/* Serval Distributed Numbering Architecture (DNA) Copyright (C) 2010 Paul Gardner-Stephen This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include "serval.h" int hexdigit[16]={'0','1','2','3','4','5','6','7','8','9','A','B','C','D','E','F'}; int extractDid(unsigned char *packet,int *ofs,char *did) { int d=0; int highP=1; int nybl; nybl=0; while(nybl!=0xf&&(*ofs<(OFS_SIDDIDFIELD+SIDDIDFIELD_LEN))&&(d<64)) { if (highP) nybl=packet[*ofs]>>4; else nybl=packet[*ofs]&0xf; if (nybl<0xa) did[d++]='0'+nybl; else switch(nybl) { case 0xa: did[d++]='*'; break; case 0xb: did[d++]='#'; break; case 0xc: did[d++]='+'; break; } if (highP) highP=0; else { (*ofs)++; highP=1; } } if (d>63) return WHY("DID too long"); did[d]=0; return 0; } int stowDid(unsigned char *packet,int *ofs,char *did) { int highP=1; int nybl; int d=0; int len=0; if (debug&DEBUG_PACKETFORMATS) printf("Packing DID \"%s\"\n",did); while(did[d]&&(d=DID_MAXSIZE) { WHY("DID number too long"); return -1; } /* Append end of number code, filling the whole byte for fast and easy comparison */ if (highP) packet[(*ofs)++]=0xff; else packet[(*ofs)++]|=0x0f; len++; /* Fill remainder of field with randomness to protect any encryption */ for(;len>4]; sid[d++]=hexdigit[packet[*ofs]&0xf]; (*ofs)++; } sid[d]=0; return 0; } int validateSid(const char *sid) { if (!sid) { WHY("SID == NULL"); return 0; } if (!strcasecmp(sid,"broadcast")) return 1; size_t n = strlen(sid); if (n != SID_STRLEN) { WHYF("Invalid SID (strlen is %u, should be %u)", n, SID_STRLEN); return 0; } const char *s; for (s = sid; *s; ++s) if (hexvalue(*s) == -1) { WHY("SID contains non-hex character"); return 0; } return 1; } int stowSid(unsigned char *packet, int ofs, const char *sid) { int i; if (debug&DEBUG_PACKETFORMATS) printf("Stowing SID \"%s\"\n", sid); if (!validateSid(sid)) return WHY("Invalid SID passed in"); if (!strcasecmp(sid,"broadcast")) for(i=0;i<32;i++) packet[ofs++]=0xff; else for(i = 0; i != SID_SIZE; ++i) { packet[ofs] = hexvalue(sid[i<<1]) << 4; packet[ofs++] |= hexvalue(sid[(i<<1)+1]); } return 0; } int stowBytes(unsigned char *packet, const char *in,int count) { int ofs=0; if (strlen(in)!=(count*2)) return WHY("Input string is wrong length"); int i; for(i = 0; i != count; ++i) { if(hexvalue(in[i<<1])<0) return WHYF("Non-hex char at position %d",i<<1); if(hexvalue(in[(i<<1)+1])<0) return WHYF("Non-hex char at position %d",(i<<1)+1); packet[ofs] = hexvalue(in[i<<1]) << 4; packet[ofs++] |= hexvalue(in[(i<<1)+1]); } return 0; } char *str_toupper_inplace(char *str) { register char *s; for (s = str; *s; ++s) *s = toupper(*s); return str; } int hexvalue(unsigned char c) { if (c>='0'&&c<='9') return c-'0'; if (c>='A'&&c<='F') return c-'A'+10; if (c>='a'&&c<='f') return c-'a'+10; return WHY("Invalid hex digit in SID"); } int packetGetID(unsigned char *packet,int len,char *did,char *sid) { int ofs=HEADERFIELDS_LEN; switch(packet[ofs]) { case 0: /* DID */ ofs++; if (extractDid(packet,&ofs,did)) return WHY("Could not decode DID"); if (debug&DEBUG_PACKETFORMATS) fprintf(stderr,"Decoded DID as %s\n",did); return 0; break; case 1: /* SID */ ofs++; if (len<(OFS_SIDDIDFIELD+SID_SIZE)) return WHY("Packet too short"); if (extractSid(packet,&ofs,sid)) return WHY("Could not decode SID"); return 0; break; default: /* no idea */ return WHY("Unknown ID key"); break; } return WHY("Impossible event #1 just occurred"); } /* One of the goals of our packet format is to make it very difficult to mount a known plain-text attack against the ciphered part of the packet. One defence is to make sure that no fixed fields are actually left zero. We accomplish this by filling "zero" fields with randomised data that meets a simple test condition. We have chosen to use the condition that if the modulo 256 sum of the bytes equals zero, then the packet is assumed to be zero/empty. The following two functions allow us to test this, and also to fill a field with safe "zero" data. */ int isFieldZeroP(unsigned char *packet,int start,int count) { int mod=0; int i; for(i=start;i