/* Serval DNA configuration Copyright (C) 2012 Serval Project Inc. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include #include #include #include "log.h" #include "str.h" #include "strbuf.h" #include "strbuf_helpers.h" #include "conf.h" int cf_opt_char_boolean(char *booleanp, const char *text) { if (!strcasecmp(text, "true") || !strcasecmp(text, "yes") || !strcasecmp(text, "on") || !strcasecmp(text, "1")) { *booleanp = 1; return CFOK; } else if (!strcasecmp(text, "false") || !strcasecmp(text, "no") || !strcasecmp(text, "off") || !strcasecmp(text, "0")) { *booleanp = 0; return CFOK; } return CFINVALID; } int cf_fmt_char_boolean(const char **textp, const char *booleanp) { if (*booleanp == 1) { *textp = str_edup("true"); return CFOK; } else if (*booleanp == 0) { *textp = str_edup("false"); return CFOK; } return CFINVALID; } int cf_opt_int_boolean(int *booleanp, const char *text) { char b; int ret = cf_opt_char_boolean(&b, text); if (ret == CFOK) *booleanp = b; return ret; } int cf_fmt_int_boolean(const char **textp, const int *booleanp) { if (*booleanp == 1) { *textp = str_edup("true"); return CFOK; } else if (*booleanp == 0) { *textp = str_edup("false"); return CFOK; } return CFINVALID; } int cf_opt_absolute_path(char *str, size_t len, const char *text) { if (text[0] != '/') return CFINVALID; if (strlen(text) >= len) return CFSTRINGOVERFLOW; strncpy(str, text, len); assert(str[len - 1] == '\0'); return CFOK; } int cf_fmt_absolute_path(const char **textp, const char *str) { if (str[0] != '/') return CFINVALID; *textp = str_edup(str); return CFOK; } int cf_opt_protocol(char *str, size_t len, const char *text) { if (!str_is_uri_scheme(text)) return CFINVALID; if (strlen(text) >= len) return CFSTRINGOVERFLOW; strncpy(str, text, len); assert(str[len - 1] == '\0'); return CFOK; } int cf_fmt_protocol(const char **textp, const char *str) { if (!str_is_uri_scheme(str)) return CFINVALID; *textp = str_edup(str); return CFOK; } int cf_opt_rhizome_peer(struct config_rhizome_peer *rpeer, const struct cf_om_node *node) { if (!node->text) return cf_opt_config_rhizome_peer(rpeer, node); if (node->nodc) { cf_warn_incompatible_children(node); return CFINCOMPATIBLE; } return cf_opt_rhizome_peer_from_uri(rpeer, node->text); } int cf_fmt_rhizome_peer(struct cf_om_node **parentp, const struct config_rhizome_peer *rpeer) { return cf_fmt_config_rhizome_peer(parentp, rpeer); } int cf_opt_rhizome_peer_from_uri(struct config_rhizome_peer *rpeer, const char *text) { const char *protocol; size_t protolen; const char *auth; if (str_is_uri(text)) { const char *hier; if (!( str_uri_scheme(text, &protocol, &protolen) && str_uri_hierarchical(text, &hier, NULL) && str_uri_hierarchical_authority(hier, &auth, NULL)) ) return CFINVALID; } else { auth = text; protocol = "http"; protolen = strlen(protocol); } const char *host; size_t hostlen; unsigned short port = RHIZOME_HTTP_PORT; if (!str_uri_authority_hostname(auth, &host, &hostlen)) return CFINVALID; str_uri_authority_port(auth, &port); if (protolen >= sizeof rpeer->protocol) return CFSTRINGOVERFLOW; if (hostlen >= sizeof rpeer->host) return CFSTRINGOVERFLOW; strncpy(rpeer->protocol, protocol, protolen)[protolen] = '\0'; strncpy(rpeer->host, host, hostlen)[hostlen] = '\0'; rpeer->port = port; return CFOK; } int cf_opt_str(char *str, size_t len, const char *text) { if (strlen(text) >= len) return CFSTRINGOVERFLOW; strncpy(str, text, len); assert(str[len - 1] == '\0'); return CFOK; } int cf_fmt_str(const char **textp, const char *str) { *textp = str_edup(str); return CFOK; } int cf_opt_str_nonempty(char *str, size_t len, const char *text) { if (!text[0]) return CFINVALID; return cf_opt_str(str, len, text); } int cf_fmt_str_nonempty(const char **textp, const