serval-dna/conf_schema.c

1206 lines
30 KiB
C

/*
Serval DNA configuration
Copyright (C) 2012 Serval Project Inc.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include <stdio.h>
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <sys/types.h>
#include <stdarg.h>
#include <assert.h>
#include <arpa/inet.h>
#include "log.h"
#include "debug.h"
#include "mem.h"
#include "str.h"
#include "uri.h"
#include "numeric_str.h"
#include "strbuf_helpers.h"
#include "conf.h"
#include "dataformats.h"
int cf_opt_boolean(bool_t *booleanp, const char *text)
{
if (!strcasecmp(text, "true") || !strcasecmp(text, "yes") || !strcasecmp(text, "on") || !strcasecmp(text, "1")) {
*booleanp = 1;
return CFOK;
}
else if (!strcasecmp(text, "false") || !strcasecmp(text, "no") || !strcasecmp(text, "off") || !strcasecmp(text, "0")) {
*booleanp = 0;
return CFOK;
}
return CFINVALID;
}
int cf_fmt_boolean(const char **textp, const bool_t *booleanp)
{
if (*booleanp == 1) {
*textp = str_edup("true");
return CFOK;
}
else if (*booleanp == 0) {
*textp = str_edup("false");
return CFOK;
}
return CFINVALID;
}
int cf_cmp_boolean(const bool_t *a, const bool_t *b)
{
return !*a && *b ? -1 : *a && !*b ? 1 : 0;
}
int cf_opt_absolute_path(char *str, size_t len, const char *text)
{
if (text[0] != '/')
return CFINVALID;
if (strlen(text) >= len)
return CFSTRINGOVERFLOW;
strncpy(str, text, len);
assert(str[len - 1] == '\0');
return CFOK;
}
int cf_fmt_absolute_path(const char **textp, const char *str)
{
if (str[0] != '/')
return CFINVALID;
*textp = str_edup(str);
return CFOK;
}
int cf_cmp_absolute_path(const char *a, const char *b)
{
return strcmp(a, b);
}
int cf_opt_protocol(char *str, size_t len, const char *text)
{
if (!str_is_uri_scheme(text))
return CFINVALID;
if (strlen(text) >= len)
return CFSTRINGOVERFLOW;
strncpy(str, text, len);
assert(str[len - 1] == '\0');
return CFOK;
}
int cf_fmt_protocol(const char **textp, const char *str)
{
if (!str_is_uri_scheme(str))
return CFINVALID;
*textp = str_edup(str);
return CFOK;
}
int cf_cmp_protocol(const char *a, const char *b)
{
return strcmp(a, b);
}
int cf_opt_rhizome_peer(struct config_rhizome_peer *rpeer, const struct cf_om_node *node)
{
if (!node->text)
return cf_opt_config_rhizome_peer(rpeer, node);
if (node->nodc) {
cf_warn_incompatible_children(node);
return CFINCOMPATIBLE;
}
return cf_opt_rhizome_peer_from_uri(rpeer, node->text);
}
int cf_fmt_rhizome_peer(struct cf_om_node **parentp, const struct config_rhizome_peer *rpeer)
{
return cf_fmt_config_rhizome_peer(parentp, rpeer);
}
int cf_cmp_rhizome_peer(const struct config_rhizome_peer *a, const struct config_rhizome_peer *b)
{
return cf_cmp_config_rhizome_peer(a, b);
}
int cf_opt_rhizome_peer_from_uri(struct config_rhizome_peer *rpeer, const char *text)
{
const char *protocol;
size_t protolen;
const char *auth;
if (str_is_uri(text)) {
const char *hier;
if (!( str_uri_scheme(text, &protocol, &protolen)
&& str_uri_hierarchical(text, &hier, NULL)
&& str_uri_hierarchical_authority(hier, &auth, NULL))
)
return CFINVALID;
} else {
auth = text;
protocol = "http";
protolen = strlen(protocol);
}
const char *host;
size_t hostlen;
uint16_t port = HTTPD_PORT_DEFAULT;
if (!str_uri_authority_hostname(auth, &host, &hostlen))
return CFINVALID;
str_uri_authority_port(auth, &port);
if (protolen >= sizeof rpeer->protocol)
return CFSTRINGOVERFLOW;
