serval-dna/config_test.c
Andrew Bettison 58bf0e1752 Improve new config prototype code
Add hosts.SIDHEX.{interface,network,port} config options.
2012-11-29 06:28:28 +10:30

1155 lines
35 KiB
C

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stdarg.h>
#include <assert.h>
#include <arpa/inet.h>
#include "str.h"
#include "strbuf.h"
#include "strbuf_helpers.h"
#define NELS(a) (sizeof (a) / sizeof *(a))
#define _DEBUGF(F,...) fprintf(stderr, "DEBUG: " F "\n", ##__VA_ARGS__)
#define _WARNF(F,...) fprintf(stderr, "WARN: " F "\n", ##__VA_ARGS__)
#define _WHYF(F,...) fprintf(stderr, "ERROR: " F "\n", ##__VA_ARGS__)
#define _WHYF_perror(F,...) fprintf(stderr, "ERROR: " F ": %s [errno=%d]\n", ##__VA_ARGS__, strerror(errno), errno)
#define DEBUGF(F,...) _DEBUGF("%s:%u " F, __FILE__, __LINE__, ##__VA_ARGS__)
#define WARNF(F,...) _WARNF("%s:%u " F, __FILE__, __LINE__, ##__VA_ARGS__)
#define WHYF(F,...) _WHYF("%s:%u " F, __FILE__, __LINE__, ##__VA_ARGS__)
#define WHYF_perror(F,...) _WHYF_perror("%s:%u " F, __FILE__, __LINE__, ##__VA_ARGS__)
#define alloca_str(s) ((s) ? alloca_str_toprint(s) : "NULL")
#include "config.h"
const char *find_keyend(const char *const key, const char *const fullkeyend)
{
const char *s = key;
if (s < fullkeyend && (isalpha(*s) || *s == '_'))
++s;
while (s < fullkeyend && (isalnum(*s) || *s == '_'))
++s;
if (s == key || (s < fullkeyend && *s != '.'))
return NULL;
return s;
}
void *emalloc(size_t len)
{
char *new = malloc(len + 1);
if (!new) {
WHYF_perror("malloc(%lu)", (long)len);
return NULL;
}
return new;
}
char *strn_emalloc(const char *str, size_t len)
{
char *new = emalloc(len + 1);
if (new) {
strncpy(new, str, len);
new[len] = '\0';
}
return new;
}
char *str_emalloc(const char *str)
{
return strn_emalloc(str, strlen(str));
}
int make_child(struct cf_om_node **const parentp, const char *const fullkey, const char *const key, const char *const keyend)
{
size_t keylen = keyend - key;
//DEBUGF("%s key=%s", __FUNCTION__, alloca_toprint(-1, key, keylen));
int i = 0;
struct cf_om_node *child;
if ((*parentp)->nodc) {
// Binary search for matching child.
int m = 0;
int n = (*parentp)->nodc - 1;
int c;
do {
i = (m + n) / 2;
child = (*parentp)->nodv[i];
c = strncmp(key, child->key, keylen);
if (c == 0 && child->key[keylen])
c = -1;
//DEBUGF(" m=%d n=%d i=%d child->key=%s c=%d", m, n, i, alloca_str(child->key), c);
if (c == 0) {
//DEBUGF(" found i=%d", i);
return i;
}
if (c > 0)
m = ++i;
else
n = i - 1;
} while (m <= n);
}
// At this point, i is the index where a new child should be inserted.
assert(i >= 0);
assert(i <= (*parentp)->nodc);
child = emalloc(sizeof *child);
if (child == NULL)
return -1;
memset(child, 0, sizeof *child);
++(*parentp)->nodc;
if ((*parentp)->nodc > NELS((*parentp)->nodv))
*parentp = realloc(*parentp, sizeof(**parentp) + sizeof((*parentp)->nodv[0]) * ((*parentp)->nodc - NELS((*parentp)->nodv)));
int j;
for (j = (*parentp)->nodc - 1; j > i; --j)
(*parentp)->nodv[j] = (*parentp)->nodv[j-1];
(*parentp)->nodv[i] = child;
if (!(child->fullkey = strn_emalloc(fullkey, keyend - fullkey))) {
free(child);
return -1;
}
child->key = child->fullkey + (key - fullkey);
//DEBUGF(" insert i=%d", i);
return i;
}
void free_config_node(struct cf_om_node *node)
{
while (node->nodc)
free_config_node(node->nodv[--node->nodc]);
if (node->fullkey) {
free((char *)node->fullkey);
node->fullkey = node->key = NULL;
}
if (node->text) {
free((char *)node->text);
node->text = NULL;
}
free(node);
}
struct cf_om_node *parse_config(const char *source, const char *buf, size_t len)
