mirror of
https://github.com/servalproject/serval-dna.git
synced 2024-12-30 01:48:54 +00:00
308 lines
10 KiB
C
308 lines
10 KiB
C
/*
|
|
Serval string buffer primitives
|
|
Copyright (C) 2012 The Serval Project
|
|
|
|
This program is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU General Public License
|
|
as published by the Free Software Foundation; either version 2
|
|
of the License, or (at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
*/
|
|
|
|
#ifndef __STRBUF_H__
|
|
#define __STRBUF_H__
|
|
|
|
/*
|
|
A strbuf provides a convenient set of primitives for assembling a
|
|
null-terminated string in a fixed-size, caller-provided backing buffer,
|
|
using a sequence of append operations.
|
|
|
|
An append operation that would overflow the buffer is truncated, and the
|
|
result null-terminated. Once a truncation has occurred, the "overrun"
|
|
property of the strbuf is true until the next strbuf_init(), and all
|
|
subsequent appends will be fully truncated, ie, nothing more will be
|
|
appended to the buffer.
|
|
|
|
The string in the buffer is guaranteed to always be nul terminated, which
|
|
means that the maximum strlen() of the assembled string is one less than
|
|
the buffer size. In other words, the following invariants always hold:
|
|
strbuf_len(sb) < strbuf_size(sb)
|
|
strbuf_str(sb)[strbuf_len(sb)] == '\0'
|
|
|
|
char buf[100];
|
|
strbuf b;
|
|
strbuf_init(&b, buf, sizeof buf);
|
|
strbuf_puts(&b, "text");
|
|
strbuf_sprintf(&b, "fmt", val...);
|
|
if (strbuf_overflow(&b))
|
|
// error...
|
|
else
|
|
// use buf
|
|
|
|
A strbuf counts the total number of chars appended to it, even ones that
|
|
were truncated. This count is always available via strbuf_count().
|
|
|
|
A NULL buffer can be provided. This causes the strbuf operations to
|
|
perform all character counting and truncation calculations as usual, but
|
|
not assemble the string. This allows a strbuf to be used for calculating
|
|
the size needed for a buffer, which the caller may then allocate and replay
|
|
the same operations to fill.
|
|
|
|
*/
|
|
|
|
#include <sys/types.h>
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <stdarg.h>
|
|
#include <alloca.h>
|
|
|
|
#ifndef __STRBUF_INLINE
|
|
# if __GNUC__ && !__GNUC_STDC_INLINE__
|
|
# define __STRBUF_INLINE extern inline
|
|
# else
|
|
# define __STRBUF_INLINE inline
|
|
# endif
|
|
#endif
|
|
|
|
struct strbuf {
|
|
char *start;
|
|
char *end;
|
|
char *current;
|
|
};
|
|
|
|
typedef struct strbuf *strbuf;
|
|
typedef const struct strbuf *const_strbuf;
|
|
|
|
/** The number of bytes occupied by a strbuf (not counting its backing buffer).
|
|
*/
|
|
#define SIZEOF_STRBUF (sizeof(struct strbuf))
|
|
|
|
/** Convenience function for allocating a strbuf and its backing buffer on the
|
|
* stack within the calling function. The returned strbuf is only valid for
|
|
* the duration of the function, so it must not be returned. See alloca(3) for
|
|
* more information.
|
|
*
|
|
* void func() {
|
|
* strbuf b = strbuf_alloca(1024);
|
|
* strbuf_puts(b, "some text");
|
|
* strbuf_puts(b, " some more text");
|
|
* printf("%s\n", strbuf_str(b));
|
|
* }
|
|
*/
|
|
#define strbuf_alloca(size) strbuf_make(alloca(SIZEOF_STRBUF + size), SIZEOF_STRBUF + size)
|
|
|
|
|
|
/** Allocate a strbuf for use within the calling function, using a
|
|
* caller-supplied backing buffer. The returned strbuf is only valid for the
|
|
* duration of the function, so it must not be returned. See alloca(3) for
|
|
* more information.
|
|
*
|
|
* void func(char *buf, size_t len) {
|
|
* strbuf b = strbuf_local(buf, len);
|
|
* strbuf_puts(b, "some text");
|
|
* strbuf_puts(b, " some more text");
|
|
* printf("%s\n", strbuf_str(b));
|
|
* }
|
|
*/
|
|
#define strbuf_local(buf,len) strbuf_init(alloca(SIZEOF_STRBUF), (buf), (len))
|
|
|
|
|
|
/** Initialise a strbuf with a caller-supplied backing buffer. The current
|
|
* backing buffer and its contents are forgotten, and all strbuf operations
|
|
* henceforward will operate on the new backing buffer. Returns its first
|
|
* argument.