if (hostlen >= sizeof rpeer->host)
return CFSTRINGOVERFLOW;
strncpy(rpeer->protocol, protocol, protolen)[protolen] = '\0';
strncpy(rpeer->host, host, hostlen)[hostlen] = '\0';
rpeer->port = port;
return CFOK;
}
int cf_opt_str(char *str, size_t len, const char *text)
{
if (strlen(text) >= len)
return CFSTRINGOVERFLOW;
strncpy(str, text, len);
assert(str[len - 1] == '\0');
return CFOK;
}
int cf_fmt_str(const char **textp, const char *str)
{
*textp = str_edup(str);
return CFOK;
}
int cf_cmp_str(const char *a, const char *b)
{
return strcmp(a, b);
}
int cf_opt_str_nonempty(char *str, size_t len, const char *text)
{
if (!text[0])
return CFINVALID;
return cf_opt_str(str, len, text);
}
int cf_fmt_str_nonempty(const char **textp, const char *str)
{
if (!str[0])
return CFINVALID;
*textp = str_edup(str);
return CFOK;
}
int cf_cmp_str_nonempty(const char *a, const char *b)
{
return strcmp(a, b);
}
int cf_opt_int(int *intp, const char *text)
{
const char *end = text;
long value = strtol(text, (char**)&end, 10);
if (end == text || *end)
return CFINVALID;
*intp = value;
return CFOK;
}
int cf_fmt_int(const char **textp, const int *intp)
{
char buf[22];
sprintf(buf, "%d", *intp);
*textp = str_edup(buf);
return CFOK;
}
int cf_cmp_int(const int *a, const int *b)
{
return *a < *b ? -1 : *a > *b ? 1 : 0;
}
int cf_opt_uint(unsigned int *uintp, const char *text)
{
const char *end = text;
unsigned long value = strtoul(text, (char**)&end, 10);
if (end == text || *end)
return CFINVALID;
*uintp = value;
return CFOK;
}
int cf_fmt_uint(const char **textp, const unsigned int *uintp)
{
char buf[22];
sprintf(buf, "%u", *uintp);
*textp = str_edup(buf);
return CFOK;
}
int cf_cmp_uint(const unsigned int *a, const unsigned int *b)
{
return *a < *b ? -1 : *a > *b ? 1 : 0;
}
int cf_opt_int32_nonneg(int32_t *intp, const char *text)
{
const char *end = text;
long value = strtol(text, (char**)&end, 10);
if (end == text || *end || value < 0 || value > INT32_MAX)
return CFINVALID;
*intp = value;
return CFOK;
}
int cf_opt_int32_rs232baudrate(int32_t *intp, const char *text)
{
const char *end = text;
long value = strtol(text, (char**)&end, 10);
if (end == text || *end || value < 0 || value > INT32_MAX)
return CFINVALID;
switch(value) {
case 50: case 75: case 110: case 134: case 150: case 200: case 300:
case 600: case 1200: case 1800: case 2400: case 4800: case 7200:
case 9600: case 14400: case 28800: case 38400: case 57600: case 115200:
case 230400:
*intp = value;
return CFOK;
break;
default:
return CFINVALID;
}
}
int cf_fmt_int32_rs232baudrate(const char **textp, const int32_t *intp)
{
char buf[12];
sprintf(buf, "%d", *intp);
*textp = str_edup(buf);
return CFOK;
}
int cf_cmp_int32_rs232baudrate(const int32_t *a, const int32_t *b)
{
return *a < *b ? -1 : *a > *b ? 1 : 0;
}
static int cf_fmt_int32(const char **textp, const int32_t *intp)
{
char buf[12];
int n = sprintf(buf, "%d", *intp);
*textp = strn_edup(buf, n);
return CFOK;
}
int cf_cmp_int32(const int32_t *a, const int32_t *b)
{
return *a < *b ? -1 : *a > *b ? 1 : 0;
}
static int cf_fmt_uint32(const char **textp, const uint32_t *uintp)
{
char buf[12];
int n = sprintf(buf, "%u", *uintp);
*textp = strn_edup(buf, n);
return CFOK;
}
int cf_cmp_uint32(const uint32_t *a, const uint32_t *b)
{
return *a < *b ? -1 : *a > *b ? 1 : 0;
}
int cf_fmt_int32_nonneg(const char **textp, const int32_t *intp)
