serval-dna/nacl/nacl-20110221/crypto_auth/try.c
Daniel O'Connor bf9710fd5a Unpacked nacl-20110221 after processing by nacl-prepare-sources.
This only affects build_android, if nacl-gcc-prep is run then build/`uname -s` will be created.
2012-02-27 12:40:14 +10:30

120 lines
4.0 KiB
C

/*
* crypto_auth/try.c version 20090118
* D. J. Bernstein
* Public domain.
*/
#include "crypto_hash_sha256.h"
#include "crypto_auth.h"
extern unsigned char *alignedcalloc(unsigned long long);
const char *primitiveimplementation = crypto_auth_IMPLEMENTATION;
#define MAXTEST_BYTES 10000
#define CHECKSUM_BYTES 4096
#define TUNE_BYTES 1536
static unsigned char *h;
static unsigned char *m;
static unsigned char *k;
static unsigned char *h2;
static unsigned char *m2;
static unsigned char *k2;
void preallocate(void)
{
}
void allocate(void)
{
h = alignedcalloc(crypto_auth_BYTES);
m = alignedcalloc(MAXTEST_BYTES);
k = alignedcalloc(crypto_auth_KEYBYTES);
h2 = alignedcalloc(crypto_auth_BYTES);
m2 = alignedcalloc(MAXTEST_BYTES + crypto_auth_BYTES);
k2 = alignedcalloc(crypto_auth_KEYBYTES + crypto_auth_BYTES);
}
void predoit(void)
{
}
void doit(void)
{
crypto_auth(h,m,TUNE_BYTES,k);
crypto_auth_verify(h,m,TUNE_BYTES,k);
}
char checksum[crypto_auth_BYTES * 2 + 1];
const char *checksum_compute(void)
{
long long i;
long long j;
for (i = 0;i < CHECKSUM_BYTES;++i) {
long long mlen = i;
long long klen = crypto_auth_KEYBYTES;
long long hlen = crypto_auth_BYTES;
for (j = -16;j < 0;++j) h[j] = random();
for (j = -16;j < 0;++j) k[j] = random();
for (j = -16;j < 0;++j) m[j] = random();
for (j = hlen;j < hlen + 16;++j) h[j] = random();
for (j = klen;j < klen + 16;++j) k[j] = random();
for (j = mlen;j < mlen + 16;++j) m[j] = random();
for (j = -16;j < hlen + 16;++j) h2[j] = h[j];
for (j = -16;j < klen + 16;++j) k2[j] = k[j];
for (j = -16;j < mlen + 16;++j) m2[j] = m[j];
if (crypto_auth(h,m,mlen,k) != 0) return "crypto_auth returns nonzero";
for (j = -16;j < klen + 16;++j) if (k[j] != k2[j]) return "crypto_auth overwrites k";
for (j = -16;j < mlen + 16;++j) if (m[j] != m2[j]) return "crypto_auth overwrites m";
for (j = -16;j < 0;++j) if (h[j] != h2[j]) return "crypto_auth writes before output";
for (j = hlen;j < hlen + 16;++j) if (h[j] != h2[j]) return "crypto_auth writes after output";
for (j = -16;j < 0;++j) h[j] = random();
for (j = -16;j < 0;++j) k[j] = random();
for (j = -16;j < 0;++j) m[j] = random();
for (j = hlen;j < hlen + 16;++j) h[j] = random();
for (j = klen;j < klen + 16;++j) k[j] = random();
for (j = mlen;j < mlen + 16;++j) m[j] = random();
for (j = -16;j < hlen + 16;++j) h2[j] = h[j];
for (j = -16;j < klen + 16;++j) k2[j] = k[j];
for (j = -16;j < mlen + 16;++j) m2[j] = m[j];
if (crypto_auth(m2,m2,mlen,k) != 0) return "crypto_auth returns nonzero";
for (j = 0;j < hlen;++j) if (m2[j] != h[j]) return "crypto_auth does not handle m overlap";
for (j = 0;j < hlen;++j) m2[j] = m[j];
if (crypto_auth(k2,m2,mlen,k2) != 0) return "crypto_auth returns nonzero";
for (j = 0;j < hlen;++j) if (k2[j] != h[j]) return "crypto_auth does not handle k overlap";
for (j = 0;j < hlen;++j) k2[j] = k[j];
if (crypto_auth_verify(h,m,mlen,k) != 0) return "crypto_auth_verify returns nonzero";
for (j = -16;j < hlen + 16;++j) if (h[j] != h2[j]) return "crypto_auth overwrites h";
for (j = -16;j < klen + 16;++j) if (k[j] != k2[j]) return "crypto_auth overwrites k";
for (j = -16;j < mlen + 16;++j) if (m[j] != m2[j]) return "crypto_auth overwrites m";
crypto_hash_sha256(h2,h,hlen);
for (j = 0;j < klen;++j) k[j] ^= h2[j % 32];
if (crypto_auth(h,m,mlen,k) != 0) return "crypto_auth returns nonzero";
if (crypto_auth_verify(h,m,mlen,k) != 0) return "crypto_auth_verify returns nonzero";
crypto_hash_sha256(h2,h,hlen);
for (j = 0;j < mlen;++j) m[j] ^= h2[j % 32];
m[mlen] = h2[0];
}
if (crypto_auth(h,m,CHECKSUM_BYTES,k) != 0) return "crypto_auth returns nonzero";
if (crypto_auth_verify(h,m,CHECKSUM_BYTES,k) != 0) return "crypto_auth_verify returns nonzero";
for (i = 0;i < crypto_auth_BYTES;++i) {
checksum[2 * i] = "0123456789abcdef"[15 & (h[i] >> 4)];
checksum[2 * i + 1] = "0123456789abcdef"[15 & h[i]];
}
checksum[2 * i] = 0;
return 0;
}