Add window size to ACK, ensure only one new degree of freedom per packet

This commit is contained in:
Jeremy Lakeman 2013-10-28 15:54:00 +10:30
parent 8bc4c27ab2
commit 82d9da2171

View File

@ -25,9 +25,13 @@ Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#include <inttypes.h> #include <inttypes.h>
#include <stdarg.h> #include <stdarg.h>
#define FLAG_NEW 1
#define HEADER_LEN 16
struct nc_packet{ struct nc_packet{
uint32_t sequence; uint32_t sequence;
uint32_t combination; uint32_t combination;
uint8_t flags;
uint8_t *payload; uint8_t *payload;
}; };
@ -96,6 +100,7 @@ struct nc *nc_new(uint32_t max_window_size, uint32_t datagram_size)
return NULL; return NULL;
} }
n->tx.max_queue_size = max_window_size; n->tx.max_queue_size = max_window_size;
n->tx.window_size = 4;
n->rx.packets = calloc(sizeof(struct nc_packet)*max_window_size*2,1); n->rx.packets = calloc(sizeof(struct nc_packet)*max_window_size*2,1);
if (!n->rx.packets){ if (!n->rx.packets){
free(n->tx.packets); free(n->tx.packets);
@ -142,12 +147,13 @@ int nc_tx_enqueue_datagram(struct nc *n, unsigned char *d, int len)
n->tx.packets[index].payload = malloc(len); n->tx.packets[index].payload = malloc(len);
n->tx.packets[index].sequence = seq; n->tx.packets[index].sequence = seq;
n->tx.packets[index].combination = 0x80000000; n->tx.packets[index].combination = 0x80000000;
n->tx.packets[index].flags = FLAG_NEW;
bcopy(d, n->tx.packets[index].payload, len); bcopy(d, n->tx.packets[index].payload, len);
n->tx.queue_size++; n->tx.queue_size++;
return 0; return 0;
} }
static int _nc_get_ack(struct nc_half *n, uint32_t *first_unseen) static int _nc_get_ack(struct nc_half *n, uint32_t *first_unseen, uint32_t *window_size)
{ {
uint32_t seq; uint32_t seq;
@ -156,15 +162,21 @@ static int _nc_get_ack(struct nc_half *n, uint32_t *first_unseen)
if (n->packets[index].sequence != seq || !n->packets[index].payload) if (n->packets[index].sequence != seq || !n->packets[index].payload)
break; break;
} }
if (seq > n->deliver_next+16){ int blocked = seq - (int)n->deliver_next;
seq = n->deliver_next+16; if (blocked>=n->max_queue_size)
} *window_size = 1;
else
*window_size = n->max_queue_size - blocked;
*first_unseen = seq; *first_unseen = seq;
return 0; return 0;
} }
static int _nc_ack(struct nc_half *n, uint32_t first_unseen) static int _nc_ack(struct nc_half *n, uint32_t first_unseen, uint32_t window_size)
{ {
if (window_size>n->max_queue_size)
window_size=n->max_queue_size;
n->window_size = window_size;
// ignore invalid input or no new information // ignore invalid input or no new information
if (first_unseen <= n->window_start || if (first_unseen <= n->window_start ||
first_unseen > n->window_start + n->queue_size) first_unseen > n->window_start + n->queue_size)
@ -208,29 +220,36 @@ static int _nc_tx_combine_random_payloads(struct nc_half *n, struct nc_packet *p
// TODO: Check that combination is linearly independent of recently produced // TODO: Check that combination is linearly independent of recently produced
// combinations, i.e., that it contributes information. // combinations, i.e., that it contributes information.
// get 32 bit random number. random() only returns 31 bits, // (always send the first packet in the window)
// hence the double call and shift uint32_t combination=1;
int i;
uint32_t combination; // give every other packet about 1/4 chance of being included
combination=random()^(random()<<1); for (i=0;i<8;i++)
combination|=(1<<(random()&31));
// restrict set bits to only those in the window
// i.e., zero lower (32-n->window_used) bits
combination=(combination>>(32-n->queue_size))<<(32-n->queue_size);
// Never send all zeros, since that conveys no information.