char *str) { if (!str[0]) return CFINVALID; *textp = str_edup(str); return CFOK; } int cf_opt_int(int *intp, const char *text) { const char *end = text; long value = strtol(text, (char**)&end, 10); if (end == text || *end) return CFINVALID; *intp = value; return CFOK; } int cf_fmt_int(const char **textp, const int *intp) { char buf[22]; sprintf(buf, "%d", *intp); *textp = str_edup(buf); return CFOK; } int cf_opt_uint(unsigned int *uintp, const char *text) { const char *end = text; unsigned long value = strtoul(text, (char**)&end, 10); if (end == text || *end) return CFINVALID; *uintp = value; return CFOK; } int cf_fmt_uint(const char **textp, const unsigned int *uintp) { char buf[22]; sprintf(buf, "%u", *uintp); *textp = str_edup(buf); return CFOK; } int cf_opt_int32_nonneg(int32_t *intp, const char *text) { const char *end = text; long value = strtol(text, (char**)&end, 10); if (end == text || *end || value < 0 || value > 0x7fffffffL) return CFINVALID; *intp = value; return CFOK; } static int cf_fmt_int32(const char **textp, const int32_t *intp) { char buf[12]; sprintf(buf, "%d", *intp); *textp = str_edup(buf); return CFOK; } static int cf_fmt_uint32(const char **textp, const uint32_t *uintp) { char buf[12]; sprintf(buf, "%u", *uintp); *textp = str_edup(buf); return CFOK; } int cf_fmt_int32_nonneg(const char **textp, const int32_t *intp) { if (*intp < 0) return CFINVALID; return cf_fmt_int32(textp, intp); } int cf_opt_uint32_nonzero(uint32_t *intp, const char *text) { const char *end = text; unsigned long value = strtoul(text, (char**)&end, 10); if (end == text || *end || value < 1 || value > 0xffffffffL) return CFINVALID; *intp = value; return CFOK; } int cf_fmt_uint32_nonzero(const char **textp, const uint32_t *uintp) { if (*uintp == 0) return CFINVALID; return cf_fmt_uint32(textp, uintp); } int cf_opt_uint64_scaled(uint64_t *intp, const char *text) { uint64_t result; const char *end; if (!str_to_uint64_scaled(text, 10, &result, &end) || *end) return CFINVALID; *intp = result; return CFOK; } int cf_fmt_uint64_scaled(const char **textp, const uint64_t *uintp) { char buf[25]; int n = uint64_scaled_to_str(buf, sizeof buf, *uintp); assert(n != 0); *textp = str_edup(buf); return CFOK; } int cf_opt_ushort_nonzero(unsigned short *ushortp, const char *text) { uint32_t ui; if (cf_opt_uint32_nonzero(&ui, text) != CFOK || ui > 0xffff) return CFINVALID; *ushortp = ui; return CFOK; } int cf_fmt_ushort(const char **textp, const unsigned short *ushortp) { char buf[12]; sprintf(buf, "%u", (unsigned int) *ushortp); *textp = str_edup(buf); return CFOK; } int cf_fmt_ushort_nonzero(const char **textp, const unsigned short *ushortp) { if (*ushortp == 0) return CFINVALID; return cf_fmt_ushort(textp, ushortp); } int cmp_short(const short *a, const short *b) { return *a < *b ? -1 : *a > *b ? 1 : 0; } int cmp_ushort(const unsigned short *a, const unsigned short *b) { return *a < *b ? -1 : *a > *b ? 1 : 0; } int cmp_sid(const sid_t *a, const sid_t *b) { return memcmp(a->binary, b->binary, sizeof a->binary); } int vld_argv(const struct cf_om_node *parent, struct config_argv *array, int result) { unsigned short last_key = 0; int i; if (array->ac) { unsigned short last_key = array->av[0].key; for (i = 1; i < array->ac; ++i) { unsigned short key = array->av[i].key; if (last_key > key) { cf_warn_node(parent, NULL, "array is not sorted"); return CFERROR; } last_key = key; } } for (i = 0; i < array->ac; ++i) { unsigned short key = array->av[i].key; assert(key >= 1); assert(key >= last_key); if (last_key == key) { char labelkey[12]; sprintf(labelkey, "%u", last_key); cf_warn_duplicate_node(parent, labelkey); result |= CFDUPLICATE; } while (++last_key < key && last_key <= sizeof(array->av)) { char