|
|
*
|
|
* Immediately following strbuf_init(sb,b,n), the following properties hold:
|
|
* strbuf_str(sb) == b
|
|
* strbuf_size(sb) == n
|
|
* strbuf_len(sb) == 0
|
|
* strbuf_count(sb) == 0
|
|
* b == NULL || b[0] == '\0'
|
|
*
|
|
* If the 'buffer' argument is NULL, the strbuf operations will all act as
|
|
* usual with the sole exception that no chars will be copied into a backing
|
|
* buffer. This allows strbuf to be used for summing the lengths of strings.
|
|
*
|
|
* If the 'size' argument is zero, then strbuf does not write into its backing
|
|
* buffer, not even a terminating nul.
|
|
*
|
|
* @author Andrew Bettison <andrew@servalproject.com>
|
|
*/
|
|
strbuf strbuf_init(strbuf sb, char *buffer, size_t size);
|
|
|
|
|
|
/** Initialise a strbuf and its backing buffer inside the caller-supplied
|
|
* buffer of the given size. If the 'size' argument is less than
|
|
* SIZEOF_STRBUF, then strbuf_make() returns NULL.
|
|
*
|
|
* Immediately following sb = strbuf_make(buf,len) where len >= SIZEOF_STRBUF,
|
|
* the following properties hold:
|
|
* (char*) sb == buf
|
|
* strbuf_str(sb) == &buf[SIZEOF_STRBUF];
|
|
* strbuf_size(sb) == len - SIZEOF_STRBUF;
|
|
* strbuf_len(sb) == 0
|
|
* strbuf_count(sb) == 0
|
|
* strbuf_str()[0] == '\0'
|
|
*
|
|
* @author Andrew Bettison <andrew@servalproject.com>
|
|
*/
|
|
__STRBUF_INLINE strbuf strbuf_make(char *buffer, size_t size) {
|
|
return size < SIZEOF_STRBUF ? NULL : strbuf_init((strbuf) buffer, buffer + SIZEOF_STRBUF, size - SIZEOF_STRBUF);
|
|
}
|
|
|
|
|
|
/** Append a null-terminated string to the strbuf up to a maximum number,
|
|
* truncating if necessary to avoid buffer overrun, and terminating with a nul
|
|
* which is not counted in the maximum. Return a pointer to the strbuf so that
|
|
* concatenations can be chained in a single line: eg,
|
|
* strbuf_ncat(strbuf_ncat(sb, "abc", 1), "bcd", 2) gives a strbuf containing
|
|
* "abc";
|
|
*
|
|
* After these operations:
|
|
* n = strbuf_len(sb);
|
|
* c = strbuf_count(sb);
|
|
* strbuf_ncat(text, len);
|
|
* the following invariants hold:
|
|
* strbuf_count(sb) == c + min(strlen(text), len)
|
|
* strbuf_len(sb) >= n
|
|
* strbuf_len(sb) <= n + len
|
|
* strbuf_len(sb) <= n + strlen(text)
|
|
* strbuf_str(sb) == NULL || strbuf_len(sb) == n || strncmp(strbuf_str(sb) + n, text, strbuf_len(sb) - n) == 0
|
|
*
|
|
* @author Andrew Bettison <andrew@servalproject.com>
|
|
*/
|
|
strbuf strbuf_ncat(strbuf sb, const char *text, size_t len);
|
|
|
|
|
|
/** Append a null-terminated string to the strbuf, truncating if necessary to
|
|
* avoid buffer overrun. Return a pointer to the strbuf so that concatenations
|
|
* can be chained in a single line: strbuf_puts(strbuf_puts(sb, "a"), "b");
|
|
*
|
|
* After these operations:
|
|
* n = strbuf_len(sb);
|
|
* c = strbuf_count(sb);
|
|
* strbuf_puts(text);
|
|
* the following invariants hold:
|
|
* strbuf_count(sb) == c + strlen(text)
|
|
* strbuf_len(sb) >= n
|
|
* strbuf_len(sb) <= n + strlen(text)
|
|
* strbuf_str(sb) == NULL || strbuf_len(sb) == n || strncmp(strbuf_str(sb) + n, text, strbuf_len(sb) - n) == 0
|
|
*
|
|
* @author Andrew Bettison <andrew@servalproject.com>
|
|
*/
|
|
strbuf strbuf_puts(strbuf sb, const char *text);
|
|
|
|
|
|
/** Append a single character to the strbuf if there is space, and place a
|
|
* terminating nul after it. Return a pointer to the strbuf so that
|
|
* concatenations can be chained in a single line.