bzero(packet->payload, n->datagram_size); bzero(packet->payload, n->datagram_size);
int added_new=0;
int i; for(i=0;i<n->window_size;i++) {
for(i=0;i<n->max_queue_size;i++) {
int index = (n->window_start + i) & (n->max_queue_size -1); int index = (n->window_start + i) & (n->max_queue_size -1);
// assume we might have gaps in the payload list if we are a retransmitter in the network path // assume we might have gaps in the payload list if we are a retransmitter in the network path
if (!n->packets[index].payload) if (!n->packets[index].payload)
continue; continue;
// always send the first packet in the window
if ((combination&0x80000000)||n->packets[index].sequence==packet->sequence) // there's no point including more than one new packet
// only if we have some packet loss will we need to send more combinations of packets
if (n->packets[index].flags & FLAG_NEW){
if (added_new)
continue;
_combine_packets(&n->packets[index], packet, n->datagram_size); _combine_packets(&n->packets[index], packet, n->datagram_size);
combination<<=1; added_new = 1;
n->packets[index].flags =0;
continue;
}
if (combination&1)
_combine_packets(&n->packets[index], packet, n->datagram_size);
combination>>=1;
} }
return 0; return 0;
@ -240,26 +259,27 @@ static int _nc_tx_combine_random_payloads(struct nc_half *n, struct nc_packet *p
int nc_tx_produce_packet(struct nc *n, uint8_t *datagram, uint32_t buffer_size) int nc_tx_produce_packet(struct nc *n, uint8_t *datagram, uint32_t buffer_size)
{ {
// TODO: Don't waste more bytes than we need to on the bitmap and sequence number // TODO: Don't waste more bytes than we need to on the bitmap and sequence number
if (buffer_size < n->tx.datagram_size+12) if (buffer_size < n->tx.datagram_size+HEADER_LEN)
return -1; return -1;
uint32_t unseen; uint32_t unseen, window_size;
if (_nc_get_ack(&n->rx, &unseen)) if (_nc_get_ack(&n->rx, &unseen, &window_size))
return -1; return -1;
write_uint32(&datagram[0], unseen); write_uint32(&datagram[0], unseen);
write_uint32(&datagram[4], window_size);
if (!n->tx.queue_size){ if (!n->tx.queue_size){
// No data to send, just send an ack // No data to send, just send an ack
// TODO don't ack too often // TODO don't ack too often
return 4; return 8;
} }
// Produce linear combination // Produce linear combination
struct nc_packet packet={ struct nc_packet packet={
.sequence = n->tx.window_start, .sequence = n->tx.window_start,
.combination = 0, .combination = 0,
.payload = &datagram[12], .payload = &datagram[HEADER_LEN],
}; };
if (_nc_tx_combine_random_payloads(&n->tx, &packet)) if (_nc_tx_combine_random_payloads(&n->tx, &packet))
@ -267,9 +287,9 @@ int nc_tx_produce_packet(struct nc *n, uint8_t *datagram, uint32_t buffer_size)
// TODO assert actual_combination? (should never be zero) // TODO assert actual_combination? (should never be zero)
// Write out bitmap of actual combinations involved // Write out bitmap of actual combinations involved
write_uint32(&datagram[4], packet.sequence); write_uint32(&datagram[8], packet.sequence);
write_uint32(&datagram[8], packet.combination); write_uint32(&datagram[12], packet.combination);
return 12+n->tx.datagram_size; return HEADER_LEN+n->tx.datagram_size;
} }
static int _nc_rx_combine_packet(struct nc_half *n, struct nc_packet *packet) static int _nc_rx_combine_packet(struct nc_half *n, struct nc_packet *packet)
@ -350,22 +370,23 @@ static void _nc_rx_advance_window(struct nc_half *n, uint32_t new_window_start)
int nc_rx_packet(struct nc *n, uint8_t *payload, int len) int nc_rx_packet(struct nc *n, uint8_t *payload, int len)
{ {
if (len!=4 && len != 12+n->rx.datagram_size) if (len!=8 && len != HEADER_LEN+n->rx.datagram_size)
return -1; return -1;
uint32_t unseen = read_uint32(payload); uint32_t unseen = read_uint32(payload);
uint32_t window_size = read_uint32(&payload[4]);
_nc_ack(&n->tx, unseen); _nc_ack(&n->tx, unseen, window_size);