{
if (*intp < 0)
return CFINVALID;
return cf_fmt_int32(textp, intp);
}
int cf_cmp_int32_nonneg(const int32_t *a, const int32_t *b)
{
return cf_cmp_int32(a, b);
}
int cf_opt_uint32_nonzero(uint32_t *intp, const char *text)
{
const char *end = text;
unsigned long value = strtoul(text, (char**)&end, 10);
if (end == text || *end || value < 1 || value > UINT32_MAX)
return CFINVALID;
*intp = value;
return CFOK;
}
int cf_fmt_uint32_nonzero(const char **textp, const uint32_t *uintp)
{
if (*uintp == 0)
return CFINVALID;
return cf_fmt_uint32(textp, uintp);
}
int cf_cmp_uint32_nonzero(const uint32_t *a, const uint32_t *b)
{
return cf_cmp_uint32(a, b);
}
int cf_opt_uint32_time_interval(uint32_t *intp, const char *text)
{
const char *t = text;
uint32_t seconds = 0;
while (*t) {
const char *p = t;
while (isdigit(*p))
++p;
if (*p == '.' && (p != t || isdigit(p[1])))
for (++p; isdigit(*p); ++p)
;
if (p == t)
return CFINVALID;
const char *end = t;
double d = strtod(t, (char**)&end);
if (end != p)
return CFINVALID;
switch (*p) {
case 's': case 'S': ++p; break;
case 'm': case 'M': d *= 60; ++p; break;
case 'h': case 'H': d *= 60 * 60; ++p; break;
case 'd': case 'D': d *= 60 * 60 * 24; ++p; break;
case 'w': case 'W': d *= 60 * 60 * 24 * 7; ++p; break;
case '\0': break;
default: return CFINVALID;
}
if (d != floor(d))
return CFINVALID;
seconds += d;
t = p;
}
*intp = seconds;
return CFOK;
}
int cf_fmt_uint32_time_interval(const char **textp, const uint32_t *uintp)
{
strbuf b = strbuf_alloca(60);
uint32_t seconds = *uintp;
if (seconds >= 7 * 24 * 60 * 60) {
unsigned weeks = seconds / (7 * 24 * 60 * 60);
seconds = seconds - weeks * (7 * 24 * 60 * 60);
strbuf_sprintf(b, "%uw", weeks);
}
if (seconds >= 24 * 60 * 60) {
unsigned days = seconds / (24 * 60 * 60);
seconds = seconds - days * (24 * 60 * 60);
strbuf_sprintf(b, "%ud", days);
}
if (seconds >= 60 * 60) {
unsigned hours = seconds / (60 * 60);
seconds = seconds - hours * (60 * 60);
strbuf_sprintf(b, "%uh", hours);
}
if (seconds >= 60) {
unsigned minutes = seconds / 60;
seconds = seconds - minutes * 60;
strbuf_sprintf(b, "%um", minutes);
}
if (seconds)
strbuf_sprintf(b, "%us", seconds);
if (strbuf_overrun(b))
return CFINVALID;
*textp = str_edup(strbuf_str(b));
return CFOK;
}
int cf_cmp_uint32_time_interval(const uint32_t *a, const uint32_t *b)
{
return cf_cmp_uint32(a, b);
}
int cf_opt_uint32_scaled(uint32_t *intp, const char *text)
{
uint32_t result;
const char *end;
if (!str_to_uint32_scaled(text, 10, &result, &end) || *end)
return CFINVALID;
*intp = result;
return CFOK;
}
int cf_fmt_uint32_scaled(const char **textp, const uint32_t *uintp)
{
strbuf sb = strbuf_alloca(25);
strbuf_append_uint32_scaled(sb, *uintp);
assert(!strbuf_overrun(sb));
*textp = str_edup(strbuf_str(sb));
return CFOK;
}
int cf_cmp_uint32_scaled(const uint32_t *a, const uint32_t *b)
{
return *a < *b ? -1 : *a > *b ? 1 : 0;
}
int cf_opt_uint64_scaled(uint64_t *intp, const char *text)
{
uint64_t result;
const char *end;
if (!str_to_uint64_scaled(text, 10, &result, &end) || *end)
return CFINVALID;
*intp = result;
return CFOK;
}
int cf_fmt_uint64_scaled(const char **textp, const uint64_t *uintp)
{
strbuf sb = strbuf_alloca(25);
strbuf_append_uint64_scaled(sb, *uintp);
assert(!strbuf_overrun(sb));
*textp = str_edup(strbuf_str(sb));
return CFOK;
}
int cf_cmp_uint64_scaled(const uint64_t *a, const uint64_t *b)