{
struct cf_om_node *root = emalloc(sizeof(struct cf_om_node));
if (root == NULL)
return NULL;
memset(root, 0, sizeof *root);
const char *end = buf + len;
const char *line = buf;
const char *nextline;
unsigned lineno = 1;
for (lineno = 1; line < end; line = nextline, ++lineno) {
const char *lend = line;
while (lend < end && *lend != '\n')
++lend;
nextline = lend + 1;
if (lend > line && lend[-1] == '\r')
--lend;
//DEBUGF("lineno=%u %s", lineno, alloca_toprint(-1, line, lend - line));
if (line[0] == '#')
continue; // skip comment lines
const char *p;
for (p = line; p < lend && isspace(*p); ++p)
;
if (p == lend)
continue; // skip empty and blank lines
for (p = line; p < lend && *p != '='; ++p)
;
if (p == line || p == lend) {
WARNF("%s:%u: malformed configuration line -- ignored", source, lineno);
continue;
}
struct cf_om_node **nodep = &root;
const char *fullkey = line;
const char *fullkeyend = p;
const char *key = fullkey;
const char *keyend = NULL;
int nodi = -1;
while (key <= fullkeyend && (keyend = find_keyend(key, fullkeyend)) && (nodi = make_child(nodep, fullkey, key, keyend)) != -1) {
key = keyend + 1;
nodep = &(*nodep)->nodv[nodi];
}
if (keyend == NULL) {
WARNF("%s:%u: malformed configuration option %s -- ignored",
source, lineno, alloca_toprint(-1, fullkey, fullkeyend - fullkey)
);
continue;
}
if (nodi == -1)
goto error; // out of memory
struct cf_om_node *node = *nodep;
if (node->text) {
WARNF("%s:%u: duplicate configuration option %s -- ignored (original is at %s:%u)",
source, lineno, alloca_toprint(-1, fullkey, fullkeyend - fullkey),
node->source, node->line_number
);
continue;
}
++p;
if (!(node->text = strn_emalloc(p, lend - p)))
break; // out of memory
node->source = source;
node->line_number = lineno;
}
return root;
error:
free_config_node(root);
return NULL;
}
void dump_config_node(const struct cf_om_node *node, int indent)
{
if (node == NULL)
DEBUGF("%*sNULL", indent * 3, "");
else {
DEBUGF("%*s%s:%u fullkey=%s key=%s text=%s", indent * 3, "",
node->source ? node->source : "NULL",
node->line_number,
alloca_str(node->fullkey),
alloca_str(node->key),
alloca_str(node->text)
);
int i;
for (i = 0; i < node->nodc; ++i)
dump_config_node(node->nodv[i], indent + 1);
}
}
int get_child(const struct cf_om_node *parent, const char *key)
{
int i;
for (i = 0; i < parent->nodc; ++i)
if (strcmp(parent->nodv[i]->key, key) == 0)
return i;
return -1;
}
void warn_nodev(const char *file, unsigned line, const struct cf_om_node *node, const char *key, const char *fmt, va_list ap)
{
strbuf b = strbuf_alloca(1024);
if (node) {
if (node->source && node->line_number)
strbuf_sprintf(b, "%s:%u: ", node->source, node->line_number);
strbuf_puts(b, "configuration option \"");
strbuf_puts(b, node->fullkey);
if (key && key[0]) {
strbuf_putc(b, '.');
strbuf_puts(b, key);
}
strbuf_puts(b, "\" ");
}
strbuf_vsprintf(b, fmt, ap);
_WARNF("%s:%u %s", file, line, strbuf_str(b));
}
void warn_childrenv(const char *file, unsigned line, const struct cf_om_node *parent, const char *fmt, va_list ap)
{
int i;
for (i = 0; i < parent->nodc; ++i) {
warn_nodev(file, line, parent->nodv[i], NULL, fmt, ap);
warn_childrenv(file, line, parent->nodv[i], fmt, ap);
}
}
void warn_node(const char *file, unsigned line, const struct cf_om_node *node, const char *key, const char *fmt, ...)
{
va_list ap;
va_start(ap, fmt);
warn_nodev(file, line, node, key, fmt, ap);
va_end(ap);
}
void warn_children(const char *file, unsigned line, const struct cf_om_node *node, const char *fmt, ...)