if (len < 12+n->rx.datagram_size){ if (len < HEADER_LEN+n->rx.datagram_size){
return 0; return 0;
} }
uint32_t new_window_start = read_uint32(&payload[4]); uint32_t new_window_start = read_uint32(&payload[8]);
struct nc_packet packet={ struct nc_packet packet={
.sequence = new_window_start, .sequence = new_window_start,
.combination = read_uint32(&payload[8]), .combination = read_uint32(&payload[12]),
.payload = &payload[12], .payload = &payload[HEADER_LEN],
}; };
int r = _nc_rx_combine_packet(&n->rx, &packet); int r = _nc_rx_combine_packet(&n->rx, &packet);
@ -490,6 +511,7 @@ int nc_test()
// Prepare some random datagrams for subsequent tests // Prepare some random datagrams for subsequent tests
int i; int i;
int sent =0;
uint8_t datagrams[8][200]; uint8_t datagrams[8][200];
for (i=0;i<8;i++) for (i=0;i<8;i++)
nc_test_random_datagram(datagrams[i],200); nc_test_random_datagram(datagrams[i],200);
@ -501,20 +523,20 @@ int nc_test()
int j=0; int j=0;
for(i=0;i<10;i++) { for(i=0;i<10;i++) {
uint8_t outbuffer[12+200]; uint8_t outbuffer[HEADER_LEN+200];
int len=sizeof(outbuffer); int len=sizeof(outbuffer);
int written = nc_tx_produce_packet(tx, outbuffer, len); int written = nc_tx_produce_packet(tx, outbuffer, len);
if (written==-1) if (written==-1)
FAIL("Produce random linear combination of single packet for TX"); FAIL("Produce random linear combination of single packet for TX");
if (i==9) if (i==9)
PASS("Produce random linear combination of single packet for TX"); PASS("Produce random linear combination of single packet for TX");
uint32_t combination = read_uint32(&outbuffer[8]); uint32_t combination = read_uint32(&outbuffer[12]);
if (!combination) if (!combination)
FAIL("Should not produce empty linear combination bitmap"); FAIL("Should not produce empty linear combination bitmap");
if (i==9) if (i==9)
PASS("Should not produce empty linear combination bitmap"); PASS("Should not produce empty linear combination bitmap");
if (memcmp(&outbuffer[12], datagrams[0], 200)!=0) if (memcmp(&outbuffer[HEADER_LEN], datagrams[0], 200)!=0)
FAIL("Output identity datagram when only one in queue"); FAIL("Output identity datagram when only one in queue");
if (i==9) if (i==9)
PASS("Output identity datagram when only one in queue"); PASS("Output identity datagram when only one in queue");
@ -554,11 +576,12 @@ int nc_test()
// now can we receive this first packet? // now can we receive this first packet?
{ {
uint8_t outbuffer[12+200]; uint8_t outbuffer[HEADER_LEN+200];
int written = nc_tx_produce_packet(tx, outbuffer, sizeof(outbuffer)); int written = nc_tx_produce_packet(tx, outbuffer, sizeof(outbuffer));
ASSERT(written!=-1, "Produce packet"); ASSERT(written!=-1, "Produce packet");
int r=nc_rx_packet(rx, outbuffer, written); int r=nc_rx_packet(rx, outbuffer, written);
ASSERT(r!=-1, "Receive packet"); ASSERT(r!=-1, "Receive packet");
sent ++;
} }
// can we decode it? // can we decode it?
@ -572,7 +595,7 @@ int nc_test()
// acknowledging this first packet advances the window // acknowledging this first packet advances the window
{ {
uint8_t outbuffer[12+200]; uint8_t outbuffer[HEADER_LEN+200];
int written = nc_tx_produce_packet(rx, outbuffer, sizeof(outbuffer)); int written = nc_tx_produce_packet(rx, outbuffer, sizeof(outbuffer));
ASSERT(written!=-1, "Produce ACK"); ASSERT(written!=-1, "Produce ACK");
int r=nc_rx_packet(tx, outbuffer, written); int r=nc_rx_packet(tx, outbuffer, written);
@ -590,14 +613,14 @@ int nc_test()
int decoded=0; int decoded=0;
for(i=0;i<100;i++) { for(i=0;i<100;i++) {
uint8_t outbuffer[12+200]; uint8_t outbuffer[HEADER_LEN+200];
int len=sizeof(outbuffer); int len=sizeof(outbuffer);
int written = nc_tx_produce_packet(tx, outbuffer, len); int written = nc_tx_produce_packet(tx, outbuffer, len);
if (written==-1) if (written==-1)