{
return *a < *b ? -1 : *a > *b ? 1 : 0;
}
int cf_opt_ushort(unsigned short *ushortp, const char *text)
{
const char *end = text;
unsigned long value = strtoul(text, (char**)&end, 10);
if (end == text || *end || value > UINT16_MAX)
return CFINVALID;
*ushortp = value;
return CFOK;
}
int cf_fmt_ushort(const char **textp, const unsigned short *ushortp)
{
char buf[12];
int n=sprintf(buf, "%u", (unsigned int) *ushortp);
*textp = strn_edup(buf, n);
return CFOK;
}
int cf_cmp_ushort(const unsigned short *a, const unsigned short *b)
{
return *a < *b ? -1 : *a > *b ? 1 : 0;
}
int cf_opt_ushort_nonzero(unsigned short *ushortp, const char *text)
{
unsigned short value;
if (cf_opt_ushort(&value, text) != CFOK || value == 0)
return CFINVALID;
*ushortp = value;
return CFOK;
}
int cf_fmt_ushort_nonzero(const char **textp, const unsigned short *ushortp)
{
if (*ushortp == 0)
return CFINVALID;
return cf_fmt_ushort(textp, ushortp);
}
int cf_cmp_short(const short *a, const short *b)
{
return *a < *b ? -1 : *a > *b ? 1 : 0;
}
int cf_cmp_ushort_nonzero(const unsigned short *a, const unsigned short *b)
{
return cf_cmp_ushort(a, b);
}
int vld_argv(const struct cf_om_node *parent, struct config_argv *array, int result)
{
unsigned short last_key = 0;
unsigned i;
if (array->ac) {
unsigned short last_key = array->av[0].key;
for (i = 1; i < array->ac; ++i) {
unsigned short key = array->av[i].key;
if (last_key > key) {
cf_warn_node(parent, NULL, "array is not sorted");
return CFERROR;
}
last_key = key;
}
}
for (i = 0; i < array->ac; ++i) {
unsigned short key = array->av[i].key;
assert(key >= 1);
assert(key >= last_key);
if (last_key == key) {
char labelkey[12];
sprintf(labelkey, "%u", last_key);
cf_warn_duplicate_node(parent, labelkey);
result |= CFDUPLICATE;
}
while (++last_key < key && last_key <= sizeof(array->av)) {
char labelkey[12];
sprintf(labelkey, "%u", last_key);
cf_warn_missing_node(parent, labelkey);
result |= CFINCOMPLETE;
}
last_key = key;
}
return result;
}
int cf_opt_in_addr(struct in_addr *addrp, const char *text)
{
struct in_addr addr;
if (!inet_aton(text, &addr))
return CFINVALID;
*addrp = addr;
return CFOK;
}
int cf_fmt_in_addr(const char **textp, const struct in_addr *addrp)
{
*textp = str_edup(inet_ntoa(*addrp));
return CFOK;
}
int cf_cmp_in_addr(const struct in_addr *a, const struct in_addr *b)
{
return memcmp(a, b, sizeof(struct in_addr));
}
int cf_opt_uint16(uint16_t *uintp, const char *text)
{
uint16_t ui = 0;
const char *p;
for (p = text; isdigit(*p); ++p) {
uint16_t oui = ui;
ui = ui * 10 + *p - '0';
if (ui / 10 != oui)
break;
}
if (*p)
return CFINVALID;
*uintp = ui;
return CFOK;
}
int cf_fmt_uint16(const char **textp, const uint16_t *uintp)
{
char buf[12];
int n = sprintf(buf, "%u", (unsigned int) *uintp);
*textp = strn_edup(buf, n);
return CFOK;
}
int cf_cmp_uint16(const uint16_t *a, const uint16_t *b)
{
return *a < *b ? -1 : *a > *b ? 1 : 0;
}
int cf_opt_uint16_nonzero(uint16_t *uintp, const char *text)
{
uint16_t ui;
if (cf_opt_uint16(&ui, text) != CFOK || ui == 0)
return CFINVALID;
*uintp = ui;
return CFOK;
}
int cf_fmt_uint16_nonzero(const char **textp, const uint16_t *uintp)
{
if (*uintp == 0)
return CFINVALID;
return cf_fmt_uint16(textp, uintp);
}
int cf_cmp_uint16_nonzero(const uint16_t *a, const uint16_t *b)
{
return cf_cmp_uint16(a, b);
}
int cf_opt_sid(sid_t *sidp, const char *text)
