/* Serval DNA configuration Copyright (C) 2012 Serval Project Inc. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include #include #include #include #include "log.h" #include "str.h" #include "strbuf.h" #include "strbuf_helpers.h" #include "conf.h" #include "dataformats.h" int cf_opt_boolean(bool_t *booleanp, const char *text) { if (!strcasecmp(text, "true") || !strcasecmp(text, "yes") || !strcasecmp(text, "on") || !strcasecmp(text, "1")) { *booleanp = 1; return CFOK; } else if (!strcasecmp(text, "false") || !strcasecmp(text, "no") || !strcasecmp(text, "off") || !strcasecmp(text, "0")) { *booleanp = 0; return CFOK; } return CFINVALID; } int cf_fmt_boolean(const char **textp, const bool_t *booleanp) { if (*booleanp == 1) { *textp = str_edup("true"); return CFOK; } else if (*booleanp == 0) { *textp = str_edup("false"); return CFOK; } return CFINVALID; } int cf_cmp_boolean(const bool_t *a, const bool_t *b) { return !*a && *b ? -1 : *a && !*b ? 1 : 0; } int cf_opt_absolute_path(char *str, size_t len, const char *text) { if (text[0] != '/') return CFINVALID; if (strlen(text) >= len) return CFSTRINGOVERFLOW; strncpy(str, text, len); assert(str[len - 1] == '\0'); return CFOK; } int cf_fmt_absolute_path(const char **textp, const char *str) { if (str[0] != '/') return CFINVALID; *textp = str_edup(str); return CFOK; } int cf_cmp_absolute_path(const char *a, const char *b) { return strcmp(a, b); } int cf_opt_protocol(char *str, size_t len, const char *text) { if (!str_is_uri_scheme(text)) return CFINVALID; if (strlen(text) >= len) return CFSTRINGOVERFLOW; strncpy(str, text, len); assert(str[len - 1] == '\0'); return CFOK; } int cf_fmt_protocol(const char **textp, const char *str) { if (!str_is_uri_scheme(str)) return CFINVALID; *textp = str_edup(str); return CFOK; } int cf_cmp_protocol(const char *a, const char *b) { return strcmp(a, b); } int cf_opt_rhizome_peer(struct config_rhizome_peer *rpeer, const struct cf_om_node *node) { if (!node->text) return cf_opt_config_rhizome_peer(rpeer, node); if (node->nodc) { cf_warn_incompatible_children(node); return CFINCOMPATIBLE; } return cf_opt_rhizome_peer_from_uri(rpeer, node->text); } int cf_fmt_rhizome_peer(struct cf_om_node **parentp, const struct config_rhizome_peer *rpeer) { return cf_fmt_config_rhizome_peer(parentp, rpeer); } int cf_cmp_rhizome_peer(const struct config_rhizome_peer *a, const struct config_rhizome_peer *b) { return cf_cmp_config_rhizome_peer(a, b); } int cf_opt_rhizome_peer_from_uri(struct config_rhizome_peer *rpeer, const char *text) { const char *protocol; size_t protolen; const char *auth; if (str_is_uri(text)) { const char *hier; if (!( str_uri_scheme(text, &protocol, &protolen) && str_uri_hierarchical(text, &hier, NULL) && str_uri_hierarchical_authority(hier, &auth, NULL)) ) return CFINVALID; } else { auth = text; protocol = "http"; protolen = strlen(protocol); } const char *host; size_t hostlen; uint16_t port = RHIZOME_HTTP_PORT; if (!str_uri_authority_hostname(auth, &host, &hostlen)) return CFINVALID; str_uri_authority_port(auth, &port); if (protolen >= sizeof rpeer->protocol) return CFSTRINGOVERFLOW; if (hostlen >= sizeof rpeer->host) return CFSTRINGOVERFLOW; strncpy(rpeer->protocol, protocol, protolen)[protolen] = '\0'; strncpy(rpeer->host, host, hostlen)[hostlen] = '\0'; rpeer->port = port; return CFOK; } int cf_opt_str(char *str, size_t len, const char *text) { if (strlen(text) >= len) return CFSTRINGOVERFLOW; strncpy(str, text, len); assert(str[len - 1] == '\0'); return CFOK; } int cf_fmt_str(const char **textp, const char *str) { *textp = str_edup(str); return CFOK; } int cf_cmp_str(const char *a, const char *b) { return strcmp(a, b); } int cf_opt_str_nonempty(char *str, size_t len, const char *text) { if (!text[0]) return CFINVALID; return cf_opt_str(str, len, text); } int cf_fmt_str_nonempty(const char **textp, const char *str) { if (!str[0]) return CFINVALID; *textp = str_edup(str); return CFOK; } int cf_cmp_str_nonempty(const char *a, const char *b) { return strcmp(a, b); } int cf_opt_int(int *intp, const char *text) { const char *end = text; long value = strtol(text, (char**)&end, 10); if (end == text || *end) return CFINVALID; *intp = value; return CFOK; } int cf_fmt_int(const char **textp, const int *intp) { char buf[22]; sprintf(buf, "%d", *intp); *textp = str_edup(buf); return CFOK; } int cf_cmp_int(const int *a, const int *b) { return *a < *b ? -1 : *a > *b ? 1 : 0; } int cf_opt_uint(unsigned int *uintp, const char *text) { const char *end = text; unsigned long value = strtoul(text, (char**)&end, 10); if (end == text || *end) return CFINVALID; *uintp = value; return CFOK; } int cf_fmt_uint(const char **textp, const unsigned int *uintp) { char buf[22]; sprintf(buf, "%u", *uintp); *textp = str_edup(buf); return CFOK; } int cf_cmp_uint(const unsigned int *a, const unsigned int *b) { return *a < *b ? -1 : *a > *b ? 1 : 0; } int cf_opt_int32_nonneg(int32_t *intp, const char *text) { const char *end = text; long value = strtol(text, (char**)&end, 10); if (end == text || *end || value < 0 || value > 0x7fffffffL) return CFINVALID; *intp = value; return CFOK; } int cf_opt_int32_rs232baudrate(int32_t *intp, const char *text) { const char *end = text; long value = strtol(text, (char**)&end, 10); if (end == text || *end || value < 0 || value > 0x7fffffffL) return CFINVALID; switch(value) { case 50: case 75: case 110: case 134: case 150: case 200: case 300: case 600: case 1200: case 1800: case 2400: case 4800: case 7200: case 9600: case 14400: case 28800: case 38400: case 57600: case 115200: case 230400: *intp = value; return CFOK; break; default: return CFINVALID; } } int cf_fmt_int32_rs232baudrate(const char **textp, const int32_t *intp) { char buf[12]; sprintf(buf, "%d", *intp); *textp = str_edup(buf); return CFOK; } int cf_cmp_int32_rs232baudrate(const int32_t *a, const int32_t *b) { return *a < *b ? -1 : *a > *b ? 1 : 0; } static int cf_fmt_int32(const char **textp, const int32_t *intp) { char buf[12]; sprintf(buf, "%d", *intp); *textp = str_edup(buf); return CFOK; } int cf_cmp_int32(const int32_t *a, const int32_t *b) { return *a < *b ? -1 : *a > *b ? 1 : 0; } static int cf_fmt_uint32(const char **textp, const uint32_t *uintp) { char buf[12]; sprintf(buf, "%u", *uintp); *textp = str_edup(buf); return CFOK; } int cf_cmp_uint32(const uint32_t *a, const uint32_t *b) { return *a < *b ? -1 : *a > *b ? 1 : 0; } int cf_fmt_int32_nonneg(const char **textp, const int32_t *intp) { if (*intp < 0) return CFINVALID; return cf_fmt_int32(textp, intp); } int cf_cmp_int32_nonneg(const int32_t *a, const int32_t *b) { return cf_cmp_int32(a, b); } int cf_opt_uint32_nonzero(uint32_t *intp, const char *text) { const char *end = text; unsigned long value = strtoul(text, (char**)&end, 10); if (end == text || *end || value < 1 || value > 0xffffffffL) return CFINVALID; *intp = value; return CFOK; } int cf_fmt_uint32_nonzero(const char **textp, const uint32_t *uintp) { if (*uintp == 0) return CFINVALID; return cf_fmt_uint32(textp, uintp); } int cf_cmp_uint32_nonzero(const uint32_t *a, const uint32_t *b) { return cf_cmp_uint32(a, b); } int cf_opt_uint32_time_interval(uint32_t *intp, const char *text) { const char *t = text; uint32_t seconds = 0; while (*t) { const char *p = t; while (isdigit(*p)) ++p; if (*p == '.' && (p != t || isdigit(p[1]))) for (++p; isdigit(*p); ++p) ; if (p == t) return CFINVALID; const char *end = t; double d = strtod(t, (char**)&end); if (end != p) return CFINVALID; switch (*p) { case 's': case 'S': ++p; break; case 'm': case 'M': d *= 60; ++p; break; case 'h': case 'H': d *= 60 * 60; ++p; break; case 'd': case 'D': d *= 60 * 60 * 24; ++p; break; case 'w': case 'W': d *= 60 * 60 * 24 * 7; ++p; break; case '\0': break; default: return CFINVALID; } if (d != floor(d)) return CFINVALID; seconds += d; t = p; } *intp = seconds; return CFOK; } int cf_fmt_uint32_time_interval(const char **textp, const uint32_t *uintp) { strbuf b = strbuf_alloca(60); uint32_t seconds = *uintp; if (seconds >= 7 * 24 * 60 * 60) { unsigned weeks = seconds / (7 * 24 * 60 * 60); seconds = seconds - weeks * (7 * 24 * 60 * 60); strbuf_sprintf(b, "%uw", weeks); } if (seconds >= 24 * 60 * 60) { unsigned days = seconds / (24 * 60 * 60); seconds = seconds - days * (24 * 60 * 60); strbuf_sprintf(b, "%ud", days); } if (seconds >= 60 * 60) { unsigned hours = seconds / (60 * 60); seconds = seconds - hours * (60 * 60); strbuf_sprintf(b, "%uh", hours); } if (seconds >= 60) { unsigned minutes = seconds / 60; seconds = seconds - minutes * 60; strbuf_sprintf(b, "%um", minutes); } if (seconds) strbuf_sprintf(b, "%us", seconds); if (strbuf_overrun(b)) return CFINVALID; *textp = str_edup(strbuf_str(b)); return CFOK; } int cf_cmp_uint32_time_interval(const uint32_t *a, const uint32_t *b) { return cf_cmp_uint32(a, b); } int cf_opt_uint64_scaled(uint64_t *intp, const char *text) { uint64_t result; const char *end; if (!str_to_uint64_scaled(text, 10, &result, &end) || *end) return CFINVALID; *intp = result; return CFOK; } int cf_fmt_uint64_scaled(const char **textp, const uint64_t *uintp) { char buf[25]; int n = uint64_scaled_to_str(buf, sizeof buf, *uintp); assert(n != 0); *textp = str_edup(buf); return CFOK; } int cf_cmp_uint64_scaled(const uint64_t *a, const uint64_t *b) { return *a < *b ? -1 : *a > *b ? 1 : 0; } int cf_opt_ushort(unsigned short *ushortp, const char *text) { const char *end = text; unsigned long value = strtoul(text, (char**)&end, 10); if (end == text || *end || value > 0xffffL) return CFINVALID; *ushortp = value; return CFOK; } int cf_fmt_ushort(const char **textp, const unsigned short *ushortp) { char buf[12]; sprintf(buf, "%u", (unsigned int) *ushortp); *textp = str_edup(buf); return CFOK; } int cf_cmp_ushort(const unsigned short *a, const unsigned short *b) { return *a < *b ? -1 : *a > *b ? 1 : 0; } int cf_opt_ushort_nonzero(unsigned short *ushortp, const char *text) { unsigned short value; if (cf_opt_ushort(&value, text) != CFOK || value == 0) return CFINVALID; *ushortp = value; return CFOK; } int cf_fmt_ushort_nonzero(const char **textp, const unsigned short *ushortp) { if (*ushortp == 0) return CFINVALID; return cf_fmt_ushort(textp, ushortp); } int cf_cmp_short(const short *a, const short *b) { return *a < *b ? -1 : *a > *b ? 