{
va_list ap;
va_start(ap, fmt);
warn_childrenv(file, line, node, fmt, ap);
va_end(ap);
}
void warn_missing_node(const struct cf_om_node *parent, const char *key)
{
warn_node(__FILE__, __LINE__, parent, key, "is missing");
}
strbuf strbuf_cf_flags(strbuf sb, int flags)
{
if (flags == CFERROR)
return strbuf_puts(sb, "CFERROR");
size_t n = strbuf_len(sb);
static struct { int flag; const char *name; } flagdefs[] = {
{ CFEMPTY, "CFEMPTY" },
{ CFSTRINGOVERFLOW, "CFSTRINGOVERFLOW" },
{ CFARRAYOVERFLOW, "CFARRAYOVERFLOW" },
{ CFINCOMPLETE, "CFINCOMPLETE" },
{ CFINVALID, "CFINVALID" },
{ CFUNSUPPORTED, "CFUNSUPPORTED" },
};
int i;
for (i = 0; i < NELS(flagdefs); ++i) {
if (flags & flagdefs[i].flag) {
if (strbuf_len(sb) != n)
strbuf_putc(sb, ' ');
strbuf_puts(sb, flagdefs[i].name);
flags &= ~flagdefs[i].flag;
}
}
for (i = 0; i < NELS(flagdefs); ++i) {
if (flags & CFSUB(flagdefs[i].flag)) {
if (strbuf_len(sb) != n)
strbuf_putc(sb, ' ');
strbuf_puts(sb, "CFSUB(");
strbuf_puts(sb, flagdefs[i].name);
strbuf_putc(sb, ')');
flags &= ~CFSUB(flagdefs[i].flag);
}
}
if (flags) {
if (strbuf_len(sb) != n)
strbuf_putc(sb, ' ');
strbuf_sprintf(sb, "%#x", flags);
}
if (strbuf_len(sb) == n)
strbuf_puts(sb, "CFOK");
return sb;
}
strbuf strbuf_cf_flag_reason(strbuf sb, int flags)
{
if (flags == CFERROR)
return strbuf_puts(sb, "unrecoverable error");
size_t n = strbuf_len(sb);
static struct { int flag; const char *reason; } flagdefs[] = {
{ CFEMPTY, "empty" },
{ CFSTRINGOVERFLOW, "string overflow" },
{ CFARRAYOVERFLOW, "array overflow" },
{ CFINCOMPLETE, "incomplete" },
{ CFINVALID, "invalid" },
{ CFUNSUPPORTED, "not supported" },
{ CFSUB(CFEMPTY), "contains empty element" },
{ CFSUB(CFSTRINGOVERFLOW), "contains string overflow" },
{ CFSUB(CFARRAYOVERFLOW), "contains array overflow" },
{ CFSUB(CFINCOMPLETE), "contains incomplete element" },
{ CFSUB(CFINVALID), "contains invalid element" },
{ CFSUB(CFUNSUPPORTED), "contains unsupported element" },
};
int i;
for (i = 0; i < NELS(flagdefs); ++i) {
if (flags & flagdefs[i].flag) {
if (strbuf_len(sb) != n)
strbuf_puts(sb, ", ");
strbuf_puts(sb, flagdefs[i].reason);
flags &= ~flagdefs[i].flag;
}
}
if (strbuf_len(sb) == n)
strbuf_puts(sb, "no reason");
return sb;
}
void warn_node_value(const struct cf_om_node *node, int reason)
{
strbuf b = strbuf_alloca(180);
strbuf_cf_flag_reason(b, reason);
warn_node(__FILE__, __LINE__, node, NULL, "value %s %s", alloca_str(node->text), strbuf_str(b));
}
void warn_no_array(const struct cf_om_node *node, int reason)
{
strbuf b = strbuf_alloca(180);
strbuf_cf_flag_reason(b, reason);
warn_node(__FILE__, __LINE__, node, NULL, "array discarded -- %s", strbuf_str(b));
}
void warn_unsupported_node(const struct cf_om_node *node)
{
warn_node(__FILE__, __LINE__, node, NULL, "not supported");
}
void warn_unsupported_children(const struct cf_om_node *parent)
{
int i;
for (i = 0; i < parent->nodc; ++i) {
if (parent->nodv[i]->text)
warn_unsupported_node(parent->nodv[i]);
warn_unsupported_children(parent->nodv[i]);
}
}
void warn_list_overflow(const struct cf_om_node *node)
{
warn_node(__FILE__, __LINE__, node, NULL, "list overflow");
warn_children(__FILE__, __LINE__, node, "list overflow");
}
void warn_spurious_children(const struct cf_om_node *parent)
{
warn_children(__FILE__, __LINE__, parent, "spurious");
}
void warn_array_label(const struct cf_om_node *node, int reason)
{
strbuf b = strbuf_alloca(180);
strbuf_cf_flag_reason(b, reason);
warn_node(__FILE__, __LINE__, node, NULL, "array label %s -- %s", alloca_str(node->key), strbuf_str(b));
}
void warn_array_value(const struct cf_om_node *node, int reason)
{
strbuf b = strbuf_alloca(180);
strbuf_cf_flag_reason(b, reason);
if (node->text)
warn_node(__FILE__, __LINE__, node, NULL, "array value %s -- %s", alloca_str(node->text), strbuf_str(b));
else
warn_node(__FILE__, __LINE__, node, NULL, "array element -- %s", strbuf_str(b));
}
int opt_boolean(int *booleanp, const char *text);
int opt_absolute_path(char *str, size_t len, const char *text);
int opt_debugflags(debugflags_t *flagsp, const struct cf_om_node *node);
int opt_rhizome_peer(struct config_rhizomepeer *, const struct cf_om_node *node);
int opt_str(char *str, size_t len, const char *text);
int opt_str_nonempty(char *str, size_t len, const char *text);
int opt_int(int *intp, const char *text);
int opt_uint64_scaled(uint64_t *intp, const char *text);
int opt_protocol(char *str, size_t len, const char *text);
int opt_in_addr(struct in_addr *addrp, const char *text);
int opt_port(unsigned short *portp, const char *text);
int opt_str_hex_sid(char *sidhexp, size_t len, const char *text);
int opt_sid(sid_t *sidp, const char *text);
int opt_interface_type(short *typep, const char *text);
int opt_pattern_list(struct pattern_list *listp, const char *text);