{
if (strcasecmp(text, "broadcast")==0){
*sidp = SID_BROADCAST;
return CFOK;
}
if (!str_is_subscriber_id(text))
return CFINVALID;
int r = str_to_sid_t(sidp, text);
assert(r != -1);
return CFOK;
}
int cf_fmt_sid(const char **textp, const sid_t *sidp)
{
*textp = str_edup(alloca_tohex_sid_t(*sidp));
return CFOK;
}
int cf_cmp_sid(const sid_t *a, const sid_t *b)
{
return memcmp(a->binary, b->binary, sizeof a->binary);
}
int cf_opt_rhizome_bk(rhizome_bk_t *bkp, const char *text)
{
return str_to_rhizome_bk_t(bkp, text) ? CFOK : CFINVALID;
}
int cf_fmt_rhizome_bk(const char **textp, const rhizome_bk_t *bkp)
{
*textp = str_edup(alloca_tohex_rhizome_bk_t(*bkp));
return CFOK;
}
int cf_cmp_rhizome_bk(const rhizome_bk_t *a, const rhizome_bk_t *b)
{
return memcmp(a, b, sizeof a->binary);
}
int cf_opt_interface_type(short *typep, const char *text)
{
if (strcasecmp(text, "ethernet") == 0) {
*typep = OVERLAY_INTERFACE_ETHERNET;
return CFOK;
}
if (strcasecmp(text, "wifi") == 0) {
*typep = OVERLAY_INTERFACE_WIFI;
return CFOK;
}
if (strcasecmp(text, "catear") == 0) {
*typep = OVERLAY_INTERFACE_PACKETRADIO;
return CFOK;
}
if (strcasecmp(text, "any") == 0) {
*typep = OVERLAY_INTERFACE_ANY;
return CFOK;
}
if (strcasecmp(text, "other") == 0) {
*typep = OVERLAY_INTERFACE_OTHER;
return CFOK;
}
if (strcasecmp(text, "unknown") == 0) {
*typep = OVERLAY_INTERFACE_UNKNOWN;
return CFOK;
}
return CFINVALID;
}
const char * interface_type_name(short type){
switch (type) {
case OVERLAY_INTERFACE_ETHERNET: return "ethernet";
case OVERLAY_INTERFACE_WIFI: return "wifi";
case OVERLAY_INTERFACE_PACKETRADIO: return "catear";
case OVERLAY_INTERFACE_ANY: return "any";
case OVERLAY_INTERFACE_OTHER: return "other";
case OVERLAY_INTERFACE_UNKNOWN: return "unknown";
}
return NULL;
}
int cf_fmt_interface_type(const char **textp, const short *typep)
{
const char *t = interface_type_name(*typep);
if (!t)
return CFINVALID;
*textp = str_edup(t);
return CFOK;
}
int cf_opt_radio_type(short *typep, const char *text)
{
if (strcasecmp(text, "rfd900") == 0) {
*typep = RADIO_TYPE_RFD900;
return CFOK;
}
if (strcasecmp(text, "rfm69") == 0) {
*typep = RADIO_TYPE_RFM69;
return CFOK;
}
return CFINVALID;
}
int cf_fmt_radio_type(const char **textp, const short *typep)
{
const char *t = NULL;
switch (*typep) {
case RADIO_TYPE_RFD900: t = "rfd900"; break;
case RADIO_TYPE_RFM69: t = "rfm69"; break;
}
if (!t)
return CFINVALID;
*textp = str_edup(t);
return CFOK;
}
int cf_cmp_radio_type(const short *a, const short *b)
{
return *a < *b ? -1 : *a > *b ? 1 : 0;
}
int cf_cmp_interface_type(const short *a, const short *b)
{
return *a < *b ? -1 : *a > *b ? 1 : 0;
}
int cf_opt_socket_type(short *typep, const char *text)
{
if (strcasecmp(text, "dgram") == 0) {
*typep = SOCK_DGRAM;
return CFOK;
}
if (strcasecmp(text, "stream") == 0) {
*typep = SOCK_STREAM;
return CFOK;
}
if (strcasecmp(text, "file") == 0) {
*typep = SOCK_FILE;
return CFOK;
}
if (strcasecmp(text, "external") == 0) {
*typep = SOCK_EXT;
return CFOK;
}
return CFINVALID;
}
int cf_fmt_socket_type(const char **textp, const short *typep)
{
const char *t = NULL;
switch (*typep) {
case SOCK_DGRAM: t = "dgram"; break;
case SOCK_STREAM: t = "stream"; break;
case SOCK_FILE: t = "file"; break;
case SOCK_EXT: t = "external"; break;
}
if (!t)
return CFINVALID;
*textp = str_edup(t);
return CFOK;
}