1 : 0; } int cf_cmp_ushort_nonzero(const unsigned short *a, const unsigned short *b) { return cf_cmp_ushort(a, b); } int vld_argv(const struct cf_om_node *parent, struct config_argv *array, int result) { unsigned short last_key = 0; unsigned i; if (array->ac) { unsigned short last_key = array->av[0].key; for (i = 1; i < array->ac; ++i) { unsigned short key = array->av[i].key; if (last_key > key) { cf_warn_node(parent, NULL, "array is not sorted"); return CFERROR; } last_key = key; } } for (i = 0; i < array->ac; ++i) { unsigned short key = array->av[i].key; assert(key >= 1); assert(key >= last_key); if (last_key == key) { char labelkey[12]; sprintf(labelkey, "%u", last_key); cf_warn_duplicate_node(parent, labelkey); result |= CFDUPLICATE; } while (++last_key < key && last_key <= sizeof(array->av)) { char labelkey[12]; sprintf(labelkey, "%u", last_key); cf_warn_missing_node(parent, labelkey); result |= CFINCOMPLETE; } last_key = key; } return result; } int cf_opt_in_addr(struct in_addr *addrp, const char *text) { struct in_addr addr; if (!inet_aton(text, &addr)) return CFINVALID; *addrp = addr; return CFOK; } int cf_fmt_in_addr(const char **textp, const struct in_addr *addrp) { *textp = str_edup(inet_ntoa(*addrp)); return CFOK; } int cf_cmp_in_addr(const struct in_addr *a, const struct in_addr *b) { return memcmp(a, b, sizeof(struct in_addr)); } int cf_opt_uint16(uint16_t *uintp, const char *text) { uint16_t ui = 0; const char *p; for (p = text; isdigit(*p); ++p) { uint16_t oui = ui; ui = ui * 10 + *p - '0'; if (ui / 10 != oui) break; } if (*p) return CFINVALID; *uintp = ui; return CFOK; } int cf_fmt_uint16(const char **textp, const uint16_t *uintp) { char buf[12]; sprintf(buf, "%u", (unsigned int) *uintp); *textp = str_edup(buf); return CFOK; } int cf_cmp_uint16(const uint16_t *a, const uint16_t *b) { return *a < *b ? -1 : *a > *b ? 1 : 0; } int cf_opt_uint16_nonzero(uint16_t *uintp, const char *text) { uint16_t ui; if (cf_opt_uint16(&ui, text) != CFOK || ui == 0) return CFINVALID; *uintp = ui; return CFOK; } int cf_fmt_uint16_nonzero(const char **textp, const uint16_t *uintp) { if (*uintp == 0) return CFINVALID; return cf_fmt_uint16(textp, uintp); } int cf_cmp_uint16_nonzero(const uint16_t *a, const uint16_t *b) { return cf_cmp_uint16(a, b); } int cf_opt_sid(sid_t *sidp, const char *text) { if (strcasecmp(text, "broadcast")==0){ *sidp = SID_BROADCAST; return CFOK; } if (!str_is_subscriber_id(text)) return CFINVALID; int r = str_to_sid_t(sidp, text); assert(r != -1); return CFOK; } int cf_fmt_sid(const char **textp, const sid_t *sidp) { *textp = str_edup(alloca_tohex_sid_t(*sidp)); return CFOK; } int cf_cmp_sid(const sid_t *a, const sid_t *b) { return memcmp(a->binary, b->binary, sizeof a->binary); } int cf_opt_rhizome_bk(rhizome_bk_t *bkp, const char *text) { return str_to_rhizome_bk_t(bkp, text) ? CFOK : CFINVALID; } int cf_fmt_rhizome_bk(const char **textp, const rhizome_bk_t *bkp) { *textp = str_edup(alloca_tohex_rhizome_bk_t(*bkp)); return CFOK; } int cf_cmp_rhizome_bk(const rhizome_bk_t *a, const rhizome_bk_t *b) { return memcmp(a, b, sizeof a->binary); } int cf_opt_interface_type(short *typep, const char *text) { if (strcasecmp(text, "ethernet") == 0) { *typep = OVERLAY_INTERFACE_ETHERNET; return CFOK; } if (strcasecmp(text, "wifi") == 0) { *typep = OVERLAY_INTERFACE_WIFI; return CFOK; } if (strcasecmp(text, "catear") == 0) { *typep = OVERLAY_INTERFACE_PACKETRADIO; return CFOK; } if (strcasecmp(text, "other") == 0) { *typep = OVERLAY_INTERFACE_UNKNOWN; return CFOK; } return CFINVALID; } int cf_fmt_interface_type(const char **textp, const short *typep) { const char *t = NULL; switch (*typep) { case OVERLAY_INTERFACE_ETHERNET: t = "ethernet"; break; case OVERLAY_INTERFACE_WIFI: t = "wifi"; break; case OVERLAY_INTERFACE_PACKETRADIO: t = "catear"; break; case OVERLAY_INTERFACE_UNKNOWN: t = "other"; break; } if (!t) return CFINVALID; *textp = str_edup(t); return CFOK; } int cf_cmp_interface_type(const short *a, const short *b) { return *a < *b ? -1 : *a > *b ? 