/* Serval Distributed Numbering Architecture (DNA) Copyright (C) 2010 Paul Gardner-Stephen This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include #include #include "serval.h" #include "conf.h" #include "strbuf.h" #include "strbuf_helpers.h" #include "overlay_buffer.h" #include "overlay_packet.h" #include "str.h" #ifdef HAVE_IFADDRS_H #include #endif int overlay_ready=0; int overlay_interface_count=0; overlay_interface overlay_interfaces[OVERLAY_MAX_INTERFACES]; int overlay_last_interface_number=-1; struct profile_total interface_poll_stats; struct profile_total dummy_poll_stats; struct sched_ent sock_any; struct sockaddr_in sock_any_addr; struct profile_total sock_any_stats; static void overlay_interface_poll(struct sched_ent *alarm); static void logServalPacket(int level, struct __sourceloc __whence, const char *message, const unsigned char *packet, size_t len); #define DEBUG_packet_visualise(M,P,N) logServalPacket(LOG_LEVEL_DEBUG, __WHENCE__, (M), (P), (N)) static void overlay_interface_close(overlay_interface *interface){ if (interface->fileP){ INFOF("Interface %s is down", interface->name); }else{ INFOF("Interface %s addr %s is down", interface->name, inet_ntoa(interface->broadcast_address.sin_addr)); } unschedule(&interface->alarm); unwatch(&interface->alarm); close(interface->alarm.poll.fd); interface->alarm.poll.fd=-1; interface->state=INTERFACE_STATE_DOWN; } // create a socket with options common to all our UDP sockets static int overlay_bind_socket(const struct sockaddr *addr, size_t addr_size, char *interface_name){ int fd; int reuseP = 1; int broadcastP = 1; fd = socket(PF_INET,SOCK_DGRAM,0); if (fd < 0) { WHY_perror("Error creating socket"); return -1; } if (setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, &reuseP, sizeof(reuseP)) < 0) { WHY_perror("setsockopt(SO_REUSEADR)"); goto error; } #ifdef SO_REUSEPORT if (setsockopt(fd, SOL_SOCKET, SO_REUSEPORT, &reuseP, sizeof(reuseP)) < 0) { WHY_perror("setsockopt(SO_REUSEPORT)"); goto error; } #endif if (setsockopt(fd, SOL_SOCKET, SO_BROADCAST, &broadcastP, sizeof(broadcastP)) < 0) { WHY_perror("setsockopt(SO_BROADCAST)"); goto error; } /* Automatically close socket on calls to exec(). This makes life easier when we restart with an exec after receiving a bad signal. */ fcntl(fd, F_SETFL, fcntl(fd, F_GETFL, NULL) | #ifdef FD_CLOEXEC FD_CLOEXEC #else O_CLOEXEC #endif ); #ifdef SO_BINDTODEVICE /* Limit incoming and outgoing packets to this interface, no matter what the routing table says. This should allow for a device with multiple interfaces on the same subnet. Don't abort if this fails, I believe it requires root, just log it. */ if (interface_name && setsockopt(fd, SOL_SOCKET, SO_BINDTODEVICE, interface_name, strlen(interface_name)+1) < 0) { WHY_perror("setsockopt(SO_BINDTODEVICE)"); } #endif if (bind(fd, addr, addr_size)) { WHY_perror("Bind failed"); goto error; } return fd; error: close(fd); return -1; } overlay_interface * overlay_interface_find(struct in_addr addr){ int i; overlay_interface *ret = NULL; for (i=0;ipoll.revents & POLLIN) { int plen=0; int recvttl=1; unsigned char packet[16384]; overlay_interface *interface=NULL; struct sockaddr src_addr; socklen_t addrlen = sizeof(src_addr); /* Read only one UDP packet per call to share resources more fairly, and also enable stats to accurately count packets received */ plen = recvwithttl(alarm->poll.fd, packet, sizeof(packet), &recvttl, &src_addr, &addrlen); if (plen == -1) { WHY_perror("recvwithttl(c)"); unwatch(alarm); close(alarm->poll.fd); return; } struct in_addr src = ((struct sockaddr_in *)&src_addr)->sin_addr; /* Try to identify the real interface that the packet arrived on */ interface = overlay_interface_find(src); /* Drop the packet if we don't find a match */ if (!interface){ if (debug&DEBUG_OVERLAYINTERFACES) DEBUGF("Could not find