int cf_cmp_socket_type(const short *a, const short *b)
{
return cf_cmp_short(a, b);
}
int cf_opt_encapsulation(short *encapp, const char *text)
{
if (strcasecmp(text, "overlay") == 0) {
*encapp = ENCAP_OVERLAY;
return CFOK;
}
if (strcasecmp(text, "single") == 0) {
*encapp = ENCAP_SINGLE;
return CFOK;
}
return CFINVALID;
}
int cf_fmt_encapsulation(const char **textp, const short *encapp)
{
const char *t = NULL;
switch (*encapp) {
case ENCAP_OVERLAY: t = "overlay"; break;
case ENCAP_SINGLE: t = "single"; break;
}
if (!t)
return CFINVALID;
*textp = str_edup(t);
return CFOK;
}
int cf_cmp_encapsulation(const short *a, const short *b)
{
return cf_cmp_short(a, b);
}
int cf_opt_pattern_list(struct pattern_list *listp, const char *text)
{
struct pattern_list list;
memset(&list, 0, sizeof list);
const char *word = NULL;
const char *p;
for (p = text; ; ++p) {
if (!*p || isspace(*p) || *p == ',') {
if (word) {
size_t len = p - word;
if (list.patc >= NELS(list.patv) || len >= sizeof(list.patv[list.patc]))
return CFARRAYOVERFLOW;
strncpy(list.patv[list.patc++], word, len)[len] = '\0';
word = NULL;
}
if (!*p)
break;
} else if (!word)
word = p;
}
assert(word == NULL);
if (list.patc == 0)
return CFEMPTY;
*listp = list;
return CFOK;
}
int cf_fmt_pattern_list(const char **textp, const struct pattern_list *listp)
{
if (listp->patc == 0)
return CFEMPTY;
char buf[sizeof listp->patv];
char *bufp = buf;
unsigned i;
for (i = 0; i < listp->patc; ++i) {
if (bufp != buf)
*bufp++ = ',';
const char *patvp = listp->patv[i];
const char *npatvp = listp->patv[i + 1];
while (bufp < &buf[sizeof buf - 1] && patvp < npatvp && (*bufp = *patvp))
++bufp, ++patvp;
if (patvp >= npatvp)
return CFINVALID;
assert(bufp < &buf[sizeof buf - 1]);
}
*bufp = '\0';
*textp = str_edup(buf);
return CFOK;
}
int cf_cmp_pattern_list(const struct pattern_list *a, const struct pattern_list *b)
{
unsigned i;
for (i = 0; i < a->patc && i < b->patc; ++i) {
int c = strcmp(a->patv[i], b->patv[i]);
if (c)
return c;
}
return (a->patc < b->patc) ? -1 : (a->patc > b->patc) ? 1 : 0;
}
/* Config parse function. Implements the original form of the 'interfaces' config option. Parses a
* single text string of the form:
*
* ( "+" | "-" ) [ interfacename ] [ "=" type ] [ ":" port [ ":" speed ] ]
*
* where:
*
* "+" means include the interface
* "-" means exclude the interface
*
* The original implementation applied include/exclude matching in the order that the list was
* given, but the new implementation applies all exclusions before apply inclusions. This should
* not be a problem, as there were no known uses that depended on testing an inclusion before an
* exclusion.
*
* An empty 'interfacename' matches all interfaces. So a "+" by itself includes all interfaces,
* and a '-' by itself excludes all interfaces. These two rules are applied after all other
* interface inclusions/exclusions are tested, otherwise "-" would overrule all other interfaces.
*
* The optional 'type' tells DNA how to handle the interface in terms of bandwidth:distance
* relationship for calculating tick times etc.
*
* The optional 'port' is the port number to bind all interfaces, instead of the default.
*
* The optional 'speed' is the nominal bits/second bandwidth of the interface, instead of the
* default. It is expressed as a positive integer with an optional scaling suffix, eg, "150k",
* "1K", "900M".