int opt_interface_list(struct config_interface_list *listp, const struct cf_om_node *node);
int opt_boolean(int *booleanp, const char *text)
{
if (!strcasecmp(text, "true") || !strcasecmp(text, "yes") || !strcasecmp(text, "on") || !strcasecmp(text, "1")) {
*booleanp = 1;
return CFOK;
}
else if (!strcasecmp(text, "false") || !strcasecmp(text, "no") || !strcasecmp(text, "off") || !strcasecmp(text, "0")) {
*booleanp = 0;
return CFOK;
}
//invalid_text(node, "expecting true|yes|on|1|false|no|off|0");
return CFINVALID;
}
int opt_absolute_path(char *str, size_t len, const char *text)
{
if (text[0] != '/') {
//invalid_text(node, "must start with '/'");
return CFINVALID;
}
if (strlen(text) >= len) {
//invalid_text(node, "string overflow");
return CFSTRINGOVERFLOW;
}
strncpy(str, text, len);
assert(str[len - 1] == '\0');
return CFOK;
}
debugflags_t debugFlagMask(const char *flagname)
{
if (!strcasecmp(flagname,"all")) return ~0;
else if (!strcasecmp(flagname,"interfaces")) return 1 << 0;
else if (!strcasecmp(flagname,"rx")) return 1 << 1;
else if (!strcasecmp(flagname,"tx")) return 1 << 2;
else if (!strcasecmp(flagname,"verbose")) return 1 << 3;
else if (!strcasecmp(flagname,"verbio")) return 1 << 4;
else if (!strcasecmp(flagname,"peers")) return 1 << 5;
else if (!strcasecmp(flagname,"dnaresponses")) return 1 << 6;
else if (!strcasecmp(flagname,"dnahelper")) return 1 << 7;
else if (!strcasecmp(flagname,"vomp")) return 1 << 8;
else if (!strcasecmp(flagname,"packetformats")) return 1 << 9;
else if (!strcasecmp(flagname,"packetconstruction")) return 1 << 10;
else if (!strcasecmp(flagname,"gateway")) return 1 << 11;
else if (!strcasecmp(flagname,"keyring")) return 1 << 12;
else if (!strcasecmp(flagname,"sockio")) return 1 << 13;
else if (!strcasecmp(flagname,"frames")) return 1 << 14;
else if (!strcasecmp(flagname,"abbreviations")) return 1 << 15;
else if (!strcasecmp(flagname,"routing")) return 1 << 16;
else if (!strcasecmp(flagname,"security")) return 1 << 17;
else if (!strcasecmp(flagname,"rhizome")) return 1 << 18;
else if (!strcasecmp(flagname,"rhizometx")) return 1 << 19;
else if (!strcasecmp(flagname,"rhizomerx")) return 1 << 20;
else if (!strcasecmp(flagname,"rhizomeads")) return 1 << 21;
else if (!strcasecmp(flagname,"monitorroutes")) return 1 << 22;
else if (!strcasecmp(flagname,"queues")) return 1 << 23;
else if (!strcasecmp(flagname,"broadcasts")) return 1 << 24;
else if (!strcasecmp(flagname,"manifests")) return 1 << 25;
else if (!strcasecmp(flagname,"mdprequests")) return 1 << 26;
else if (!strcasecmp(flagname,"timing")) return 1 << 27;
return 0;
}
int opt_debugflags(debugflags_t *flagsp, const struct cf_om_node *node)
{
//DEBUGF("%s", __FUNCTION__);
//dump_config_node(node, 1);
debugflags_t setmask = 0;
debugflags_t clearmask = 0;
int setall = 0;
int clearall = 0;
int result = CFEMPTY;
int i;
for (i = 0; i < node->nodc; ++i) {
const struct cf_om_node *child = node->nodv[i];
warn_unsupported_children(child);
debugflags_t mask = debugFlagMask(child->key);
int flag = -1;
if (!mask)
warn_unsupported_node(child);
else if (child->text) {
int ret = opt_boolean(&flag, child->text);
switch (ret) {
case CFERROR: return CFERROR;
case CFOK:
result &= ~CFEMPTY;
if (mask == ~0) {
if (flag)
setall = 1;
else
clearall = 1;
} else {
if (flag)
setmask |= mask;
else
clearmask |= mask;
}
break;
default:
warn_node_value(child, ret);
result |= ret;
break;
}
}
}
if (setall)
*flagsp = ~0;
else if (clearall)
*flagsp = 0;
*flagsp &= ~clearmask;
*flagsp |= setmask;
return result;
}
int opt_protocol(char *str, size_t len, const char *text)
{
if (!str_is_uri_scheme(text)) {
//invalid_text(node, "contains invalid character");
return CFINVALID;
}
if (strlen(text) >= len) {
//invalid_text(node, "string overflow");
return CFSTRINGOVERFLOW;
}
strncpy(str, text, len);
assert(str[len - 1] == '\0');
return CFOK;
}
int opt_rhizome_peer(struct config_rhizomepeer *rpeer, const struct cf_om_node *node)
{
if (!node->text)
return opt_config_rhizomepeer(rpeer, node);
warn_spurious_children(node);
const char *protocol;
size_t protolen;
const char *auth;
if (str_is_uri(node->text)) {
const char *hier;
if (!( str_uri_scheme(node->text, &protocol, &protolen)
&& str_uri_hierarchical(node->text, &hier, NULL)
&& str_uri_hierarchical_authority(hier, &auth, NULL))
)
goto invalid;
} else {
auth = node->text;
protocol = "http";
protolen = strlen(protocol);
}
const char *host;
size_t hostlen;
unsigned short port = 4110;
if (!str_uri_authority_hostname(auth, &host, &hostlen))
goto invalid;
str_uri_authority_port(auth, &port);
if (protolen >= sizeof rpeer->protocol) {
//invalid_text(node, "protocol string overflow");
return CFSTRINGOVERFLOW;
}
if (hostlen >= sizeof rpeer->host) {