matching interface for packet received from %s", inet_ntoa(src)); return; } /* We have a frame from this interface */ if (debug&DEBUG_PACKETRX) DEBUG_packet_visualise("Read from real interface", packet,plen); if (debug&DEBUG_OVERLAYINTERFACES) DEBUGF("Received %d bytes from %s on interface %s (ANY)",plen, inet_ntoa(src), interface->name); if (packetOkOverlay(interface, packet, plen, recvttl, &src_addr, addrlen)) { WHY("Malformed packet"); } } if (alarm->poll.revents & (POLLHUP | POLLERR)) { INFO("Closing broadcast socket due to error"); unwatch(alarm); close(alarm->poll.fd); alarm->poll.fd=-1; } } // bind a socket to INADDR_ANY:port // for now, we don't have a graceful close for this interface but it should go away when the process dies static int overlay_interface_init_any(int port) { struct sockaddr_in addr; if (sock_any.poll.fd>0){ // Check the port number matches if (sock_any_addr.sin_port != htons(port)) return WHYF("Unable to listen to broadcast packets for ports %d & %d", port, ntohs(sock_any_addr.sin_port)); return 0; } addr.sin_family = AF_INET; addr.sin_port = htons(port); addr.sin_addr.s_addr = INADDR_ANY; sock_any.poll.fd = overlay_bind_socket((const struct sockaddr *)&addr, sizeof(addr), NULL); if (sock_any.poll.fd<0) return -1; sock_any_addr = addr; sock_any.poll.events=POLLIN; sock_any.function = overlay_interface_read_any; sock_any_stats.name="overlay_interface_read_any"; sock_any.stats=&sock_any_stats; watch(&sock_any); return 0; } static int overlay_interface_init_socket(int interface_index) { overlay_interface *const interface = &overlay_interfaces[interface_index]; interface->fileP = 0; /* On linux you can bind to the broadcast address to receive broadcast packets per interface [or subnet], but then you can't receive unicast packets on the same socket. On osx, you can only receive broadcast packets if you bind to INADDR_ANY. So the most portable way to do this is to bind to each interface's IP address for sending broadcasts and receiving unicasts, and bind a separate socket to INADDR_ANY just for receiving broadcast packets. Sending packets from INADDR_ANY would probably work, but gives us less control over which interfaces are sending packets. But there may be some platforms that need some other combination for everything to work. */ overlay_interface_init_any(interface->port); const struct sockaddr *addr = (const struct sockaddr *)&interface->address; interface->alarm.poll.fd = overlay_bind_socket(addr, sizeof(interface->broadcast_address), interface->name); if (interface->alarm.poll.fd<0){ interface->state=INTERFACE_STATE_DOWN; return -1; } if (debug & (DEBUG_PACKETRX | DEBUG_IO)){ char srctxt[INET_ADDRSTRLEN]; if (inet_ntop(AF_INET, (const void *)&interface->broadcast_address.sin_addr, srctxt, INET_ADDRSTRLEN)) DEBUGF("Bound to %s:%d", srctxt, ntohs(interface->broadcast_address.sin_port)); } interface->alarm.poll.events=POLLIN; interface->alarm.function = overlay_interface_poll; interface_poll_stats.name="overlay_interface_poll"; interface->alarm.stats=&interface_poll_stats; watch(&interface->alarm); if (interface->tick_ms>0){ // run the first tick asap interface->alarm.alarm=gettime_ms(); interface->alarm.deadline=interface->alarm.alarm+10; schedule(&interface->alarm); } interface->state=INTERFACE_STATE_UP; INFOF("Interface %s addr %s, is up",interface->name, inet_ntoa(interface->broadcast_address.sin_addr)); directory_registration(); return 0; } static int overlay_interface_init(const char *name, struct in_addr src_addr, struct in_addr netmask, struct in_addr broadcast, const struct config_network_interface *ifconfig) { /* Too many interfaces */ if (overlay_interface_count>=OVERLAY_MAX_INTERFACES) return WHY("Too many interfaces -- Increase OVERLAY_MAX_INTERFACES"); overlay_interface *const interface = &overlay_interfaces[overlay_interface_count]; strncpy(interface->name, name, sizeof