FAIL("Produce random linear combination of multiple packets for TX"); FAIL("Produce random linear combination of multiple packets for TX");
if (i==0) if (i==0)
PASS("Produce random linear combination of multiple packets for TX"); PASS("Produce random linear combination of multiple packets for TX");
uint32_t combination = read_uint32(&outbuffer[8]); uint32_t combination = read_uint32(&outbuffer[12]);
if (!combination) if (!combination)
FAIL("Should not produce empty linear combination bitmap"); FAIL("Should not produce empty linear combination bitmap");
if (i==0) if (i==0)
@ -605,7 +628,7 @@ int nc_test()
for(j=0;j<200;j++) { for(j=0;j<200;j++) {
int k; int k;
uint8_t x = outbuffer[12+j]; uint8_t x = outbuffer[HEADER_LEN+j];
for (k=0;k<8;k++){ for (k=0;k<8;k++){
if (combination&(0x80000000>>k)) if (combination&(0x80000000>>k))
x^=datagrams[k+1][j]; x^=datagrams[k+1][j];
@ -616,7 +639,9 @@ int nc_test()
if (i==0) if (i==0)
PASS("Output linear combination from multiple packets in the queue"); PASS("Output linear combination from multiple packets in the queue");
nc_rx_packet(rx, outbuffer, written); if (nc_rx_packet(rx, outbuffer, written)!=1)
sent ++;
while(1){ while(1){
uint8_t out[200]; uint8_t out[200];
int size = nc_rx_next_delivered(rx, out, sizeof(out)); int size = nc_rx_next_delivered(rx, out, sizeof(out));
@ -635,7 +660,7 @@ int nc_test()
// acknowledging first 8 packets advances the tx window // acknowledging first 8 packets advances the tx window
{ {
uint8_t outbuffer[12+200]; uint8_t outbuffer[HEADER_LEN+200];
int written = nc_tx_produce_packet(rx, outbuffer, sizeof(outbuffer)); int written = nc_tx_produce_packet(rx, outbuffer, sizeof(outbuffer));
ASSERT(written!=-1, "Produce ACK"); ASSERT(written!=-1, "Produce ACK");
int r=nc_rx_packet(tx, outbuffer, written); int r=nc_rx_packet(tx, outbuffer, written);
@ -644,7 +669,11 @@ int nc_test()
ASSERT(tx->tx.queue_size==0, "ACK causes packets to be discarded"); ASSERT(tx->tx.queue_size==0, "ACK causes packets to be discarded");
} }
int sent =0; int histogram[64];
int uninteresting=0;
int dropped=0;
bzero(histogram, sizeof(histogram));
while(rx->rx.deliver_next < 10000){ while(rx->rx.deliver_next < 10000){
// fill the transmit window whenever there is space // fill the transmit window whenever there is space
while(tx->tx.queue_size<tx->tx.max_queue_size){ while(tx->tx.queue_size<tx->tx.max_queue_size){
@ -653,17 +682,18 @@ int nc_test()
} }
// generate a packet in each direction // generate a packet in each direction
uint8_t one[12+200]; uint8_t one[HEADER_LEN+200];
uint8_t two[12+200]; uint8_t two[HEADER_LEN+200];
sent++; sent++;
int wone = nc_tx_produce_packet(tx, one, sizeof(one)); int wone = nc_tx_produce_packet(tx, one, sizeof(one));
int wtwo = nc_tx_produce_packet(rx, two, sizeof(two)); int wtwo = nc_tx_produce_packet(rx, two, sizeof(two));
// receive each packet // receive each packet
int rone=nc_rx_packet(rx, one, wone); if (!(random()&7))
nc_rx_packet(tx, two, wtwo); nc_rx_packet(tx, two, wtwo);
if (!(random()&7)){
if (rone!=1){ if (nc_rx_packet(rx, one, wone)!=1){
int burst_len=0;
// deliver anything that can be decoded // deliver anything that can be decoded
while(1){ while(1){
uint8_t out[200]; uint8_t out[200];
@ -671,11 +701,22 @@ int nc_test()
if (size!=200) if (size!=200)
break; break;
decoded++; decoded++;
burst_len++;
} }
} histogram[burst_len]++;
}else
uninteresting++;
}else
dropped++;
} }
PASS("Delivered 10000 packets after sending %d", sent); PASS("Delivered 10000 packets after sending %d", sent);
fprintf(stderr, "Received = %d\n", sent - dropped);
fprintf(stderr, "Unint = %d\n", uninteresting);
fprintf(stderr, "Delivery burst histogram;\n");
for (i=0;i<64;i++)
if (histogram[i])
fprintf(stderr, "%d = %d (%d)\n", i, histogram[i], i*histogram[i]);
nc_free(tx); nc_free(tx);
nc_free(rx); nc_free(rx);
PASS("Release memory"); PASS("Release memory");