//invalid_text(node, "hostname string overflow");
return CFSTRINGOVERFLOW;
}
strncpy(rpeer->protocol, protocol, protolen)[protolen] = '\0';
strncpy(rpeer->host, host, hostlen)[hostlen] = '\0';
rpeer->port = port;
return CFOK;
invalid:
//invalid_text(node, "malformed URL");
return CFINVALID;
}
int opt_str(char *str, size_t len, const char *text)
{
if (strlen(text) >= len)
return CFSTRINGOVERFLOW;
strncpy(str, text, len);
assert(str[len - 1] == '\0');
return CFOK;
}
int opt_str_nonempty(char *str, size_t len, const char *text)
{
if (!text[0]) {
//invalid_text(node, "empty string");
return CFINVALID;
}
return opt_str(str, len, text);
}
int opt_int(int *intp, const char *text)
{
const char *end = text;
long value = strtol(text, (char**)&end, 10);
if (end == text || *end)
return CFINVALID;
*intp = value;
return CFOK;
}
int opt_uint64_scaled(uint64_t *intp, const char *text)
{
uint64_t result;
const char *end;
if (!str_to_uint64_scaled(text, 10, &result, &end) || *end) {
//invalid_text(node, "invalid scaled unsigned integer");
return CFINVALID;
}
*intp = result;
return CFOK;
}
int opt_argv_label(char *labelp, size_t len, const char *text)
{
const char *s = text;
if (isdigit(*s) && *s != '0') {
++s;
while (isdigit(*s))
++s;
}
if (s == text || *s)
return CFINVALID;
if (s - text >= len)
return CFSTRINGOVERFLOW;
strncpy(labelp, text, len - 1)[len - 1] = '\0';
return CFOK;
}
int cmp_argv(const struct config_argv__element *a, const struct config_argv__element *b)
{
int ai = atoi(a->label);
int bi = atoi(b->label);
return ai < bi ? -1 : ai > bi ? 1 : 0;
}
int vld_argv(const struct cf_om_node *parent, struct config_argv *array, int result)
{
qsort(array->av, array->ac, sizeof array->av[0], (int (*)(const void *, const void *)) cmp_argv);
int last_label = -1;
int i;
for (i = 0; i < array->ac; ++i) {
int label = atoi(array->av[i].label);
assert(label >= 1);
while (last_label != -1 && ++last_label < label && last_label <= sizeof(array->av)) {
char labelkey[12];
sprintf(labelkey, "%u", last_label);
warn_missing_node(parent, labelkey);
result |= CFINCOMPLETE;
}
last_label = label;
}
return result;
}
int opt_in_addr(struct in_addr *addrp, const char *text)
{
struct in_addr addr;
if (!inet_aton(text, &addr))
return CFINVALID;
*addrp = addr;
return CFOK;
}
int opt_port(unsigned short *portp, const char *text)
{
unsigned short port = 0;
const char *p;
for (p = text; isdigit(*p); ++p) {
unsigned oport = port;
port = port * 10 + *p - '0';
if (port / 10 != oport)
break;
}
if (*p || port == 0) {
//invalid_text(node, "invalid port number");
return CFINVALID;
}
*portp = port;
return CFOK;
}
int opt_str_hex_sid(char *sidhexp, size_t len, const char *text)
{
if (!str_is_subscriber_id(text))
return CFINVALID;
if (len <= SID_STRLEN)
return CFSTRINGOVERFLOW;
strncpy(sidhexp, text, SID_STRLEN)[SID_STRLEN] = '\0';
return CFOK;
}
int opt_sid(sid_t *sidp, const char *text)
{
sid_t sid;
if (!str_is_subscriber_id(text)) {
//invalid_text(node, "invalid subscriber ID");
return CFINVALID;
}
size_t n = fromhex(sidp->binary, text, SID_SIZE);
assert(n == SID_SIZE);
return CFOK;
}
int opt_interface_type(short *typep, const char *text)
{
if (strcasecmp(text, "ethernet") == 0) {
*typep = OVERLAY_INTERFACE_ETHERNET;
return CFOK;
}
if (strcasecmp(text, "wifi") == 0) {
*typep = OVERLAY_INTERFACE_WIFI;
return CFOK;
}
if (strcasecmp(text, "catear") == 0) {
*typep = OVERLAY_INTERFACE_PACKETRADIO;
return CFOK;
}
if (strcasecmp(text, "other") == 0) {
*typep = OVERLAY_INTERFACE_UNKNOWN;
return CFOK;
}
//invalid_text(node, "invalid network interface type");
return CFINVALID;
}
int opt_pattern_list(struct pattern_list *listp, const char *text)
{
struct pattern_list list;
memset(&list, 0, sizeof list);
const char *word = NULL;
const char *p;
for (p = text; ; ++p) {
if (!*p || isspace(*p) || *p == ',') {
if (word) {
size_t len = p - word;
if (list.patc >= NELS(list.patv) || len >= sizeof(list.patv[list.patc])) {
//invalid_text(node, "string overflow");
return CFARRAYOVERFLOW;
}
strncpy(list.patv[list.patc++], word, len)[len] = '\0';
word = NULL;
}
if (!*p)
break;
} else if (!word)
word = p;
}
assert(word == NULL);
*listp = list;
return CFOK;
}
/* Config parse function. Implements the original form of the 'interfaces' config option. Parses a
* single text string of the form:
*
* ( "+" | "-" ) [ interfacename ] [ "=" type ] [ ":" port [ ":" speed ] ]
*
* where:
*
* "+" means include the interface
* "-" means exclude the interface
*
* The original implementation applied include/exclude matching in the order that the list was
* given, but the new implementation applies all exclusions before apply inclusions. This should
* not be a problem, as there were no known uses that depended on testing an inclusion before an
* exclusion.