labelkey[12]; sprintf(labelkey, "%u", last_key); cf_warn_missing_node(parent, labelkey); result |= CFINCOMPLETE; } last_key = key; } return result; } int cf_opt_in_addr(struct in_addr *addrp, const char *text) { struct in_addr addr; if (!inet_aton(text, &addr)) return CFINVALID; *addrp = addr; return CFOK; } int cf_fmt_in_addr(const char **textp, const struct in_addr *addrp) { *textp = str_edup(inet_ntoa(*addrp)); return CFOK; } int cf_opt_uint16(uint16_t *uintp, const char *text) { uint16_t ui = 0; const char *p; for (p = text; isdigit(*p); ++p) { uint16_t oui = ui; ui = ui * 10 + *p - '0'; if (ui / 10 != oui) break; } if (*p) return CFINVALID; *uintp = ui; return CFOK; } int cf_fmt_uint16(const char **textp, const uint16_t *uintp) { char buf[12]; sprintf(buf, "%u", (unsigned int) *uintp); *textp = str_edup(buf); return CFOK; } int cf_opt_uint16_nonzero(uint16_t *uintp, const char *text) { uint16_t ui; if (cf_opt_uint16(&ui, text) != CFOK || ui == 0) return CFINVALID; *uintp = ui; return CFOK; } int cf_fmt_uint16_nonzero(const char **textp, const uint16_t *uintp) { if (*uintp == 0) return CFINVALID; return cf_fmt_uint16(textp, uintp); } int cf_opt_sid(sid_t *sidp, const char *text) { if (!str_is_subscriber_id(text)) return CFINVALID; size_t n = fromhex(sidp->binary, text, SID_SIZE); assert(n == SID_SIZE); return CFOK; } int cf_fmt_sid(const char **textp, const sid_t *sidp) { *textp = str_edup(alloca_tohex_sid_t(*sidp)); return CFOK; } int cf_opt_rhizome_bk(rhizome_bk_t *bkp, const char *text) { if (!rhizome_str_is_bundle_key(text)) return CFINVALID; size_t n = fromhex(bkp->binary, text, RHIZOME_BUNDLE_KEY_BYTES); assert(n == RHIZOME_BUNDLE_KEY_BYTES); return CFOK; } int cf_fmt_rhizome_bk(const char **textp, const rhizome_bk_t *bkp) { *textp = str_edup(alloca_tohex_rhizome_bk_t(*bkp)); return CFOK; } int cf_opt_interface_type(short *typep, const char *text) { if (strcasecmp(text, "ethernet") == 0) { *typep = OVERLAY_INTERFACE_ETHERNET; return CFOK; } if (strcasecmp(text, "wifi") == 0) { *typep = OVERLAY_INTERFACE_WIFI; return CFOK; } if (strcasecmp(text, "catear") == 0) { *typep = OVERLAY_INTERFACE_PACKETRADIO; return CFOK; } if (strcasecmp(text, "other") == 0) { *typep = OVERLAY_INTERFACE_UNKNOWN; return CFOK; } return CFINVALID; } int cf_fmt_interface_type(const char **textp, const short *typep) { const char *t = NULL; switch (*typep) { case OVERLAY_INTERFACE_ETHERNET: t = "ethernet"; break; case OVERLAY_INTERFACE_WIFI: t = "wifi"; break; case OVERLAY_INTERFACE_PACKETRADIO: t = "catear"; break; case OVERLAY_INTERFACE_UNKNOWN: t = "other"; break; } if (!t) return CFINVALID; *textp = str_edup(t); return CFOK; } int cf_opt_socket_type(short *typep, const char *text) { if (strcasecmp(text, "dgram") == 0) { *typep = SOCK_DGRAM; return CFOK; } if (strcasecmp(text, "stream") == 0) { *typep = SOCK_STREAM; return CFOK; } if (strcasecmp(text, "file") == 0) { *typep = SOCK_FILE; return CFOK; } return CFINVALID; } int cf_fmt_socket_type(const char **textp, const short *typep) { const char *t = NULL; switch (*typep) { case SOCK_DGRAM: t = "dgram"; break; case SOCK_STREAM: t = "stream"; break; case SOCK_FILE: t = "file"; break; } if (!t) return CFINVALID; *textp = str_edup(t); return CFOK; } int cf_opt_encapsulation(short *encapp, const char *text) { if (strcasecmp(text, "overlay") == 0) { *encapp = ENCAP_OVERLAY; return CFOK; } if (strcasecmp(text, "single") == 0) { *encapp = ENCAP_SINGLE; return CFOK; } return CFINVALID; } int cf_fmt_encapsulation(const char **textp, const short *encapp) { const char *t = NULL; switch (*encapp) { case ENCAP_OVERLAY: t = "overlay"; break; case ENCAP_SINGLE: t = "single"; break; } if (!t) return CFINVALID; *textp = str_edup(t); return CFOK; } int cf_opt_pattern_list(struct pattern_list *listp, const char *text) { struct pattern_list list; memset(&list, 0, sizeof list); const char *word = NULL; const char *p; for (p = text; ; ++p) { if (!