interface->name); /* Pick a reasonable default MTU. This will ultimately get tuned by the bandwidth and other properties of the interface */ interface->mtu=1200; interface->state=INTERFACE_STATE_DOWN; interface->bits_per_second = ifconfig->speed; interface->port= ifconfig->port; interface->type= ifconfig->type; interface->default_route = ifconfig->default_route; interface->last_tick_ms= -1; // not ticked yet interface->alarm.poll.fd=0; // How often do we announce ourselves on this interface? int32_t tick_ms = ifconfig->mdp_tick_ms; if (tick_ms < 0) { int i = config_mdp_iftypelist__get(&config.mdp.iftype, &ifconfig->type); if (i != -1) tick_ms = config.mdp.iftype.av[i].value.tick_ms; } if (tick_ms < 0) { switch (ifconfig->type) { case OVERLAY_INTERFACE_PACKETRADIO: tick_ms = 15000; break; case OVERLAY_INTERFACE_ETHERNET: tick_ms = 500; break; case OVERLAY_INTERFACE_WIFI: tick_ms = 500; break; case OVERLAY_INTERFACE_UNKNOWN: tick_ms = 500; break; default: return WHYF("Unsupported interface type %d", ifconfig->type); } } assert(tick_ms >= 0); interface->tick_ms = tick_ms; // disable announcements and other broadcasts if tick_ms=0. if (interface->tick_ms > 0) interface->send_broadcasts=1; else{ interface->send_broadcasts=0; INFOF("Interface %s is running tickless", name); } if (ifconfig->dummy[0]) { interface->fileP = 1; char dummyfile[1024]; strbuf d = strbuf_local(dummyfile, sizeof dummyfile); strbuf_path_join(d, serval_instancepath(), config.server.dummy_interface_dir, ifconfig->dummy, NULL); if (strbuf_overrun(d)) return WHYF("dummy interface file name overrun: %s", alloca_str_toprint(strbuf_str(d))); if ((interface->alarm.poll.fd = open(dummyfile,O_APPEND|O_RDWR)) < 1) { return WHYF("could not open dummy interface file %s for append", dummyfile); } interface->address.sin_family=AF_INET; interface->address.sin_port = 0; interface->address.sin_addr.s_addr = htonl(INADDR_LOOPBACK); interface->netmask.s_addr=0xFFFFFF00; interface->broadcast_address.sin_family=AF_INET; interface->broadcast_address.sin_port = 0; interface->broadcast_address.sin_addr.s_addr = interface->address.sin_addr.s_addr | ~interface->netmask.s_addr; /* Seek to end of file as initial reading point */ interface->recv_offset = lseek(interface->alarm.poll.fd,0,SEEK_END); /* XXX later add pretend location information so that we can decide which "packets" to receive based on closeness */ // schedule an alarm for this interface interface->alarm.function=overlay_dummy_poll; interface->alarm.alarm=gettime_ms()+10; interface->alarm.deadline=interface->alarm.alarm; dummy_poll_stats.name="overlay_dummy_poll"; interface->alarm.stats=&dummy_poll_stats; schedule(&interface->alarm); interface->state=INTERFACE_STATE_UP; INFOF("Dummy interface %s is up",interface->name); directory_registration(); } else { interface->netmask = netmask; interface->address.sin_addr = src_addr; interface->address.sin_family = AF_INET; interface->address.sin_port = htons(interface->port); interface->broadcast_address.sin_addr = broadcast; interface->broadcast_address.sin_family = AF_INET; interface->broadcast_address.sin_port = htons(interface->port); if (overlay_interface_init_socket(overlay_interface_count)) return WHY("overlay_interface_init_socket() failed"); } overlay_interface_count++; return 0; } static void overlay_interface_poll(struct sched_ent *alarm) { struct overlay_interface *interface = (overlay_interface *)alarm; if (alarm->poll.revents==0){ if (interface->state==INTERFACE_STATE_UP && interface->tick_ms>0){ // tick the interface time_ms_t now = gettime_ms(); int i = (interface - overlay_interfaces); overlay_tick_interface(i, now); alarm->alarm=now+interface->tick_ms; alarm->deadline=alarm->alarm+interface->tick_ms/2; schedule(alarm); } return; } if (alarm->poll.revents & POLLIN) { int