*
* An empty 'interfacename' matches all interfaces. So a "+" by itself includes all interfaces,
* and a '-' by itself excludes all interfaces. These two rules are applied after all other
* interface inclusions/exclusions are tested, otherwise "-" would overrule all other interfaces.
*
* The optional 'type' tells DNA how to handle the interface in terms of bandwidth:distance
* relationship for calculating tick times etc.
*
* The optional 'port' is the port number to bind all interfaces, instead of the default.
*
* The optional 'speed' is the nominal bits/second bandwidth of the interface, instead of the
* default. It is expressed as a positive integer with an optional scaling suffix, eg, "150k",
* "1K", "900M".
*
* @author Andrew Bettison <andrew@servalproject.com>
*/
int opt_network_interface(struct config_network_interface *nifp, const char *text)
{
//DEBUGF("%s text=%s", __FUNCTION__, alloca_str(text));
struct config_network_interface nif;
dfl_config_network_interface(&nif);
if (text[0] != '+' && text[0] != '-')
return CFINVALID; // "Sign must be + or -"
nif.exclude = (text[0] == '-');
const char *const endtext = text + strlen(text);
const char *name = text + 1;
const char *p = strpbrk(name, "=:");
if (!p)
p = endtext;
size_t len = p - name;
int star = (len == 0 || (name[0] != '>' && name[len - 1] != '*')) ? 1 : 0;
if (len + star >= sizeof(nif.match.patv[0]))
return CFSTRINGOVERFLOW;
strncpy(nif.match.patv[0], name, len)[len + star] = '\0';
if (star)
nif.match.patv[0][len] = '*';
nif.match.patc = 1;
if (*p == '=') {
const char *const type = p + 1;
p = strchr(type, ':');
if (!p)
p = endtext;
len = p - type;
if (len) {
char buf[len + 1];
strncpy(buf, type, len)[len] = '\0';
int result = opt_interface_type(&nif.type, buf);
switch (result) {
case CFERROR: return CFERROR;
case CFOK: break;
default: return result; // "Invalid interface type"
}
}
}
if (*p == ':') {
const char *const port = p + 1;
p = strchr(port, ':');
if (!p)
p = endtext;
len = p - port;
if (len) {
char buf[len + 1];
strncpy(buf, port, len)[len] = '\0';
int result = opt_port(&nif.port, buf);
switch (result) {
case CFERROR: return CFERROR;
case CFOK: break;
default: return result; // "Invalid interface port number"
}
}
}
if (*p == ':') {
const char *const speed = p + 1;
p = endtext;
len = p - speed;
if (len) {
char buf[len + 1];
strncpy(buf, speed, len)[len] = '\0';
int result = opt_uint64_scaled(&nif.speed, buf);
switch (result) {
case CFERROR: return CFERROR;
case CFOK: break;
default: return result; // "Invalid interface speed"
}
if (nif.speed < 1)
return CFINVALID; // "Interfaces must be capable of at least 1 bit per second"
}
}
if (*p)
return CFINVALID; // "Extra junk at end of interface specification"
*nifp = nif;
return CFOK;
}
/* Config parse function. Implements the original form of the 'interfaces' config option. Parses a
* comma-separated list of interface rules (see opt_network_interface() for the format of each
* rule), then parses the regular config array-of-struct style interface option settings so that
* both forms are supported.