1 : 0; } int cf_opt_socket_type(short *typep, const char *text) { if (strcasecmp(text, "dgram") == 0) { *typep = SOCK_DGRAM; return CFOK; } if (strcasecmp(text, "stream") == 0) { *typep = SOCK_STREAM; return CFOK; } if (strcasecmp(text, "file") == 0) { *typep = SOCK_FILE; return CFOK; } return CFINVALID; } int cf_fmt_socket_type(const char **textp, const short *typep) { const char *t = NULL; switch (*typep) { case SOCK_DGRAM: t = "dgram"; break; case SOCK_STREAM: t = "stream"; break; case SOCK_FILE: t = "file"; break; } if (!t) return CFINVALID; *textp = str_edup(t); return CFOK; } int cf_cmp_socket_type(const short *a, const short *b) { return cf_cmp_short(a, b); } int cf_opt_encapsulation(short *encapp, const char *text) { if (strcasecmp(text, "overlay") == 0) { *encapp = ENCAP_OVERLAY; return CFOK; } if (strcasecmp(text, "single") == 0) { *encapp = ENCAP_SINGLE; return CFOK; } return CFINVALID; } int cf_fmt_encapsulation(const char **textp, const short *encapp) { const char *t = NULL; switch (*encapp) { case ENCAP_OVERLAY: t = "overlay"; break; case ENCAP_SINGLE: t = "single"; break; } if (!t) return CFINVALID; *textp = str_edup(t); return CFOK; } int cf_cmp_encapsulation(const short *a, const short *b) { return cf_cmp_short(a, b); } int cf_opt_pattern_list(struct pattern_list *listp, const char *text) { struct pattern_list list; memset(&list, 0, sizeof list); const char *word = NULL; const char *p; for (p = text; ; ++p) { if (!*p || isspace(*p) || *p == ',') { if (word) { size_t len = p - word; if (list.patc >= NELS(list.patv) || len >= sizeof(list.patv[list.patc])) return CFARRAYOVERFLOW; strncpy(list.patv[list.patc++], word, len)[len] = '\0'; word = NULL; } if (!*p) break; } else if (!word) word = p; } assert(word == NULL); if (list.patc == 0) return CFEMPTY; *listp = list; return CFOK; } int cf_fmt_pattern_list(const char **textp, const struct pattern_list *listp) { if (listp->patc == 0) return CFEMPTY; char buf[sizeof listp->patv]; char *bufp = buf; unsigned i; for (i = 0; i < listp->patc; ++i) { if (bufp != buf) *bufp++ = ','; const char *patvp = listp->patv[i]; const char *npatvp = listp->patv[i + 1]; while (bufp < &buf[sizeof buf - 1] && patvp < npatvp && (*bufp = *patvp)) ++bufp, ++patvp; if (patvp >= npatvp) return CFINVALID; assert(bufp < &buf[sizeof buf - 1]); } *bufp = '\0'; *textp = str_edup(buf); return CFOK; } int cf_cmp_pattern_list(const struct pattern_list *a, const struct pattern_list *b) { unsigned i; for (i = 0; i < a->patc && i < b->patc; ++i) { int c = strcmp(a->patv[i], b->patv[i]); if (c) return c; } return (a->patc < b->patc) ? -1 : (a->patc > b->patc) ? 