p=&overlay_tx[q].first;
if (0) printf("A p=%p, *p=%p, queue=%d\n",p,*p,q);
while(p&&(*p))
{
if (0) printf("B p=%p, *p=%p, queue=%d\n",p,*p,q);
/* Throw away any stale frames */
overlay_frame *pp;
if (p) pp=*p;
if (!pp) break;
if (0) printf("now=%lld, *p=%p, q=%d, overlay_tx[q]=%p\n",
now,*p,q,&overlay_tx[q]);
if (0) overlay_queue_dump(&overlay_tx[q]);
if (now>((*p)->enqueued_at+overlay_tx[q].latencyTarget)) {
/* Stale, so remove from queue. */
/* Get pointer to stale entry */
overlay_frame *stale=*p;
if (0)
fprintf(stderr,"Removing stale frame at %p (now=%lld, expiry=%lld)\n",
stale,
now,((*p)->enqueued_at+overlay_tx[q].latencyTarget));
if (0) printf("now=%lld, *p=%p, q=%d, overlay_tx[q]=%p\n",
now,*p,q,&overlay_tx[q]);
/* Make ->next pointer that points to the stale node skip the stale node */
if (0) printf("p=%p, stale=%p, stale->next=%p\n",p,stale,stale->next);
*p=stale->next;
/* If there is an entry after the stale now, make it's prev point to the
node before the stale node */
if (*p) (*p)->prev=stale->prev;
if (overlay_tx[q].first==stale) overlay_tx[q].first=stale->next;
if (overlay_tx[q].last==stale) overlay_tx[q].last=stale->prev;
op_free(stale);
overlay_tx[q].length--;
}
else
{
/* We keep trying to queue frames in case they will fit, as not all
frames are of equal size. This means that lower bit-rate codecs will
get higher priority, which is probably not all bad. The only hard
limit is the maximum number of payloads we allow in a frame, which is
set so high as to be irrelevant, even on loopback or gigabit ethernet
interface */
/* Filter for those which should be sent via this interface.
To do that we need to know the nexthop, and the best route to the
next hop. */
int dontSend=1;
/* See if this interface has the best path to this node */
if (!(*p)->isBroadcast) {
unsigned char nexthop[SID_SIZE];
int len=0;
int next_hop_interface=-1;
int r=overlay_get_nexthop((*p)->destination,nexthop,&len,
&next_hop_interface);
if (!r) {
if (next_hop_interface==i) {
if (0) printf("unicast pax %p\n",*p);
dontSend=0; } else {
if (0)
printf("Packet should go via interface #%d, but I am interface #%d\n",next_hop_interface,i);
}
} else {
WHY("bummer, I couldn't find an open route to that node");
printf("sid=%s\n",overlay_render_sid((*p)->destination));
}
} else if (!(*p)->broadcast_sent_via[i])
{
/* Broadcast frames are easy to work out if they go via this interface,
just make sure that they haven't been previously sent via this
interface. We then have some magic that only dequeues broadcast packets
once they have been sent via all open interfaces (or gone stale) */
dontSend=0;
(*p)->broadcast_sent_via[i]=1;
if (0) printf("broadcast pax %p\n",*p);
}
if (dontSend==0) {
/* Try sending by this queue */
if (*frame_pax>=frame_max_pax) break;
if (!overlay_frame_package_fmt1(*p,e))
{
/* Add payload to list of payloads we are sending with this frame so that we can dequeue them
if we send them. */
if (0) {
printf(" paxed#%d %p%s\n",*frame_pax,*p,
(*p)->isBroadcast?"(broadcast)":"");
fflush(stdout);
dump("payload of pax",(*p)->payload->bytes,(*p)->payload->length);
}
pax[(*frame_pax)++]=*p;
}
}
}
if (0) printf("C p=%p, *p=%p, queue=%d\n",p,*p,q);
if (*p)
/* Consider next in queue */
p=&(*p)->next;
if (0) printf("D p=%p, *p=%p, queue=%d\n",p,p?*p:NULL,q);
}
if (0) printf("returning from stuffing\n");
return 0;
}
int overlay_queue_dump(overlay_txqueue *q)
{
struct overlay_frame *f;
fprintf(stderr,"overlay_txqueue @ 0x%p\n",q);
fprintf(stderr," length=%d\n",q->length);
fprintf(stderr," maxLenght=%d\n",q->maxLength);
fprintf(stderr," latencyTarget=%d milli-seconds\n",q->latencyTarget);
fprintf(stderr," first=%p\n",q->first);
f=q->first;
while(f) {
fprintf(stderr," %p: ->next=%p, ->prev=%p ->dequeue=%d\n",
f,f->next,f->prev,f->dequeue);
if (f==f->next) {
fprintf(stderr," LOOP!\n"); break;
}
f=f->next;
}
fprintf(stderr," last=%p\n",q->last);
f=q->last;
while(f) {
fprintf(stderr," %p: ->next=%p, ->prev=%p\n",
f,f->next,f->prev);
if (f==f->prev) {
fprintf(stderr," LOOP!\n"); break;
}
f=f->prev;
}
return 0;
}
int overlay_tick_interface(int i, long long now)
{
int frame_pax=0;
#define MAX_FRAME_PAX 1024
overlay_frame *pax[MAX_FRAME_PAX];
if (overlay_interfaces[i].bits_per_second<1) {
/* An interface with no speed budget is for listening only, so doesn't get ticked */
return 0;
}
if (debug&DEBUG_OVERLAYINTERFACES) fprintf(stderr,"Ticking interface #%d\n",i);
/* Get a buffer ready, and limit it's size appropriately.
