/* Serval Distributed Numbering Architecture (DNA) Copyright (C) 2010 Paul Gardner-Stephen This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include "serval.h" #include "conf.h" #include "mem.h" #include "overlay_buffer.h" /* When writing to a buffer, sizeLimit may place an upper bound on the amount of space to use When reading from a buffer, sizeLimit should first be set to the length of any existing data. In either case, functions that don't take an offset use and advance the position. */ struct overlay_buffer *_ob_new(struct __sourceloc __whence) { struct overlay_buffer *ret = emalloc_zero(sizeof(struct overlay_buffer)); if (config.debug.overlaybuffer) DEBUGF("ob_new() return %p", ret); if (ret == NULL) return NULL; ob_unlimitsize(ret); return ret; } // index an existing static buffer. // and allow other callers to use the ob_ convenience methods for reading and writing up to size bytes. struct overlay_buffer *_ob_static(struct __sourceloc __whence, unsigned char *bytes, size_t size) { struct overlay_buffer *ret = emalloc_zero(sizeof(struct overlay_buffer)); if (config.debug.overlaybuffer) DEBUGF("ob_static(bytes=%p, size=%zu) return %p", bytes, size, ret); if (ret == NULL) return NULL; ret->bytes = bytes; ret->allocSize = size; ret->allocated = NULL; ob_unlimitsize(ret); return ret; } // create a new overlay buffer from an existing piece of another buffer. // Both buffers will point to the same memory region. // It is up to the caller to ensure this buffer is not used after the parent buffer is freed. struct overlay_buffer *_ob_slice(struct __sourceloc __whence, struct overlay_buffer *b, size_t offset, size_t length) { if (offset + length > b->allocSize) { WHY("Buffer isn't long enough to slice"); return NULL; } struct overlay_buffer *ret = emalloc_zero(sizeof(struct overlay_buffer)); if (config.debug.overlaybuffer) DEBUGF("ob_slice(b=%p, offset=%zu, length=%zu) return %p", b, offset, length, ret); if (ret == NULL) return NULL; ret->bytes = b->bytes + offset; ret->allocSize = length; ret->allocated = NULL; ob_unlimitsize(ret); return ret; } struct overlay_buffer *_ob_dup(struct __sourceloc __whence, struct overlay_buffer *b) { struct overlay_buffer *ret = emalloc_zero(sizeof(struct overlay_buffer)); if (config.debug.overlaybuffer) DEBUGF("ob_dup(b=%p) return %p", b, ret); if (ret == NULL) return NULL; ret->sizeLimit = b->sizeLimit; ret->position = b->position; ret->checkpointLength = b->checkpointLength; if (b->bytes && b->allocSize){ // duplicate any bytes that might be relevant size_t byteCount = b->position; if (b->sizeLimit != SIZE_MAX) { assert(b->position <= b->sizeLimit); byteCount = b->sizeLimit; } if (byteCount > b->allocSize) byteCount = b->allocSize; if (byteCount) ob_append_bytes(ret, b->bytes, byteCount); } return ret; } void _ob_free(struct __sourceloc __whence, struct overlay_buffer *b) { assert(b != NULL); if (config.debug.overlaybuffer) DEBUGF("ob_free(b=%p)", b); if (b->allocated) free(b->allocated); free(b); } int _ob_checkpoint(struct __sourceloc __whence, struct overlay_buffer *b) { assert(b != NULL); b->checkpointLength = b->position; if (config.debug.overlaybuffer) DEBUGF("ob_checkpoint(b=%p) checkpointLength=%zu", b, b->checkpointLength); return 0; } int _ob_rewind(struct __sourceloc __whence, struct overlay_buffer *b) { assert(b != NULL); b->position = b->checkpointLength; if (config.debug.overlaybuffer) DEBUGF("ob_rewind(b=%p) position=%zu", b, b->position); return 0; } void _ob_limitsize(struct __sourceloc __whence, struct overlay_buffer *b, size_t bytes) { assert(b != NULL); assert(bytes != SIZE_MAX); assert(b->position <= bytes); assert(b->checkpointLength <= bytes); if (b->bytes && b->allocated == NULL) assert(bytes <= b->allocSize); b->sizeLimit = bytes; if (config.debug.overlaybuffer) DEBUGF("ob_limitsize(b=%p, bytes=%zu) sizeLimit=%zu", b, bytes, b->sizeLimit); } void _ob_unlimitsize(struct __sourceloc __whence, struct overlay_buffer *b) { assert(b != NULL); b->sizeLimit = SIZE_MAX; if (config.debug.overlaybuffer) DEBUGF("ob_unlimitsize(b=%p) sizeLimit=%zu", b, b->sizeLimit); } void _ob_flip(struct __sourceloc __whence, struct overlay_buffer *b) { if (config.debug.overlaybuffer) DEBUGF("ob_flip(b=%p) checkpointLength=0 position=0", b); b->checkpointLength = 0; ob_limitsize(b, b->position); b->position = 0; } void _ob_clear(struct __sourceloc __whence, struct overlay_buffer *b) { if (config.debug.overlaybuffer) DEBUGF("ob_flip(b=%p) checkpointLength=0 position=0", b); b->checkpointLength = 0; b->position = 0; ob_unlimitsize(b); } /* Return 1 if space is available, 0 if not. */ ssize_t _ob_makespace(struct __sourceloc __whence, struct overlay_buffer *b, size_t bytes) { assert(b != NULL); if (config.debug.overlaybuffer) DEBUGF("ob_makespace(b=%p, bytes=%zd) b->bytes=%p b->position=%zu b->allocSize=%zu", b, bytes, b->bytes, b->position, b->allocSize); assert(b->position <= b->sizeLimit); assert(b->position <= b->allocSize); if (b->position) assert(b->bytes != NULL); if (b->position + bytes > b->sizeLimit) { if (config.debug.overlaybuffer) DEBUGF("ob_makespace(): asked for space to %zu, beyond size limit of %zu", b->position + bytes, b->sizeLimit); return 0; } if (b->position + bytes <= b->allocSize) return 1; // Don't realloc a static buffer. if (b->bytes && b->allocated == NULL) { if (config.debug.overlaybuffer) DEBUGF("ob_makespace(): asked for space to %zu, beyond static buffer size of %zu", b->position + bytes, b->allocSize); return 0; } size_t newSize = b->position + bytes; if (newSize<64) newSize=64; if (newSize&63) newSize+=64-(newSize&63); if (newSize>1024 && (newSize&1023)) newSize+=1024-(newSize&1023); if (newSize>65536 && (newSize&65535)) newSize+=65536-(newSize&65535); if (config.debug.overlaybuffer) DEBUGF("realloc(b->bytes=%p, newSize=%zu)", b->bytes, newSize); /* XXX OSX realloc() seems to be able to corrupt things if the heap is not happy when calling realloc(), making debugging memory corruption much harder. So will do a three-stage malloc,bcopy,free to see if we can tease bugs out that way. */ /* unsigned char *r=realloc(b->bytes,newSize); if (!r) return WHY("realloc() failed"); b->bytes=r; */ #ifdef MALLOC_PARANOIA #warning adding lots of padding to try to catch overruns if (b->bytes) { int i; int corrupt=0; for(i=0;i<4096;i++) if (b->bytes[b->allocSize+i]!