|
|
*
|
|
* After these operations:
|
|
* n = strbuf_len(sb);
|
|
* c = strbuf_count(sb);
|
|
* strbuf_putc(ch);
|
|
* the following invariants hold:
|
|
* strbuf_count(sb) == c + 1
|
|
* strbuf_len(sb) >= n
|
|
* strbuf_len(sb) <= n + 1
|
|
* strbuf_str(sb) == NULL || strbuf_len(sb) == n || strbuf_str(sb)[n] == ch
|
|
*
|
|
* @author Andrew Bettison <andrew@servalproject.com>
|
|
*/
|
|
strbuf strbuf_putc(strbuf sb, char ch);
|
|
|
|
|
|
/** Append the results of sprintf(fmt,...) to the string buffer, truncating if
|
|
* necessary to avoid buffer overrun. Return sprintf()'s return value.
|
|
*
|
|
* This is equivalent to char tmp[...]; sprintf(tmp, fmt, ...); strbuf_puts(tmp);
|
|
* assuming that tmp[] is large enough to contain the entire string produced by
|
|
* the sprintf().
|
|
*
|
|
* @author Andrew Bettison <andrew@servalproject.com>
|
|
*/
|
|
int strbuf_sprintf(strbuf sb, const char *fmt, ...);
|
|
int strbuf_vsprintf(strbuf sb, const char *fmt, va_list ap);
|
|
|
|
/** Return a pointer to the current null-terminated string in the strbuf.
|
|
*
|
|
* This is the same as the 'buffer' argument passed to the most recent
|
|
* strbuf_init(). If the caller still has that pointer, then can safely use it
|
|
* instead of calling strbuf_str().
|
|
*
|
|
* @author Andrew Bettison <andrew@servalproject.com>
|
|
*/
|
|
__STRBUF_INLINE char *strbuf_str(const_strbuf sb) {
|
|
return sb->start;
|
|
}
|
|
|
|
|
|
/** Return a pointer to the substring starting at a given offset. If the
|
|
* offset is negative, then it is taken from the end of the string, ie, the
|
|
* length of the string is added to it. The returned pointer always points
|
|
* within the string. If offset >= strbuf_len(sb), it points to the
|
|
* terminating nul. If offset <= -strbuf_len(sb) then it points to
|
|
* strbuf_str(sb).
|
|
*
|
|
* @author Andrew Bettison <andrew@servalproject.com>
|
|
*/
|
|
char *strbuf_substr(const_strbuf sb, int offset);
|
|
|
|
|
|
/** Return the size of the backing buffer.
|
|
*
|
|
* This is the same as the 'size' argument passed to the most recent
|
|
* strbuf_init().
|
|
*
|
|
* @author Andrew Bettison <andrew@servalproject.com>
|
|
*/
|
|
__STRBUF_INLINE size_t strbuf_size(const_strbuf sb) {
|
|
return sb->end - sb->start + 1;
|
|
}
|
|
|
|
|
|
/** Return length of current string in the strbuf, not counting the terminating
|
|
* nul.
|
|
*
|
|
* Invariant: strbuf_len(sb) == strlen(strbuf_str(sb))
|
|
*
|
|
* @author Andrew Bettison <andrew@servalproject.com>
|
|
*/
|
|
__STRBUF_INLINE size_t strbuf_len(const_strbuf sb) {
|
|
return (sb->current < sb->end ? sb->current : sb->end) - sb->start;
|
|
}
|
|
|
|
|
|
/** Return the number of chars appended to the strbuf so far, not counting the
|
|
* terminating nul.
|
|
*
|
|
* Invariant: strbuf_len(sb) <= strbuf_count(sb)
|
|
*
|
|
* @author Andrew Bettison <andrew@servalproject.com>
|
|
*/
|
|
__STRBUF_INLINE size_t strbuf_count(const_strbuf sb) {
|
|
return sb->current - sb->start;
|
|
}
|
|
|
|
|
|
/** Return true iff the strbuf has been overrun, ie, any appended string has
|
|
* been truncated since strbuf_init().
|
|
*
|
|
* Invariant: strbuf_overrun(sb) == strbuf_count(sb) != strbuf_len(sb)
|
|
*
|
|
* @author Andrew Bettison <andrew@servalproject.com>
|
|
*/
|
|
__STRBUF_INLINE int strbuf_overrun(const_strbuf sb) {
|
|
return sb->current > sb->end;
|
|
}
|
|
|
|
#endif // __STRBUF_H__
|