XXX size limit should be reduced from MTU.
XXX we should also take account of the volume of data likely to be in the TX buffer. */
overlay_buffer *e=ob_new(overlay_interfaces[i].mtu);
if (!e) return WHY("ob_new() failed");
ob_limitsize(e,overlay_interfaces[i].mtu/4);
/* 0. Setup Serval Mesh frame header. We do not use an explicit length field for these, as the various
component payloads are all self-authenticating, or at least that is the theory. */
unsigned char bytes[]={/* Magic */ 'O',0x10,
/* Version */ 0x00,0x01};
if (ob_append_bytes(e,bytes,4)) {
ob_free(e);
return WHY("ob_append_bytes() refused to append magic bytes.");
}
/* 1. Send announcement about ourselves, including one SID that we host if we host more than one SID
(the first SID we host becomes our own identity, saving a little bit of data here).
*/
overlay_add_selfannouncement(i,e);
/* 2. Add any queued high-priority isochronous data (i.e. voice) to the frame. */
overlay_stuff_packet_from_queue(i,e,OQ_ISOCHRONOUS_VOICE,now,pax,&frame_pax,MAX_FRAME_PAX);
ob_limitsize(e,overlay_interfaces[i].mtu/2);
/* 3. Add some mesh reachability reports (unlike BATMAN we announce reachability to peers progressively).
Give priority to newly observed nodes so that good news travels quickly to help roaming.
XXX - Don't forget about PONGing reachability reports to allow use of monodirectional links.
*/
overlay_stuff_packet_from_queue(i,e,OQ_MESH_MANAGEMENT,now,pax,&frame_pax,MAX_FRAME_PAX);
/* We previously limited manifest space to 3/4 of MTU, but that causes problems for
MeshMS journal manifests, at least until we move to a compact binary format.
So for now, allow allow rest of packet to get used */
#warning reduce to <= mtu*3/4 once we have compacty binary canonical manifest format
ob_limitsize(e,overlay_interfaces[i].mtu*4/4);
/* Add advertisements for ROUTES not Rhizome bundles.
Rhizome bundle advertisements are lower priority */
overlay_route_add_advertisements(i,e);
ob_limitsize(e,overlay_interfaces[i].mtu);
/* 4. XXX Add lower-priority queued data */
overlay_stuff_packet_from_queue(i,e,OQ_ISOCHRONOUS_VIDEO,now,pax,&frame_pax,MAX_FRAME_PAX);
overlay_stuff_packet_from_queue(i,e,OQ_ORDINARY,now,pax,&frame_pax,MAX_FRAME_PAX);
overlay_stuff_packet_from_queue(i,e,OQ_OPPORTUNISTIC,now,pax,&frame_pax,MAX_FRAME_PAX);
/* 5. XXX Fill the packet up to a suitable size with anything that seems a good idea */
if (rhizome_enabled())
overlay_rhizome_add_advertisements(i,e);
if (debug&DEBUG_PACKETCONSTRUCTION)
dump("assembled packet",&e->bytes[0],e->length);
/* Now send the frame. This takes the form of a special DNA packet with a different
service code, which we setup earlier. */
if (debug&DEBUG_OVERLAYINTERFACES)
fprintf(stderr,"Sending %d byte tick packet\n",e->length);
if (!overlay_broadcast_ensemble(i,NULL,e->bytes,e->length))
{
overlay_update_sequence_number();
if (debug&DEBUG_OVERLAYINTERFACES)
fprintf(stderr,"Successfully transmitted tick frame #%lld on interface #%d (%d bytes)\n",
(long long)overlay_sequence_number,i,e->length);
/* De-queue the passengers who were aboard.