=0xbd) corrupt++; if (corrupt) { WHYF("!!!!!! %d corrupted bytes in overrun catch tray", corrupt); dump("overrun catch tray",&b->bytes[b->allocSize],4096); sleep_ms(36000000); } } unsigned char *new = emalloc(newSize+4096); { int i; for(i=0;i<4096;i++) new[newSize+i]=0xbd; } #else unsigned char *new = emalloc(newSize); #endif if (!new) return 0; bcopy(b->bytes,new,b->position); if (b->allocated) { assert(b->allocated == b->bytes); free(b->allocated); } b->bytes=new; b->allocated=new; b->allocSize=newSize; return 1; } /* Functions that append data and increase the size of the buffer if possible / required */ void _ob_append_byte(struct __sourceloc __whence, struct overlay_buffer *b, unsigned char byte) { const int bytes = 1; if (ob_makespace(b, bytes)) { b->bytes[b->position] = byte; if (config.debug.overlaybuffer) DEBUGF("ob_append_byte(b=%p, byte=0x%02x) %p[%zd]=%02x position=%zu", b, byte, b->bytes, b->position, byte, b->position + bytes); } else { if (config.debug.overlaybuffer) DEBUGF("ob_append_byte(b=%p, byte=0x%02x) OVERRUN position=%zu", b, byte, b->position + bytes); } b->position += bytes; } unsigned char *_ob_append_space(struct __sourceloc __whence, struct overlay_buffer *b, size_t count) { assert(count > 0); unsigned char *r = ob_makespace(b, count) ? &b->bytes[b->position] : NULL; b->position += count; if (config.debug.overlaybuffer) DEBUGF("ob_append_space(b=%p, count=%zu) position=%zu return %p", b, count, b->position, r); return r; } void _ob_append_bytes(struct __sourceloc __whence, struct overlay_buffer *b, const unsigned char *bytes, size_t count) { assert(count > 0); unsigned char *r = ob_makespace(b, count) ? &b->bytes[b->position] : NULL; if (r) { bcopy(bytes, r, count); if (config.debug.overlaybuffer) DEBUGF("ob_append_bytes(b=%p, bytes=%p, count=%zu) position=%zu return %p", b, bytes, count, b->position + count, r); } else { if (config.debug.overlaybuffer) DEBUGF("ob_append_bytes(b=%p, bytes=%p, count=%zu) OVERRUN position=%zu return NULL", b, bytes, count, b->position + count); } if (config.debug.overlaybuffer) dump("ob_append_bytes", bytes, count); b->position += count; } void _ob_append_str(struct __sourceloc whence, struct overlay_buffer *b, const char *str) { _ob_append_bytes(whence, b, (const uint8_t*)str, strlen(str)+1); } void _ob_append_ui16(struct __sourceloc __whence, struct overlay_buffer *b, uint16_t v) { const int bytes = 2; if (ob_makespace(b, bytes)) { b->bytes[b->position] = (v >> 8) & 0xFF; b->bytes[b->position+1] = v & 0xFF; if (config.debug.overlaybuffer) DEBUGF("ob_append_ui16(b=%p, v=%u) %p[%zd]=%s position=%zu", b, v, b->bytes, b->position, alloca_tohex(&b->bytes[b->position], bytes), b->position + bytes); } else { if (config.debug.overlaybuffer) DEBUGF("ob_append_ui16(b=%p, v=%u) OVERRUN position=%zu", b, v, b->position + bytes); } b->position += bytes; } void _ob_append_ui16_rv(struct __sourceloc __whence, struct overlay_buffer *b, uint16_t v) { const int bytes = 2; if (ob_makespace(b, bytes)) { b->bytes[b->position] = v & 0xFF; b->bytes[b->position+1] = (v >> 8) & 0xFF; if (config.debug.overlaybuffer) DEBUGF("ob_append_ui16(b=%p, v=%u) %p[%zd]=%s