1 : 0; } /* Config parse function. Implements the original form of the 'interfaces' config option. Parses a * single text string of the form: * * ( "+" | "-" ) [ interfacename ] [ "=" type ] [ ":" port [ ":" speed ] ] * * where: * * "+" means include the interface * "-" means exclude the interface * * The original implementation applied include/exclude matching in the order that the list was * given, but the new implementation applies all exclusions before apply inclusions. This should * not be a problem, as there were no known uses that depended on testing an inclusion before an * exclusion. * * An empty 'interfacename' matches all interfaces. So a "+" by itself includes all interfaces, * and a '-' by itself excludes all interfaces. These two rules are applied after all other * interface inclusions/exclusions are tested, otherwise "-" would overrule all other interfaces. * * The optional 'type' tells DNA how to handle the interface in terms of bandwidth:distance * relationship for calculating tick times etc. * * The optional 'port' is the port number to bind all interfaces, instead of the default. * * The optional 'speed' is the nominal bits/second bandwidth of the interface, instead of the * default. It is expressed as a positive integer with an optional scaling suffix, eg, "150k", * "1K", "900M". * * @author Andrew Bettison */ static int cf_opt_network_interface_legacy(struct config_network_interface *nifp, const char *text) { //DEBUGF("%s text=%s", __FUNCTION__, alloca_str_toprint(text)); struct config_network_interface nif; (&nif); cf_dfl_config_network_interface(&nif); if (text[0] != '+' && text[0] != '-') return CFINVALID; // "Sign must be + or -" nif.exclude = (text[0] == '-'); const char *const endtext = text + strlen(text); const char *name = text + 1; const char *p = strpbrk(name, "=:"); if (!p) p = endtext; size_t len = p - name; if (name[0] == '>') { if (len - 1 >= sizeof(nif.file)) return CFSTRINGOVERFLOW; strncpy(nif.file, &name[1], len - 1)[len - 1] = '\0'; nif.match.patc = 0; nif.socket_type = SOCK_FILE; } else { int addstar = strnchr(name, len, '*') == NULL ? 1 : 0; if (len + addstar >= sizeof(nif.match.patv[0])) return CFSTRINGOVERFLOW; strncpy(nif.match.patv[0], name, len)[len + addstar] = '\0'; if (addstar) nif.match.patv[0][len] = '*'; nif.match.patc = 1; nif.socket_type = SOCK_DGRAM; } if (*p == '=') { const char *const type = p + 1; p = strchr(type, ':'); if (!p) p = endtext; len = p - type; if (len) { char buf[len + 1]; strncpy(buf, type, len)[len] = '\0'; int result = cf_opt_interface_type(&nif.type, buf); switch (result) { case CFERROR: return CFERROR; case CFOK: break; default: return result; // "Invalid interface type" } } } if (*p == ':') { const char *const port = p + 1; p = strchr(port, ':'); if (!p) p = endtext; len = p - port; if (len) { char buf[len + 1]; strncpy(buf, port, len)[len] = '\0'; int result = cf_opt_uint16_nonzero(&nif.port, buf); switch (result) { case CFERROR: return CFERROR; case CFOK: break; default: return result; // "Invalid interface port number" } } } if (*p == ':') { p = endtext; } if (*p) return CFINVALID; // "Extra junk at end of interface specification" *nifp = nif; return CFOK; } int cf_opt_network_interface(struct config_network_interface *nifp, const struct cf_om_node *node) { if (!node->text) return cf_opt_config_network_interface(nifp, node); if (node->nodc) { cf_warn_incompatible_children(node); return CFINCOMPATIBLE; } return cf_opt_network_interface_legacy(nifp, node->text); } int cf_fmt_network_interface(struct cf_om_node **parentp, const struct config_network_interface *nifp) { return cf_fmt_config_network_interface(parentp, nifp); } int cf_cmp_network_interface(const struct config_network_interface *a, const struct config_network_interface *b) { return