*p || isspace(*p) || *p == ',') { if (word) { size_t len = p - word; if (list.patc >= NELS(list.patv) || len >= sizeof(list.patv[list.patc])) return CFARRAYOVERFLOW; strncpy(list.patv[list.patc++], word, len)[len] = '\0'; word = NULL; } if (!*p) break; } else if (!word) word = p; } assert(word == NULL); *listp = list; return CFOK; } int cf_fmt_pattern_list(const char **textp, const struct pattern_list *listp) { char buf[sizeof listp->patv]; char *bufp = buf; unsigned i; for (i = 0; i < listp->patc; ++i) { if (bufp != buf) *bufp++ = ','; const char *patvp = listp->patv[i]; const char *npatvp = listp->patv[i + 1]; while (bufp < &buf[sizeof buf - 1] && patvp < npatvp && (*bufp = *patvp)) ++bufp, ++patvp; if (bufp >= &buf[sizeof buf - 1] || patvp >= npatvp) return CFINVALID; } *textp = str_edup(buf); return CFOK; } /* Config parse function. Implements the original form of the 'interfaces' config option. Parses a * single text string of the form: * * ( "+" | "-" ) [ interfacename ] [ "=" type ] [ ":" port [ ":" speed ] ] * * where: * * "+" means include the interface * "-" means exclude the interface * * The original implementation applied include/exclude matching in the order that the list was * given, but the new implementation applies all exclusions before apply inclusions. This should * not be a problem, as there were no known uses that depended on testing an inclusion before an * exclusion. * * An empty 'interfacename' matches all interfaces. So a "+" by itself includes all interfaces, * and a '-' by itself excludes all interfaces. These two rules are applied after all other * interface inclusions/exclusions are tested, otherwise "-" would overrule all other interfaces. * * The optional 'type' tells DNA how to handle the interface in terms of bandwidth:distance * relationship for calculating tick times etc. * * The optional 'port' is the port number to bind all interfaces, instead of the default. * * The optional 'speed' is the nominal bits/second bandwidth of the interface, instead of the * default. It is expressed as a positive integer with an optional scaling suffix, eg, "150k", * "1K", "900M". * * @author Andrew Bettison */ static int cf_opt_network_interface_legacy(struct config_network_interface *nifp, const char *text) { //DEBUGF("%s text=%s", __FUNCTION__, alloca_str_toprint(text)); struct config_network_interface nif; (&nif); cf_dfl_config_network_interface(&nif); if (text[0] != '+' && text[0] != '-') return CFINVALID; // "Sign must be + or -" nif.exclude = (text[0] == '-'); const char *const endtext = text + strlen(text); const char *name = text + 1; const char *p = strpbrk(name, "=:"); if (!p) p = endtext; size_t len = p - name; if (name[0] == '>') { if (len - 1 >= sizeof(nif.file)) return CFSTRINGOVERFLOW; strncpy(nif.file, &name[1], len - 1)[len - 1] = '\0'; nif.match.patc = 0; nif.socket_type = SOCK_FILE; } else { int star = (strchr(name, '*') != NULL) ? 1 : 0; if (len + star >= sizeof(nif.match.patv[0])) return CFSTRINGOVERFLOW; strncpy(nif.match.patv[0], name, len)[len + star] = '\0'; if (star) nif.match.patv[0][len] = '*'; nif.match.patc = 1; nif.socket_type = SOCK_DGRAM; } if (*p == '=') { const char *const type = p + 1; p = strchr(type, ':'); if (!p) p = endtext; len = p - type; if (len) { char buf[len + 1]; strncpy(buf, type, len)[len] = '\0'; int result = cf_opt_interface_type(&nif.type, buf); switch (result) { case CFERROR: return CFERROR; case CFOK: break; default: return result; // "Invalid interface type" } } } if (*p == ':') { const char *const port = p + 1; p = strchr(port, ':'); if (!p) p = endtext; len = p - port; if (len) { char buf[len + 1]; strncpy(buf, port, len)[len] = '\0'; int result = cf_opt_uint16_nonzero(&nif.port, buf); switch (result) { case CFERROR: return CFERROR; case CFOK: break; default: return result; // "Invalid interface port number" } } } if (*p == ':') { p = endtext; } if (*p) return CFINVALID; // "Extra junk at end of interface specification" *nifp = nif; return CFOK; } int cf_opt_network_interface(struct config_network_interface *nifp, const struct cf_om_node *node) { if (!node->text) return cf_opt_config_network_interface(nifp, node); if (node->nodc) { cf_warn_incompatible_children(node); return CFINCOMPATIBLE; } return cf_opt_network_interface_legacy(nifp, node->text); } int cf_fmt_network_interface(struct cf_om_node **parentp, const struct config_network_interface *nifp) { return cf_fmt_config_network_interface(parentp, nifp); } int vld_network_interface(const struct cf_om_node *parent, struct config_network_interface *nifp, int result) { if (nifp->match.patc != 0 && nifp->file[0]) { int nodei_match = cf_om_get_child(parent, "match", NULL); int nodei_file = cf_om_get_child(parent, "file", NULL); assert(nodei_match != -1); assert(nodei_file != -1); cf_warn_incompatible(parent->nodv[nodei_match], parent->nodv[nodei_file]); return result | CFSUB(CFINCOMPATIBLE); } if (nifp->socket_type == SOCK_UNSPECIFIED) { if (nifp->match.patc != 0) nifp->socket_type = SOCK_DGRAM; else if (nifp->file[0]) nifp->socket_type = SOCK_FILE; else { cf_warn_missing_node(parent, "match"); return result | CFINCOMPLETE; } } else { if (nifp->socket_type == SOCK_DGRAM && nifp->file[0]){ int nodei_socket_type = cf_om_get_child(parent, "socket_type", NULL); int nodei_file = cf_om_get_child(parent, "file", NULL); assert(nodei_socket_type != -1); assert(nodei_file != -1); cf_warn_incompatible(parent->nodv[nodei_socket_type], parent->nodv[nodei_file]); return result | CFSUB(CFINCOMPATIBLE); } if (nifp->socket_type != SOCK_DGRAM && !nifp->file[0]){ cf_warn_missing_node(parent, "file"); return result | CFSUB(CFINCOMPATIBLE); } } return result; } /* Config parse function. Implements the original form of the 'interfaces' config option. Parses a * comma-separated list of interface rules (see cf_opt_network_interface_legacy() for the format of * each rule), then parses the regular config array-of-struct style interface option settings so * that both forms are supported. * * @author Andrew Bettison */ int cf_opt_interface_list(struct config_interface_list *listp, const struct cf_om_node *node) { if (!node->text) return cf_opt_config_interface_list(listp, node); if (node->nodc) { cf_warn_incompatible_children(node); return CFINCOMPATIBLE; } const char *p; const char *arg = NULL; unsigned n = listp->ac; int result = CFOK; for (p = node->text; n < NELS(listp->av); ++p) { if (*p == '\0' || *p == ',' || isspace(*p)) { if (arg) { int len = p - arg; if (len > 80) { result |= CFSTRINGOVERFLOW; goto bye; } char buf[len + 1]; strncpy(buf, arg, len)[len] = '\0'; int ret = cf_opt_network_interface_legacy(&listp->av[n].value, buf); switch (ret) { case CFERROR: return CFERROR; case CFOK: listp->av[n].key = n; ++n; break; default: { strbuf b = strbuf_alloca(180); strbuf_cf_flag_reason(b, ret); cf_warn_node(node, NULL, "invalid interface rule %s -- %s", alloca_str_toprint(buf), strbuf_str(b)); \ result |= CFSUB(ret); break; } } arg = NULL; } if (!*p) break; } else if (!arg) arg = p; } if (*p) { result |= CFARRAYOVERFLOW; goto bye; } assert(n <= NELS(listp->av)); listp->ac = n; bye: if (listp->ac == 0) result |= CFEMPTY; return result; } int cf_fmt_interface_list(struct cf_om_node **parentp, const struct config_interface_list *listp) { return cf_fmt_config_interface_list(parentp, listp); }