*
* @author Andrew Bettison <andrew@servalproject.com>
*/
int opt_interface_list(struct config_interface_list *listp, const struct cf_om_node *node)
{
int result = opt_config_interface_list(listp, node);
if (result == CFERROR)
return CFERROR;
if (node->text) {
const char *p;
const char *arg = NULL;
unsigned n = listp->ac;
for (p = node->text; n < NELS(listp->av); ++p) {
if (*p == '\0' || *p == ',' || isspace(*p)) {
if (arg) {
int len = p - arg;
if (len > 80) {
result |= CFSTRINGOVERFLOW;
goto bye;
}
char buf[len + 1];
strncpy(buf, arg, len)[len] = '\0';
int ret = opt_network_interface(&listp->av[n].value, buf);
switch (ret) {
case CFERROR: return CFERROR;
case CFOK:
len = snprintf(listp->av[n].label, sizeof listp->av[n].label - 1, "%u", n);
listp->av[n].label[len] = '\0';
++n;
break;
default:
warn_node(__FILE__, __LINE__, node, NULL, "invalid interface rule %s", alloca_str(buf)); \
result |= CFSUB(ret);
break;
}
arg = NULL;
}
if (!*p)
break;
} else if (!arg)
arg = p;
}
if (*p) {
result |= CFARRAYOVERFLOW;
goto bye;
}
assert(n <= NELS(listp->av));
listp->ac = n;
}
bye:
if (listp->ac == 0)
result |= CFEMPTY;
else
result &= ~CFEMPTY;
return result;
}
// Schema item flags.
#define __MANDATORY (1<<0)
#define __TEXT (1<<1)
#define __CHILDREN (1<<2)
// Schema flag symbols, to be used in the '__flags' macro arguments.
#define MANDATORY |__MANDATORY
#define USES_TEXT |__TEXT
#define USES_CHILDREN |__CHILDREN
// Generate parsing functions, opt_config_SECTION()
#define STRUCT(__name, __validator...) \
int opt_config_##__name(struct config_##__name *strct, const struct cf_om_node *node) { \
int (*validator)(const struct cf_om_node *, struct config_##__name *, int) = (NULL, ##__validator); \
int result = CFEMPTY; \
char used[node->nodc]; \
memset(used, 0, node->nodc * sizeof used[0]);
#define __ITEM(__element, __flags, __parseexpr) \
{ \
int i = get_child(node, #__element); \
const struct cf_om_node *child = (i != -1) ? node->nodv[i] : NULL; \
int ret = CFEMPTY; \
if (child) { \
used[i] |= (__flags); \
ret = (__parseexpr); \
if (ret == CFERROR) \
return CFERROR; \
} \
result |= ret & CF__SUBFLAGS; \
ret &= CF__FLAGS; \
if (!(ret & CFEMPTY)) \
result &= ~CFEMPTY; \
else if ((__flags) & __MANDATORY) { \
warn_missing_node(node, #__element); \
result |= CFINCOMPLETE; \
} \
if (ret & ~CFEMPTY) { \
assert(child != NULL); \
if (child->text) \
warn_node_value(child, ret); \
result |= CFSUB(ret); \
} \
}
#define NODE(__type, __element, __default, __parser, __flags, __comment) \
__ITEM(__element, 0 __flags, __parser(&strct->__element, child))
#define ATOM(__type, __element, __default, __parser, __flags, __comment) \
__ITEM(__element, ((0 __flags)|__TEXT)&~__CHILDREN, child->text ? __parser(&strct->__element, child->text) : CFEMPTY)
#define STRING(__size, __element, __default, __parser, __flags, __comment) \
__ITEM(__element, ((0 __flags)|__TEXT)&~__CHILDREN, child->text ? __parser(strct->__element, (__size) + 1, child->text) : CFEMPTY)
#define SUB_STRUCT(__name, __element, __flags) \
__ITEM(__element, (0 __flags)|__CHILDREN, opt_config_##__name(&strct->__element, child))
#define NODE_STRUCT(__name, __element, __parser, __flags) \
__ITEM(__element, (0 __flags)|__TEXT|__CHILDREN, __parser(&strct->__element, child))
#define END_STRUCT \
{ \
int i; \
for (i = 0; i < node->nodc; ++i) { \
if (node->nodv[i]->text && !(used[i] & __TEXT)) { \
warn_unsupported_node(node->nodv[i]); \
result |= CFSUB(CFUNSUPPORTED); \
} \
if (node->nodv[i]->nodc && !(used[i] & __CHILDREN)) { \
warn_unsupported_children(node->nodv[i]); \
result |= CFSUB(CFUNSUPPORTED); \
} \
} \
} \
if (validator) \
result = (*validator)(node, strct, result); \
return result; \
}
#define __ARRAY(__name, __lblparser, __parseexpr, __validator...) \
int opt_config_##__name(struct config_##__name *array, const struct cf_om_node *node) { \
int (*validator)(const struct cf_om_node *, struct config_##__name *, int) = (NULL, ##__validator); \
int result = CFOK; \
int i, n; \
for (n = 0, i = 0; i < node->nodc && n < NELS(array->av); ++i) { \
const struct cf_om_node *child = node->nodv[i]; \
int ret = __lblparser(array->av[n].label, sizeof array->av[n].label, child->key); \
if (ret == CFERROR) \
return CFERROR; \
result |= ret & CF__SUBFLAGS; \