*
* @author Andrew Bettison <andrew@servalproject.com>
*/
static int cf_opt_network_interface_legacy(struct config_network_interface *nifp, const char *text)
{
//DEBUGF(config, "%s text=%s", __FUNCTION__, alloca_str_toprint(text));
struct config_network_interface nif;
cf_dfl_config_network_interface(&nif);
if (text[0] != '+' && text[0] != '-')
return CFINVALID; // "Sign must be + or -"
nif.exclude = (text[0] == '-');
const char *const endtext = text + strlen(text);
const char *name = text + 1;
const char *p = strpbrk(name, "=:");
if (!p)
p = endtext;
size_t len = p - name;
if (name[0] == '>') {
if (len - 1 >= sizeof(nif.file))
return CFSTRINGOVERFLOW;
strncpy(nif.file, &name[1], len - 1)[len - 1] = '\0';
nif.match.patc = 0;
nif.socket_type = SOCK_FILE;
} else {
int addstar = strnchr(name, len, '*') == NULL ? 1 : 0;
if (len + addstar >= sizeof(nif.match.patv[0]))
return CFSTRINGOVERFLOW;
strncpy(nif.match.patv[0], name, len)[len + addstar] = '\0';
if (addstar)
nif.match.patv[0][len] = '*';
nif.match.patc = 1;
nif.socket_type = SOCK_DGRAM;
}
if (*p == '=') {
const char *const type = p + 1;
p = strchr(type, ':');
if (!p)
p = endtext;
len = p - type;
if (len) {
char buf[len + 1];
strncpy(buf, type, len)[len] = '\0';
int result = cf_opt_interface_type(&nif.type, buf);
switch (result) {
case CFERROR: return CFERROR;
case CFOK: break;
default: return result; // "Invalid interface type"
}
}
}
if (*p == ':') {
const char *const port = p + 1;
p = strchr(port, ':');
if (!p)
p = endtext;
len = p - port;
if (len) {
char buf[len + 1];
strncpy(buf, port, len)[len] = '\0';
int result = cf_opt_uint16_nonzero(&nif.port, buf);
switch (result) {
case CFERROR: return CFERROR;
case CFOK: break;
default: return result; // "Invalid interface port number"
}
}
}
if (*p == ':') {
p = endtext;
}
if (*p)
return CFINVALID; // "Extra junk at end of interface specification"
*nifp = nif;
return CFOK;
}
int cf_opt_network_interface(struct config_network_interface *nifp, const struct cf_om_node *node)
{
if (!node->text)
return cf_opt_config_network_interface(nifp, node);
if (node->nodc) {
cf_warn_incompatible_children(node);
return CFINCOMPATIBLE;
}
return cf_opt_network_interface_legacy(nifp, node->text);
}
int cf_fmt_network_interface(struct cf_om_node **parentp, const struct config_network_interface *nifp)
{
return cf_fmt_config_network_interface(parentp, nifp);
}
int cf_cmp_network_interface(const struct config_network_interface *a, const struct config_network_interface *b)
{
return cf_cmp_config_network_interface(a, b);
}
int vld_network_interface(const struct cf_om_node *parent, struct config_network_interface *nifp, int result)
{
if (nifp->match_type == OVERLAY_INTERFACE_UNKNOWN){
int nodei_match_type = cf_om_get_child(parent, "match_type", NULL);
assert(nodei_match_type != -1);
cf_warn_node_value(parent->nodv[nodei_match_type], CFINVALID);
return result | CFSUB(CFINVALID);
}
if (nifp->type == OVERLAY_INTERFACE_ANY
|| nifp->type == OVERLAY_INTERFACE_UNKNOWN){
int nodei_type = cf_om_get_child(parent, "type", NULL);
assert(nodei_type != -1);
cf_warn_node_value(parent->nodv[nodei_type], CFINVALID);
return result | CFSUB(CFINVALID);
}
if (nifp->match.patc != 0 && nifp->file[0]) {
int nodei_match = cf_om_get_child(parent, "match", NULL);
int nodei_file = cf_om_get_child(parent, "file", NULL);
assert(nodei_match != -1);
assert(nodei_file != -1);
cf_warn_incompatible(parent->nodv[nodei_match], parent->nodv[nodei_file]);
return result | CFSUB(CFINCOMPATIBLE);
}
if (nifp->socket_type == SOCK_UNSPECIFIED) {
if (nifp->match.patc != 0)
nifp->socket_type = SOCK_DGRAM;
else if (nifp->file[0])
nifp->socket_type = SOCK_FILE;
else {
cf_warn_missing_node(parent, "match");
return result | CFINCOMPLETE;
}
} else {
if (nifp->socket_type != SOCK_DGRAM && nifp->socket_type != SOCK_EXT && !nifp->file[0]){
cf_warn_missing_node(parent, "file");
return result | CFSUB(CFINCOMPATIBLE);
}
if (nifp->socket_type != SOCK_FILE){
int nodei_drop=-1;
if (nifp->drop_packets)
nodei_drop=cf_om_get_child(parent, "drop_packets", NULL);
if (nifp->broadcast.drop)
nodei_drop=cf_om_get_child(parent, "broadcast", NULL);
if (nifp->unicast.drop)
nodei_drop=cf_om_get_child(parent, "unicast", NULL);
if (nodei_drop!=-1){
int nodei_socket_type=cf_om_get_child(parent, "socket_type", NULL);
cf_warn_incompatible(parent->nodv[nodei_socket_type], parent->nodv[nodei_drop]);
return result | CFSUB(CFINCOMPATIBLE);
}
}
}
return result;
}
/* Config parse function. Implements the original form of the 'interfaces' config option. Parses a
* comma-separated list of interface rules (see cf_opt_network_interface_legacy() for the format of
* each rule), then parses the regular config array-of-struct style interface option settings so
* that both forms are supported.