position=%zu", b, v, b->bytes, b->position, alloca_tohex(&b->bytes[b->position], bytes), b->position + bytes); } else { if (config.debug.overlaybuffer) DEBUGF("ob_append_ui16(b=%p, v=%u) OVERRUN position=%zu", b, v, b->position + bytes); } b->position += bytes; } void _ob_append_ui32(struct __sourceloc __whence, struct overlay_buffer *b, uint32_t v) { const int bytes = 4; if (ob_makespace(b, bytes)) { b->bytes[b->position] = (v >> 24) & 0xFF; b->bytes[b->position+1] = (v >> 16) & 0xFF; b->bytes[b->position+2] = (v >> 8) & 0xFF; b->bytes[b->position+3] = v & 0xFF; if (config.debug.overlaybuffer) DEBUGF("ob_append_ui32(b=%p, v=%"PRIu32") %p[%zd]=%s position=%zu", b, v, b->bytes, b->position, alloca_tohex(&b->bytes[b->position], bytes), b->position + bytes); } else { if (config.debug.overlaybuffer) DEBUGF("ob_append_ui32(b=%p, v=%"PRIu32") OVERRUN position=%zu", b, v, b->position + bytes); } b->position += bytes; } void _ob_append_ui32_rv(struct __sourceloc __whence, struct overlay_buffer *b, uint32_t v) { const int bytes = 4; if (ob_makespace(b, bytes)) { b->bytes[b->position] = v & 0xFF; b->bytes[b->position+1] = (v >> 8) & 0xFF; b->bytes[b->position+2] = (v >> 16) & 0xFF; b->bytes[b->position+3] = (v >> 24) & 0xFF; if (config.debug.overlaybuffer) DEBUGF("ob_append_ui32(b=%p, v=%"PRIu32") %p[%zd]=%s position=%zu", b, v, b->bytes, b->position, alloca_tohex(&b->bytes[b->position], bytes), b->position + bytes); } else { if (config.debug.overlaybuffer) DEBUGF("ob_append_ui32(b=%p, v=%"PRIu32") OVERRUN position=%zu", b, v, b->position + bytes); } b->position += bytes; } void _ob_append_ui64(struct __sourceloc __whence, struct overlay_buffer *b, uint64_t v) { const int bytes = 8; if (ob_makespace(b, bytes)) { b->bytes[b->position] = (v >> 56) & 0xFF; b->bytes[b->position+1] = (v >> 48) & 0xFF; b->bytes[b->position+2] = (v >> 40) & 0xFF; b->bytes[b->position+3] = (v >> 32) & 0xFF; b->bytes[b->position+4] = (v >> 24) & 0xFF; b->bytes[b->position+5] = (v >> 16) & 0xFF; b->bytes[b->position+6] = (v >> 8) & 0xFF; b->bytes[b->position+7] = v & 0xFF; if (config.debug.overlaybuffer) DEBUGF("ob_append_ui64(b=%p, v=%"PRIu64") %p[%zd]=%s position=%zu", b, v, b->bytes, b->position, alloca_tohex(&b->bytes[b->position], bytes), b->position + bytes); } else { if (config.debug.overlaybuffer) DEBUGF("ob_append_ui64(b=%p, v=%"PRIu64") OVERRUN position=%zu", b, v, b->position + bytes); } b->position += bytes; } void _ob_append_ui64_rv(struct __sourceloc __whence, struct overlay_buffer *b, uint64_t v) { const int bytes = 8; if (ob_makespace(b, bytes)) { b->bytes[b->position] = v & 0xFF; b->bytes[b->position+1] = (v >> 8) & 0xFF; b->bytes[b->position+2] = (v >> 16) & 0xFF; b->bytes[b->position+3] = (v >> 24) & 0xFF; b->bytes[b->position+4] = (v >> 32) & 0xFF; b->bytes[b->position+5] = (v >> 40) & 0xFF; b->bytes[b->position+6] = (v >> 48) & 0xFF; b->bytes[b->position+7] = (v >> 56) & 0xFF; if (config.debug.overlaybuffer) DEBUGF("ob_append_ui64(b=%p, v=%"PRIu64") %p[%zd]=%s position=%zu", b, v, b->bytes, b->position, alloca_tohex(&b->bytes[b->position], bytes), b->position + bytes); } else { if (config.debug.overlaybuffer) DEBUGF("ob_append_ui64(b=%p, v=%"PRIu64") OVERRUN