ret &= CF__FLAGS; \
result |= CFSUB(ret); \
if (ret != CFOK) \
warn_array_label(child, ret); \
else { \
ret = (__parseexpr); \
if (ret == CFERROR) \
return CFERROR; \
result |= ret & CF__SUBFLAGS; \
ret &= CF__FLAGS; \
result |= CFSUB(ret); \
if (ret == CFOK) \
++n; \
else \
warn_array_value(child, ret); \
} \
} \
if (i < node->nodc) { \
assert(n == NELS(array->av)); \
result |= CFARRAYOVERFLOW; \
for (; i < node->nodc; ++i) \
warn_list_overflow(node->nodv[i]); \
} \
array->ac = n; \
if (validator) \
result = (*validator)(node, array, result); \
if (result & ~CFEMPTY) { \
warn_no_array(node, result); \
array->ac = 0; \
} \
if (array->ac == 0) \
result |= CFEMPTY; \
return result; \
}
#define ARRAY_ATOM(__name, __size, __lbllen, __type, __lblparser, __eltparser, __validator...) \
__ARRAY(__name, __lblparser, child->text ? __eltparser(&array->av[n].value, child->text) : CFEMPTY, ##__validator)
#define ARRAY_STRING(__name, __size, __lbllen, __strsize, __lblparser, __eltparser, __validator...) \
__ARRAY(__name, __lblparser, child->text ? __eltparser(array->av[n].value, sizeof array->av[n].value, child->text) : CFEMPTY, ##__validator)
#define ARRAY_NODE(__name, __size, __lbllen, __type, __lblparser, __eltparser, __validator...) \
__ARRAY(__name, __lblparser, __eltparser(&array->av[n].value, child), ##__validator)
#define ARRAY_STRUCT(__name, __size, __lbllen, __structname, __lblparser, __validator...) \
__ARRAY(__name, __lblparser, opt_config_##__structname(&array->av[n].value, child), ##__validator)
#include "config_schema.h"
#undef STRUCT
#undef NODE
#undef ATOM
#undef STRING
#undef SUB_STRUCT
#undef NODE_STRUCT
#undef END_STRUCT
#undef __ARRAY
#undef ARRAY_ATOM
#undef ARRAY_STRING
#undef ARRAY_NODE
#undef ARRAY_STRUCT
int main(int argc, char **argv)
{
int i;
for (i = 1; i < argc; ++i) {
int fd = open(argv[i], O_RDONLY);
if (fd == -1) {
perror("open");
exit(1);
}
struct stat st;
fstat(fd, &st);
char *buf = malloc(st.st_size);
if (!buf) {
perror("malloc");
exit(1);
}
if (read(fd, buf, st.st_size) != st.st_size) {
perror("read");
exit(1);
}
struct cf_om_node *root = parse_config(argv[i], buf, st.st_size);
close(fd);
//dump_config_node(root, 0);
struct config_main config;
memset(&config, 0, sizeof config);
dfl_config_main(&config);
int result = opt_config_main(&config, root);
free_config_node(root);
free(buf);
DEBUGF("result = %s", strbuf_str(strbuf_cf_flags(strbuf_alloca(128), result)));
DEBUGF("config.log.file = %s", alloca_str(config.log.file));
DEBUGF("config.log.show_pid = %d", config.log.show_pid);
DEBUGF("config.log.show_time = %d", config.log.show_time);
DEBUGF("config.server.chdir = %s", alloca_str(config.server.chdir));
DEBUGF("config.debug = %llx", (unsigned long long) config.debug);
DEBUGF("config.directory.service = %s", alloca_tohex(config.directory.service.binary, SID_SIZE));
int j;
for (j = 0; j < config.dna.helper.argv.ac; ++j) {
DEBUGF("config.dna.helper.argv.%s=%s", config.dna.helper.argv.av[j].label, config.dna.helper.argv.av[j].value);
}
for (j = 0; j < config.rhizome.direct.peer.ac; ++j) {
DEBUGF("config.rhizome.direct.peer.%s", config.rhizome.direct.peer.av[j].label);
DEBUGF(" .protocol = %s", alloca_str(config.rhizome.direct.peer.av[j].value.protocol));
DEBUGF(" .host = %s", alloca_str(config.rhizome.direct.peer.av[j].value.host));
DEBUGF(" .port = %u", config.rhizome.direct.peer.av[j].value.port);
}
for (j = 0; j < config.interfaces.ac; ++j) {
DEBUGF("config.interfaces.%s", config.interfaces.av[j].label);
DEBUGF(" .exclude = %d", config.interfaces.av[j].value.exclude);
DEBUGF(" .match = [");
int k;
for (k = 0; k < config.interfaces.av[j].value.match.patc; ++k)
DEBUGF(" %s", alloca_str(config.interfaces.av[j].value.match.patv[k]));
DEBUGF(" ]");
DEBUGF(" .type = %d", config.interfaces.av[j].value.type);
DEBUGF(" .port = %u", config.interfaces.av[j].value.port);
DEBUGF(" .speed = %llu", (unsigned long long) config.interfaces.av[j].value.speed);
}
for (j = 0; j < config.hosts.ac; ++j) {
DEBUGF("config.hosts.%s", config.hosts.av[j].label);
DEBUGF(" .interface = %s", alloca_str(config.hosts.av[j].value.interface));
DEBUGF(" .address = %s", inet_ntoa(config.hosts.av[j].value.address));
DEBUGF(" .port = %u", config.hosts.av[j].value.port);
}
}
exit(0);
}