cf_cmp_config_network_interface(a, b); } int vld_network_interface(const struct cf_om_node *parent, struct config_network_interface *nifp, int result) { if (nifp->match.patc != 0 && nifp->file[0]) { int nodei_match = cf_om_get_child(parent, "match", NULL); int nodei_file = cf_om_get_child(parent, "file", NULL); assert(nodei_match != -1); assert(nodei_file != -1); cf_warn_incompatible(parent->nodv[nodei_match], parent->nodv[nodei_file]); return result | CFSUB(CFINCOMPATIBLE); } if (nifp->socket_type == SOCK_UNSPECIFIED) { if (nifp->match.patc != 0) nifp->socket_type = SOCK_DGRAM; else if (nifp->file[0]) nifp->socket_type = SOCK_FILE; else { cf_warn_missing_node(parent, "match"); return result | CFINCOMPLETE; } } else { if (nifp->socket_type == SOCK_DGRAM && nifp->file[0]){ int nodei_socket_type = cf_om_get_child(parent, "socket_type", NULL); int nodei_file = cf_om_get_child(parent, "file", NULL); assert(nodei_socket_type != -1); assert(nodei_file != -1); cf_warn_incompatible(parent->nodv[nodei_socket_type], parent->nodv[nodei_file]); return result | CFSUB(CFINCOMPATIBLE); } if (nifp->socket_type != SOCK_DGRAM && !nifp->file[0]){ cf_warn_missing_node(parent, "file"); return result | CFSUB(CFINCOMPATIBLE); } } return result; } /* Config parse function. Implements the original form of the 'interfaces' config option. Parses a * comma-separated list of interface rules (see cf_opt_network_interface_legacy() for the format of * each rule), then parses the regular config array-of-struct style interface option settings so * that both forms are supported. * * @author Andrew Bettison */ int cf_opt_interface_list(struct config_interface_list *listp, const struct cf_om_node *node) { if (!node->text) return cf_opt_config_interface_list(listp, node); if (node->nodc) { cf_warn_incompatible_children(node); return CFINCOMPATIBLE; } const char *p; const char *arg = NULL; unsigned n = listp->ac; int result = CFOK; for (p = node->text; n < NELS(listp->av); ++p) { if (*p == '\0' || *p == ',' || isspace(*p)) { if (arg) { int len = p - arg; if (len > 80) { result |= CFSTRINGOVERFLOW; goto bye; } char buf[len + 1]; strncpy(buf, arg, len)[len] = '\0'; int ret = cf_opt_network_interface_legacy(&listp->av[n].value, buf); switch (ret) { case CFERROR: return CFERROR; case CFOK: listp->av[n].key = n; ++n; break; default: { strbuf b = strbuf_alloca(180); strbuf_cf_flag_reason(b, ret); cf_warn_node(node, NULL, "invalid interface rule %s -- %s", alloca_str_toprint(buf), strbuf_str(b)); \ result |= CFSUB(ret); break; } } arg = NULL; } if (!*p) break; } else if (!arg) arg = p; } if (*p) { result |= CFARRAYOVERFLOW; goto bye; } assert(n <= NELS(listp->av)); listp->ac = n; bye: if (listp->ac == 0) result |= CFEMPTY; return result; } int cf_fmt_interface_list(struct cf_om_node **parentp, const struct config_interface_list *listp) { return cf_fmt_config_interface_list(parentp, listp); } int cf_cmp_interface_list(const struct config_interface_list *a, const struct config_interface_list *b) { return cf_cmp_config_interface_list(a, b); } int cf_opt_log_level(int *levelp, const char *text) { int level = string_to_log_level(text); if (level == LOG_LEVEL_INVALID) return CFINVALID; *levelp = level; return CFOK; } int cf_fmt_log_level(const char **textp, const int *levelp) { const char *t = log_level_as_string(*levelp); if (!t) return CFINVALID; *textp = str_edup(t); return CFOK; } int cf_cmp_log_level(const int *a, const int *b) { return cf_cmp_int(a, b); }