/* Serval DNA Copyright (C) 2012-2015 Serval Project Inc. Copyright (C) 2016-2018 Flinders University This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __SERVAL_DNA__NIBBLE_TREE_H #define __SERVAL_DNA__NIBBLE_TREE_H #include // for uint8_t, size_t // Every record in a nibble tree has the following structure: // - a count of the number of bits in the binary index // - the binary index itself, consisting of the number of bytes as specified by // root.binary_size_bytes // - the rest of the record struct tree_record { size_t binary_size_bits; uint8_t binary[0]; }; // Each node in the nibble tree has 16 slots based on the next 4 bits of the // binary value. struct tree_node { // A reference count that is incremented by an iterator while it has a // pointer to the node, and decremented when it discards the pointer. The // iterator free()s the node if its count decrements to zero and all of its // slots are NULL. This prevents nodes being free()d while in-use. unsigned ref_count; // A bitmask that has tbe bit (1 << slot_number) set if the corresponding // slot points to a sub-tree. uint16_t is_tree; // Each slot either points to another tree node or a data record, depending // on its corresponding bit in 'is_tree'. void *slot[16]; }; // The root of a nibble tree specifies the binary index size, in bytes, and // contains the root node. struct tree_root { size_t index_size_bytes; struct tree_node _root_node; }; enum tree_error_reason { TREE_NOT_UNIQUE = -3, TREE_NOT_FOUND = -2, TREE_ERROR = -1, TREE_FOUND = 0 }; // allocate a new record and return it // the returned memory buffer *must* begin with the same memory layout as struct tree_record typedef void* (*tree_create_callback) (void *context, const uint8_t *binary, size_t binary_size_bytes); // find the record related to the given binary value // if not found, the supplied create_node function will be called // if the callback returns a non-null value it will be inserted into the tree // returns either the current depth in the tree or a tree_error_reason enum tree_error_reason tree_find(struct tree_root *root, void **result, const uint8_t *binary, size_t binary_size_bytes, tree_create_callback create_node, void *context); // Iteration: // // tree_iterator it; // tree_iterator_advance_to(&it, index, sizeof index); // optional // node_type **node; // for (tree_iterator_start(&it, root); (node = tree_iterator_get_node(&it)); tree_iterator_advance(&it)) { // .. // } // tree_iterator_free(&it); // // An iterator advances through nodes in order of ascending binary index. // // The tree_iterator_get_node() function returns the same pointer on all // successive invocations until tree_iterator_advance() is called, and returns // NULL once the iterator has been advanced past the last node. // // The tree_iterator_advance_to() function rapidly positions the iterator at // the first node whose binary index is >= the given binary index. This // function can only be called once, straight after tree_iterator_start(). // // Deletion: // // tree_iterator it; // tree_iterator_start(&it, root); // ... // node_type **node = tree_iterator_get_node(&it)); // *node = NULL; // node = tree_iterator_get_node(&it)); // returns the next node // ... // tree_iterator_free(&it); // // The tree_iterator_get_node(), tree_iterator_advance() and // tree_iterator_free() functions all free() empty nodes as long as no other // iterator is currently traversing the node. If there are several iterators // positioned within an empty node, then only the last one to advance out of it // will free() the node. typedef struct tree_node_iterator { struct tree_node_iterator *down; struct tree_node *node; unsigned slotnum; } tree_node_iterator; typedef struct tree_iterator { struct tree_node_iterator bottom; struct tree_node_iterator *stack; } tree_iterator; void tree_iterator_start(tree_iterator *it, struct tree_root *root); void tree_iterator_advance_to(tree_iterator *it, const uint8_t *binary, size_t binary_size_bytes); void **tree_iterator_get_node(tree_iterator *it); void tree_iterator_advance(tree_iterator *it); void tree_iterator_free(tree_iterator *it); // The following legacy API functions are now implemented using iterators. // callback function for walking the tree // return 0 to continue enumeration, anything else to stop // set (*record) to null to indicate that memory has been released and the node should be removed from the tree typedef int (*walk_callback) (void **record, void *context); // walk the tree, calling walk_callback for each node. // if binary & binary_size_bytes have been supplied, skip all records < this binary value int tree_walk(struct tree_root *root, const uint8_t *binary, size_t binary_size_bytes, walk_callback callback, void *context); // walk the tree where nodes match the prefix binary / binary_size_bytes int tree_walk_prefix(struct tree_root *root, const uint8_t *binary, size_t binary_size_bytes, walk_callback callback, void *context); // Tree statistics. struct tree_statistics { size_t record_count; size_t node_count; size_t empty_node_count; size_t maximum_depth; }; struct tree_statistics tree_compute_statistics(struct tree_root *root); #endif // __SERVAL_DNA__NIBBLE_TREE_H