plen=0; unsigned char packet[16384]; struct sockaddr src_addr; socklen_t addrlen = sizeof(src_addr); /* Read only one UDP packet per call to share resources more fairly, and also enable stats to accurately count packets received */ int recvttl=1; plen = recvwithttl(alarm->poll.fd,packet, sizeof(packet), &recvttl, &src_addr, &addrlen); if (plen == -1) { WHY_perror("recvwithttl(c)"); overlay_interface_close(interface); return; } /* We have a frame from this interface */ if (debug&DEBUG_PACKETRX) DEBUG_packet_visualise("Read from real interface", packet,plen); if (debug&DEBUG_OVERLAYINTERFACES) { struct in_addr src = ((struct sockaddr_in *)&src_addr)->sin_addr; // avoid strict-alias warning on Solaris (gcc 4.4) DEBUGF("Received %d bytes from %s on interface %s",plen, inet_ntoa(src), interface->name); } if (packetOkOverlay(interface, packet, plen, recvttl, &src_addr, addrlen)) { WHY("Malformed packet"); // Do we really want to attempt to parse it again? //DEBUG_packet_visualise("Malformed packet", packet,plen); } } if (alarm->poll.revents & (POLLHUP | POLLERR)) { overlay_interface_close(interface); } } void overlay_dummy_poll(struct sched_ent *alarm) { overlay_interface *interface = (overlay_interface *)alarm; /* Grab packets, unpackage and dispatch frames to consumers */ /* XXX Okay, so how are we managing out-of-process consumers? They need some way to register their interest in listening to a port. */ unsigned char packet[2048]; int plen=0; struct sockaddr_in src_addr={ .sin_family = AF_INET, .sin_port = 0, .sin_addr.s_addr = htonl(INADDR_LOOPBACK), }; size_t addrlen = sizeof(src_addr); time_ms_t now = gettime_ms(); /* Read from dummy interface file */ long long length=lseek(alarm->poll.fd,0,SEEK_END); int new_packets = (length - interface->recv_offset) / sizeof packet; if (new_packets > 20) WARNF("Getting behind, there are %d unread packets", new_packets); if (interface->recv_offset >= length) { /* if there's no input, while we want to check for more soon, we need to allow all other low priority alarms to fire first, otherwise we'll dominate the scheduler without accomplishing anything */ alarm->alarm = gettime_ms() + 5; if (interface->last_tick_ms != -1 && alarm->alarm > interface->last_tick_ms + interface->tick_ms) alarm->alarm = interface->last_tick_ms + interface->tick_ms; alarm->deadline = alarm->alarm + 10000; } else { if (lseek(alarm->poll.fd,interface->recv_offset,SEEK_SET) == -1) WHY_perror("lseek"); else { if (debug&DEBUG_OVERLAYINTERFACES) DEBUGF("Read interface %s (size=%lld) at offset=%d",interface->name, length, interface->recv_offset); ssize_t nread = read(alarm->poll.fd, packet, sizeof packet); if (nread == -1) WHY_perror("read"); else { if (nread == sizeof packet) { interface->recv_offset += nread; plen = packet[110] + (packet[111] << 8); if (plen > nread - 128) plen = -1; if (debug&DEBUG_PACKETRX) DEBUG_packet_visualise("Read from dummy interface", &packet[128], plen); if (packetOkOverlay(interface, &packet[128], plen, -1, (struct sockaddr*)&src_addr, addrlen)) { WARN("Unsupported packet from dummy interface"); } } else WARNF("Read %lld bytes from dummy interface", nread); } } /* keep reading new packets as fast as possible, but don't completely prevent other high priority alarms */ if (interface->recv_offset >= length) alarm->alarm = gettime_ms() + 5; else alarm->alarm = gettime_ms(); alarm->deadline = alarm->alarm + 100; } // only tick the interface if we've caught up reading all the packets if (interface->recv_offset >= length && interface->tick_ms>0 && (interface->last_tick_ms == -1 || now >= interface->last_tick_ms + interface->tick_ms)) { // tick the interface int i = (interface - overlay_interfaces); overlay_tick_interface(i, now); } schedule(alarm); return ; } int overlay_broadcast_ensemble(int interface_number, struct sockaddr_in *recipientaddr, unsigned char *bytes,int len) { if (debug&DEBUG_PACKETTX) { DEBUGF("Sending this packet via interface #%d",interface_number); DEBUG_packet_visualise(NULL,bytes,len); } overlay_interface *interface = &overlay_interfaces[interface_number]; if (interface->state!