position=%zu", b, v, b->position + bytes); } b->position += bytes; } int measure_packed_uint(uint64_t v){ int ret=0; do{ v>>=7; ret++; }while(v); return ret; } int pack_uint(unsigned char *buffer, uint64_t v){ int ret=0; do{ *buffer++=(v&0x7f) | (v>0x7f?0x80:0); v>>=7; ret++; }while(v); return ret; } int unpack_uint(unsigned char *buffer, int buff_size, uint64_t *v){ int i=0; *v=0; while(1){ if (i>=buff_size) return -1; char byte = buffer[i]; *v |= (byte&0x7f)<<(i*7); i++; if (!(byte&0x80)) break; } return i; } void _ob_append_packed_ui32(struct __sourceloc __whence, struct overlay_buffer *b, uint32_t v) { do { ob_append_byte(b, (v&0x7f) | (v>0x7f?0x80:0)); v = v >> 7; } while (v != 0); } void _ob_append_packed_ui64(struct __sourceloc __whence, struct overlay_buffer *b, uint64_t v) { do { ob_append_byte(b, (v&0x7f) | (v>0x7f?0x80:0)); v = v >> 7; } while (v != 0); } /* Functions that read / write data within the existing length limit */ // make sure a range of bytes is valid for reading static int test_offset(struct overlay_buffer *b, size_t length) { if (b->position + length > b->sizeLimit) return -1; if (b->position + length > b->allocSize) return -1; return 0; } // next byte without advancing int ob_peek(struct overlay_buffer *b) { if (test_offset(b, 1)) return -1; return b->bytes[b->position]; } void ob_skip(struct overlay_buffer *b, unsigned n) { b->position += n; } // return a null terminated string pointer and advance past the string const char *ob_get_str_ptr(struct overlay_buffer *b) { const char *ret = (const char*)(b->bytes + b->position); off_t ofs=0; while (test_offset(b, ofs)==0){ if (ret[ofs]=='\0'){ b->position+=ofs+1; return ret; } ofs++; } return NULL; } int ob_get_bytes(struct overlay_buffer *b, unsigned char *buff, size_t len) { if (test_offset(b, len)) return -1; bcopy(b->bytes + b->position, buff, len); b->position+=len; return 0; } unsigned char * ob_get_bytes_ptr(struct overlay_buffer *b, size_t len) { if (test_offset(b, len)) return NULL; unsigned char *ret = b->bytes + b->position; b->position+=len; return ret; } uint32_t ob_get_ui32(struct overlay_buffer *b) { if (test_offset(b, 4)) return 0xFFFFFFFF; // ... unsigned uint32_t ret = b->bytes[b->position] << 24 | b->bytes[b->position +1] << 16 | b->bytes[b->position +2] << 8 | b->bytes[b->position +3]; b->position+=4; return ret; } uint32_t ob_get_ui32_rv(struct overlay_buffer *b) { if (test_offset(b, 4)) return 0xFFFFFFFF; // ... unsigned uint32_t ret = b->bytes[b->position] | b->bytes[b->position +1] << 8 | b->bytes[b->position +2] << 16 | b->bytes[b->position +3] << 24; b->position+=4; return ret; } uint64_t ob_get_ui64(struct overlay_buffer *b) { if (test_offset(b, 8)) return 0xFFFFFFFF; // ... unsigned uint64_t ret = (uint64_t)b->bytes[b->position] << 56 | (uint64_t)b->bytes[b->position +1] << 48 | (uint64_t)b->bytes[b->position +2] << 40 | (uint64_t)b->bytes[b->position +3] << 36 | b->bytes[b->position +4] << 24 | b->bytes[b->position +5] << 16 | b->bytes[b->position +6] << 8 | b->bytes[b->position +7]; b->position+=8; return ret; } uint64_t ob_get_ui64_rv(struct overlay_buffer *b) { if (test_offset(b, 8)) return 