*
* @author Andrew Bettison <andrew@servalproject.com>
*/
int cf_opt_interface_list(struct config_interface_list *listp, const struct cf_om_node *node)
{
if (!node->text)
return cf_opt_config_interface_list(listp, node);
if (node->nodc) {
cf_warn_incompatible_children(node);
return CFINCOMPATIBLE;
}
const char *p;
const char *arg = NULL;
unsigned n = listp->ac;
int result = CFOK;
for (p = node->text; n < NELS(listp->av); ++p) {
if (*p == '\0' || *p == ',' || isspace(*p)) {
if (arg) {
int len = p - arg;
if (len > 80) {
result |= CFSTRINGOVERFLOW;
goto bye;
}
char buf[len + 1];
strncpy(buf, arg, len)[len] = '\0';
int ret = cf_opt_network_interface_legacy(&listp->av[n].value, buf);
switch (ret) {
case CFERROR: return CFERROR;
case CFOK:
listp->av[n].key = n;
++n;
break;
default: {
strbuf b = strbuf_alloca(180);
strbuf_cf_flag_reason(b, ret);
cf_warn_node(node, NULL, "invalid interface rule %s -- %s", alloca_str_toprint(buf), strbuf_str(b)); \
result |= CFSUB(ret);
break;
}
}
arg = NULL;
}
if (!*p)
break;
} else if (!arg)
arg = p;
}
if (*p) {
result |= CFARRAYOVERFLOW;
goto bye;
}
assert(n <= NELS(listp->av));
listp->ac = n;
bye:
if (listp->ac == 0)
result |= CFEMPTY;
return result;
}
int cf_fmt_interface_list(struct cf_om_node **parentp, const struct config_interface_list *listp)
{
return cf_fmt_config_interface_list(parentp, listp);
}
int cf_cmp_interface_list(const struct config_interface_list *a, const struct config_interface_list *b)
{
return cf_cmp_config_interface_list(a, b);
}
int cf_opt_log_level(int *levelp, const char *text)
{
int level = string_to_log_level(text);
if (level == LOG_LEVEL_INVALID)
return CFINVALID;
*levelp = level;
return CFOK;
}
int cf_fmt_log_level(const char **textp, const int *levelp)
{
const char *t = log_level_as_string(*levelp);
if (!t)
return CFINVALID;
*textp = str_edup(t);
return CFOK;
}
int cf_cmp_log_level(const int *a, const int *b)
{
return cf_cmp_int(a, b);
}
/* Config type: http_authorization_schema
*
* @author Andrew Bettison <andrew@servalproject.com>
*/
int cf_opt_http_authorization_scheme(enum http_authorization_scheme *schemap, const char *text)
{
if (strcasecmp(text, "noauth") == 0) {
*schemap = NOAUTH;
return CFOK;
}
if (strcasecmp(text, "basic") == 0) {
*schemap = BASIC;
return CFOK;
}
return CFINVALID;
}
int cf_fmt_http_authorization_scheme(const char **textp, const enum http_authorization_scheme *schemap)
{
const char *t = NULL;
switch (*schemap) {
case NOAUTH: t = "noauth"; break;
case BASIC: t = "basic"; break;
}
if (!t)
return CFINVALID;
*textp = str_edup(t);
return CFOK;
}
int cf_cmp_http_authorization_scheme(const enum http_authorization_scheme *a, const enum http_authorization_scheme *b)
{
return *a < *b ? -1 : *a > *b ? 1 : 0;
}