One round of marking, and then one round of culling from the queue. */
int j,q;
/* Mark frames that can be dequeued */
for(j=0;j<frame_pax;j++)
{
overlay_frame *p=pax[j];
if (0)
printf("dequeue %p ?%s\n",p,p->isBroadcast?" (broadcast)":" (unicast)");
if (!p->isBroadcast)
{
if (0) printf("yes\n");
p->dequeue=1;
}
else {
int i;
int workLeft=0;
for(i=0;i<OVERLAY_MAX_INTERFACES;i++)
{
if (overlay_interfaces[i].observed>0)
if (!p->broadcast_sent_via[i])
{
workLeft=1;
break;
}
}
if (!workLeft) p->dequeue=1;
}
}
/* Visit queues and dequeue all that we can */
for(q=0;q<OQ_MAX;q++)
{
overlay_frame **p=&overlay_tx[q].first;
overlay_frame *t;
while(p&&(*p))
{
if ((*p)->dequeue) {
{
if (0) printf("dequeuing %p%s NOW\n",
*p,(*p)->isBroadcast?" (broadcast)":" (unicast)");
t=*p;
*p=t->next;
if (overlay_tx[q].last==t) overlay_tx[q].last=t->prev;
if (overlay_tx[q].first==t) overlay_tx[q].first=t->next;
if (t->prev) t->prev->next=t->next;
if (t->next) t->next->prev=t->prev;
if (debug&DEBUG_QUEUES)
{
fprintf(stderr,"** dequeued pax @ %p\n",t);
overlay_queue_dump(&overlay_tx[q]);
}
if (op_free(t)) {
overlay_queue_dump(&overlay_tx[q]);
WHY("op_free() failed");
if (debug&DEBUG_QUEUES) exit(WHY("Queue structures corrupt"));
}
overlay_tx[q].length--;
}
} else {
/* only skip ahead if we haven't dequeued something */
if (!(*p)) break;
p=&(*p)->next;
}
}
}
return 0;
}
else return WHY("overlay_broadcast_ensemble() failed");
}
int overlay_check_ticks()
{
/* Check if any interface(s) are due for a tick */
int i;
/* Check for changes to interfaces */
overlay_interface_discover();
long long now=overlay_gettime_ms();
/* Now check if the next tick time for the interfaces is no later than that time.
If so, trigger a tick on the interface. */
if (debug&DEBUG_OVERLAYINTERFACES) fprintf(stderr,"Examining %d interfaces.\n",overlay_interface_count);
for(i=0;i<overlay_interface_count;i++)
{
/* Only tick live interfaces */
if (overlay_interfaces[i].observed>0)
{
if (debug&DEBUG_VERBOSE_IO)fprintf(stderr,"Interface %s ticks every %dms, last at %lld.\n",overlay_interfaces[i].name,
overlay_interfaces[i].tick_ms,overlay_interfaces[i].last_tick_ms);
if (now>=overlay_interfaces[i].last_tick_ms+overlay_interfaces[i].tick_ms)
{
/* This interface is due for a tick */
overlay_tick_interface(i,now);
overlay_interfaces[i].last_tick_ms=now;
}
}
else
if (debug&DEBUG_VERBOSE_IO)fprintf(stderr,"Interface %s is awol.\n",overlay_interfaces[i].name);
}
return 0;
}
long long overlay_time_until_next_tick()
{
/* By default only tick once per day */
long long nexttick=86400*1000;
long long now=overlay_gettime_ms();
int i;
if (debug&DEBUG_VERBOSE_IO)fprintf(stderr,"Tick-check on %d interfaces at %lldms\n",overlay_interface_count,now);
for(i=0;i<overlay_interface_count;i++)
if (overlay_interfaces[i].observed>0)
{
if (debug&DEBUG_VERBOSE_IO) fprintf(stderr,"Interface %s ticks every %dms, last at T-%lldms.\n",overlay_interfaces[i].name,
overlay_interfaces[i].tick_ms,now-overlay_interfaces[i].last_tick_ms);
long long thistick=(overlay_interfaces[i].last_tick_ms+overlay_interfaces[i].tick_ms)-now;
if (thistick<0) thistick=0;
if (thistick<nexttick) nexttick=thistick;
}
return nexttick;
}
long long parse_quantity(char *q)
{
int m;
char units[80];
if (strlen(q)>=80) return WHY("quantity string >=80 characters");
if (sscanf(q,"%d%s",&m,units)==2)
{
if (units[1]) return WHY("Units should be single character");
switch(units[0])
{
case 'k': return m*1000LL;
case 'K': return m*1024LL;
case 'm': return m*1000LL*1000LL;
case 'M': return m*1024LL*1024LL;
case 'g': return m*1000LL*1000LL*1000LL;
case 'G': return m*1024LL*1024LL*1024LL;
default:
return WHY("Illegal unit: should be k,K,m,M,g, or G.");
}
}
if (sscanf(q,"%d",&m)==1)
{
return m;
}
else
{
return WHY("Could not parse quantity");
}
}