=INTERFACE_STATE_UP){ return WHYF("Cannot send to interface %s as it is down", interface->name); } if (interface->fileP) { char buf[2048]; bzero(&buf[0],128); /* Version information */ buf[0]=1; buf[1]=0; buf[2]=0; buf[3]=0; /* PID of creator */ buf[4]=getpid()&0xff; buf[5]=getpid()>>8; /* TODO make a structure for all this stuff */ /* bytes 4-5 = half-power beam height (uint16) */ /* bytes 6-7 = half-power beam width (uint16) */ /* bytes 8-11 = range in metres, centre beam (uint32) */ /* bytes 16-47 = sender */ /* bytes 48-79 = next hop */ /* bytes 80-83 = latitude (uint32) */ /* bytes 84-87 = longitude (uint32) */ /* bytes 88-89 = X/Z direction (uint16) */ /* bytes 90-91 = Y direction (uint16) */ /* bytes 92-93 = speed in metres per second (uint16) */ /* bytes 94-97 = TX frequency in Hz, uncorrected for doppler (which must be done at the receiving end to take into account relative motion) */ /* bytes 98-109 = coding method (use for doppler response etc) null terminated string */ /* bytes 110-111 = length of packet body in bytes */ /* bytes 112-127 reserved for future use */ if (len>2048-128) { WARN("Truncating long packet to fit within 1920 byte limit for dummy interface"); len=2048-128; } /* Record length of packet */ buf[110]=len&0xff; buf[111]=(len>>8)&0xff; bzero(&buf[128+len],2048-(128+len)); bcopy(bytes,&buf[128],len); /* This lseek() is unneccessary because the dummy file is opened in O_APPEND mode. It's only purpose is to find out the offset to print in the DEBUG statement. It is vulnerable to a race condition with other processes appending to the same file. */ off_t fsize = lseek(interface->alarm.poll.fd, (off_t) 0, SEEK_END); if (fsize == -1) return WHY_perror("lseek"); if (debug&DEBUG_OVERLAYINTERFACES) DEBUGF("Write to interface %s at offset=%d", interface->name, fsize); ssize_t nwrite = write(interface->alarm.poll.fd, buf, 2048); if (nwrite == -1) return WHY_perror("write"); if (nwrite != 2048) return WHYF("only wrote %lld of %lld bytes", nwrite, 2048); return 0; } else { if (debug&DEBUG_OVERLAYINTERFACES) DEBUGF("Sending %d byte overlay frame on %s to %s",len,interface->name,inet_ntoa(recipientaddr->sin_addr)); if(sendto(interface->alarm.poll.fd, bytes, len, 0, (struct sockaddr *)recipientaddr, sizeof(struct sockaddr_in)) != len){ int e=errno; WHY_perror("sendto(c)"); // only close the interface on some kinds of errors if (e==ENETDOWN || e==EINVAL) overlay_interface_close(interface); return -1; } return 0; } } /* Register the real interface, or update the existing interface registration. */ int overlay_interface_register(char *name, struct in_addr addr, struct in_addr mask) { struct in_addr broadcast = {.s_addr = addr.s_addr | ~mask.s_addr}; if (debug & DEBUG_OVERLAYINTERFACES) { // note, inet_ntop doesn't seem to behave on android DEBUGF("%s address: %s", name, inet_ntoa(addr)); DEBUGF("%s broadcast address: %s", name, inet_ntoa(broadcast)); } // Find the matching non-dummy interface rule. const struct config_network_interface *ifconfig = NULL; int i; for (i = 0; i < config.interfaces.ac; ++i, ifconfig = NULL) { ifconfig = &config.interfaces.av[i].value; if (!ifconfig->dummy[0]) { int j; for (j = 0; j < ifconfig->match.patc; ++j) if (fnmatch(ifconfig->match.patv[j], name, 0) == 0) break; } } if (ifconfig == NULL) { if (debug & DEBUG_OVERLAYINTERFACES) DEBUGF("Interface %s does not match any rule", name); return 0; } if (ifconfig->exclude) { if (debug & DEBUG_OVERLAYINTERFACES) DEBUGF("Interface %s is explicitly excluded", name); return 0; } /* Search in the exist list of interfaces */ int found_interface= -1; for(i = 0; i < overlay_interface_count; i++){ int broadcast_match = 0; int name_match =0; if (overlay_interfaces[i].broadcast_address.sin_addr.s_addr == broadcast.s_addr) broadcast_match = 1; name_match = !strcasecmp(overlay_interfaces[i].name, name); // if we find an exact match we can stop searching if (name_match && broadcast_match){ // mark this interface as still alive if (overlay_interfaces[i].state==INTERFACE_STATE_DETECTING) overlay_interfaces[i].state=INTERFACE_STATE_UP; // try to bring the interface back up again even if the address has changed if (overlay_interfaces[i].state==INTERFACE_STATE_DOWN){ overlay_interfaces[i].address.sin_addr = addr; overlay_interface_init_socket(i); } // we already know about this interface, and it's up so stop looking immediately return 0; } // remember this slot to bring the interface back up again, even if the address has changed if (name_match && overlay_interfaces[i].state==INTERFACE_STATE_DOWN) found_interface=i; } if (found_interface>=0){ // try to reactivate the existing interface overlay_interfaces[found_interface].address.sin_addr = addr; overlay_interfaces[found_interface].broadcast_address.sin_addr = broadcast; overlay_interfaces[found_interface].netmask = mask; return overlay_interface_init_socket(found_interface); } /* New interface, so register it */ if (overlay_interface_init(name, addr, mask, broadcast, ifconfig)) return WHYF("Could not initialise newly seen interface %s", name); else if (debug & DEBUG_OVERLAYINTERFACES) DEBUGF("Registered interface %s", name); return 0; } void overlay_interface_discover(struct sched_ent *alarm) { /* Mark all UP interfaces as DETECTING, so we can tell which interfaces are new, and which are dead */ int i; for (i = 0; i < overlay_interface_count; i++) if (overlay_interfaces[i].state==INTERFACE_STATE_UP) overlay_interfaces[i].state=INTERFACE_STATE_DETECTING; /* Register new dummy interfaces */ int detect_real_interfaces = 0; const struct config_network_interface *ifconfig = NULL; for (i = 0; i < config.interfaces.ac; ++i, ifconfig = NULL) { ifconfig = &config.interfaces.av[i].value; if (!ifconfig->dummy[0]) { detect_real_interfaces = 1; continue; } for (i = 0; i < overlay_interface_count; i++) if (strcasecmp(overlay_interfaces[i].name, ifconfig->dummy) == 0) { if (overlay_interfaces[i].state==INTERFACE_STATE_DETECTING) overlay_interfaces[i].state=INTERFACE_STATE_UP; break; } if (i >= overlay_interface_count) { // New dummy interface, so register it. struct in_addr dummyaddr = (struct in_addr){htonl(INADDR_NONE)}; overlay_interface_init(ifconfig->dummy, dummyaddr, dummyaddr, dummyaddr, ifconfig); } } // Register new real interfaces if (detect_real_interfaces) { int no_route = 1; #ifdef HAVE_IFADDRS_H if (no_route != 0) no_route = doifaddrs(); #endif #ifdef SIOCGIFCONF if (no_route != 0) no_route = lsif(); #endif #ifdef linux if (no_route != 0) no_route = scrapeProcNetRoute(); #endif if (no_route != 0) { FATAL("Unable to get any interface information"); } } // Close any interfaces that have gone away. for(i = 0; i < overlay_interface_count; i++) if (overlay_interfaces[i].state==INTERFACE_STATE_DETECTING) overlay_interface_close(&overlay_interfaces[i]); alarm->alarm = gettime_ms()+5000; alarm->deadline = alarm->alarm + 10000; schedule(alarm); return; } static void logServalPacket(int level, struct __sourceloc __whence, const char *message, const unsigned char *packet, size_t len) { struct mallocbuf mb = STRUCT_MALLOCBUF_NULL; if (serval_packetvisualise(XPRINTF_MALLOCBUF(&mb), message, packet, len) == -1) WHY("serval_packetvisualise() failed"); else if (mb.buffer == NULL) WHYF("serval_packetvisualise() output buffer missing, message=%s packet=%p len=%lu", alloca_toprint(-1, message, strlen(message)), packet, len); else logString(level, __whence, mb.buffer); if (mb.buffer) free(mb.buffer); }