0xFFFFFFFF; // ... unsigned uint64_t ret = (uint64_t)b->bytes[b->position] | (uint64_t)b->bytes[b->position +1] << 8 | (uint64_t)b->bytes[b->position +2] << 16 | (uint64_t)b->bytes[b->position +3] << 24 | (uint64_t)b->bytes[b->position +4] << 32 | (uint64_t)b->bytes[b->position +5] << 40 | (uint64_t)b->bytes[b->position +6] << 48 | (uint64_t)b->bytes[b->position +7] << 56; b->position+=8; return ret; } uint16_t ob_get_ui16(struct overlay_buffer *b) { if (test_offset(b, 2)) return 0xFFFF; // ... unsigned uint16_t ret = b->bytes[b->position] << 8 | b->bytes[b->position +1]; b->position+=2; return ret; } uint16_t ob_get_ui16_rv(struct overlay_buffer *b) { if (test_offset(b, 2)) return 0xFFFF; // ... unsigned uint16_t ret = b->bytes[b->position] | b->bytes[b->position +1] << 8; b->position+=2; return ret; } uint32_t ob_get_packed_ui32(struct overlay_buffer *b) { uint32_t ret=0; int shift=0; int byte; do{ byte = ob_get(b); if (byte<0) return WHY("Failed to unpack integer"); ret |= (byte&0x7f)<bytes[b->position++]; } void _ob_set_ui16(struct __sourceloc __whence, struct overlay_buffer *b, size_t offset, uint16_t v) { const int bytes = 2; assert(b != NULL); assert(offset + bytes <= b->sizeLimit); assert(offset + bytes <= b->allocSize); b->bytes[offset] = (v >> 8) & 0xFF; b->bytes[offset+1] = v & 0xFF; if (config.debug.overlaybuffer) DEBUGF("ob_set_ui16(b=%p, offset=%zd, v=%u) %p[%zd]=%s", b, offset, v, b->bytes, offset, alloca_tohex(&b->bytes[offset], bytes)); } void _ob_set(struct __sourceloc __whence, struct overlay_buffer *b, size_t offset, unsigned char byte) { const int bytes = 1; assert(b != NULL); assert(offset + bytes <= b->sizeLimit); assert(offset + bytes <= b->allocSize); b->bytes[offset] = byte; if (config.debug.overlaybuffer) DEBUGF("ob_set(b=%p, offset=%zd, byte=0x%02x) %p[%zd]=%s", b, offset, byte, b->bytes, offset, alloca_tohex(&b->bytes[offset], bytes)); } size_t ob_position(struct overlay_buffer *b) { return b->position; } size_t ob_limit(struct overlay_buffer *b) { return b->sizeLimit; } size_t ob_remaining(struct overlay_buffer *b) { assert(b->sizeLimit != SIZE_MAX); assert(b->position <= b->sizeLimit); return (size_t)(b->sizeLimit - b->position); } int _ob_overrun(struct __sourceloc __whence, struct overlay_buffer *b) { int ret = b->position > (b->sizeLimit != SIZE_MAX && b->sizeLimit < b->allocSize ? b->sizeLimit : b->allocSize); if (config.debug.overlaybuffer) DEBUGF("ob_overrun(b=%p) return %d", b, ret); return ret; } unsigned char *ob_ptr(struct overlay_buffer *b) { return b->bytes; } unsigned char *ob_current_ptr(struct overlay_buffer *b) { return &b->bytes[b->position]; } int asprintable(int c) { if (c<' ') return '.'; if (c>0x7e) return '.'; return c; } int ob_dump(struct overlay_buffer *b, char *desc) { DEBUGF("overlay_buffer '%s' at %p (%p) : checkpoint=%zu, position=%zu, limit=%zu, size=%zu", desc, b, b->bytes, b->checkpointLength, b->position, b->sizeLimit, b->allocSize); if (b->bytes) { if (b->sizeLimit != SIZE_MAX && b->sizeLimit > 0) { assert(b->position <= b->sizeLimit); dump(desc, b->bytes, b->sizeLimit); } else if (b->position > 0) dump(desc, b->bytes, b->position); } return 0; }